TY - JOUR
T1 - Rewetting alongside biochar and sulphate addition mitigates greenhouse gas emissions and retain carbon in degraded upland peatlands
AU - Peduru Hewa, Jeewani
AU - Brown, Rob
AU - Evans, Chris D.
AU - Cook, Jack
AU - Roberts, Benjamin P.
AU - Fraser, Mariecia D.
AU - Chadwick, Dave
AU - Jones, Davey L.
PY - 2025/8/1
Y1 - 2025/8/1
N2 - Peat soils store significant amounts of carbon (C) globally, and increased C sequestration into peatlands could play a role in offsetting anthropogenic greenhouse gas (GHG) emissions. As such, there is a need to find and assess optimal greenhouse gas removal (GGR) interventions to minimise GHG losses, protect current C stocks, and promote further C sequestration. This mesocosm study assessed the additional C storage potential of different C-rich substrates (Juncus straw or Juncus-derived biochar) and/or FeSO4 amendments, with a low water table (LW; −15 cm) and high-water table (HW; 0 cm) in intact soil columns (20 cm diam. x 25 cm deep) extracted from degraded upland peat. GHG fluxes, soluble nutrients, changes in microbial community structure and enzyme activity were measured over a one-year period to evaluate the net C storage and their overall GGR potential. HW reduced CO2 emissions by 28 % compared to LW, while CH4 emissions increased, ultimately contributing 61 % of the overall CO2 equivalent (CO2eq) GHG emissions in HW cores with no amendments. Organic amendments had a significant effect on CO2 and CH4 emissions with the highest cumulative emissions being from the Straw-HW (26.2 t CO2eq ha−1 yr−1) and the lowest cumulative emissions being from the Biochar + FeSO4+HW (7.9 t CO2eq ha−1 yr−1). Biochar + FeSO4+HW led to the strongest net gain in soil C, suppressing decomposition of the native peat-C as well as CH4 emissions. The application of FeSO4 significantly reduced CO2eq GHG emissions by preventing methanogenesis through alternative electron acceptors. The Biochar + HW treatment suppressed Ascomycota abundance by 22 %. The combination of a high-water level, biochar addition and availability of alternative electron acceptors (e.g., FeSO4) can increase net C accumulation and GGR via both abiotic and biotic mechanisms, including i) increased C input, ii) modulation of soil microbiome to reduce peat turnover; and iii) suppression of CH4 and N2O emissions.
AB - Peat soils store significant amounts of carbon (C) globally, and increased C sequestration into peatlands could play a role in offsetting anthropogenic greenhouse gas (GHG) emissions. As such, there is a need to find and assess optimal greenhouse gas removal (GGR) interventions to minimise GHG losses, protect current C stocks, and promote further C sequestration. This mesocosm study assessed the additional C storage potential of different C-rich substrates (Juncus straw or Juncus-derived biochar) and/or FeSO4 amendments, with a low water table (LW; −15 cm) and high-water table (HW; 0 cm) in intact soil columns (20 cm diam. x 25 cm deep) extracted from degraded upland peat. GHG fluxes, soluble nutrients, changes in microbial community structure and enzyme activity were measured over a one-year period to evaluate the net C storage and their overall GGR potential. HW reduced CO2 emissions by 28 % compared to LW, while CH4 emissions increased, ultimately contributing 61 % of the overall CO2 equivalent (CO2eq) GHG emissions in HW cores with no amendments. Organic amendments had a significant effect on CO2 and CH4 emissions with the highest cumulative emissions being from the Straw-HW (26.2 t CO2eq ha−1 yr−1) and the lowest cumulative emissions being from the Biochar + FeSO4+HW (7.9 t CO2eq ha−1 yr−1). Biochar + FeSO4+HW led to the strongest net gain in soil C, suppressing decomposition of the native peat-C as well as CH4 emissions. The application of FeSO4 significantly reduced CO2eq GHG emissions by preventing methanogenesis through alternative electron acceptors. The Biochar + HW treatment suppressed Ascomycota abundance by 22 %. The combination of a high-water level, biochar addition and availability of alternative electron acceptors (e.g., FeSO4) can increase net C accumulation and GGR via both abiotic and biotic mechanisms, including i) increased C input, ii) modulation of soil microbiome to reduce peat turnover; and iii) suppression of CH4 and N2O emissions.
KW - Carbon sequestration; Greenhouse gas removals; soil biodiversity; Methane; enzymes
U2 - 10.1016/j.soilbio.2025.109814
DO - 10.1016/j.soilbio.2025.109814
M3 - Article
SN - 0038-0717
VL - 207
JO - Soil Biology and Biochemistry
JF - Soil Biology and Biochemistry
ER -