Documents

  • 2017 Viewing Geometry determines the contribution of binocular vision

    Accepted author manuscript, 2 MB, PDF-document

    Embargo ends: 12/09/18

  • 2017 Viewing Geometry PV

    Final published version, 794 KB, PDF-document

DOI

Binocular vision is often assumed to make a specific, critical contribution to online visual control of grasping by providing precise information about the separation between digits and object. This account overlooks the ‘viewing geometry’ typically encountered in grasping, however. Separation of hand and object is rarely aligned precisely with the line of sight (the visual depth dimension), and analysis of the raw signals suggests that, for most other viewing angles, binocular feedback is less precise than monocular feedback. Thus, online grasp control relying selectively on binocular feedback would not be robust to natural changes in viewing geometry. Alternatively, sensory integration theory suggests that different signals contribute according to their relative precision, in which case the role of binocular feedback should depend on viewing geometry, rather than being ‘hard-wired’. We manipulated viewing geometry, and assessed the role of binocular feedback by measuring the effects on grasping of occluding one eye at movement onset. Loss of binocular feedback resulted in a significantly less extended final slow-movement phase when hand and object were separated primarily in the frontoparallel plane (where binocular information is relatively imprecise), compared to when they were separated primarily along the line of sight (where binocular information is relatively precise). Consistent with sensory integration theory, this suggests the role of binocular (and monocular) vision in online grasp control is not a fixed, ‘architectural’ property of the visuo-motor system, but arises instead from the interaction of viewer and situation, allowing robust online control across natural variations in viewing geometry.
Original languageEnglish
Pages (from-to)3631-3643
JournalExperimental Brain Research
Volume235
Issue number12
Early online date12 Sep 2017
DOIs
StateE-pub ahead of print - 12 Sep 2017

    Research areas

  • Grasping, visual feedback, binocular vision, sensory integration, online control, visuo-motor control

ID: 19725032