Abstract
The development of the Financial Crisis throughout 2008 and 2009 has made many investors and fund managers question whether growth-based investment approaches have had their day. Value-based approaches built on fundamental analysis have resurfaced again. Typically, these value-based models use fundamental variables to decide between investment opportunities. In a previous work, Vanstone et al. studied a set of filters published by Aby et al. during the dot-com crash of 2000 and subsequent aftermath, and tested and benchmarked these filters in the Australian market. The Aby filters rely on 4 different fundamental variables, and use rules with specific cut-off values to determine when to enter and exit trades. These cut-off values were found to be too restrictive for the Australian markets. This paper uses a neural network methodology by Vanstone and Finnie to develop a stockmarket trading system based on these same 4 fundamental variables, and demonstrates the important role neural networks have to play within complex and noisy environments, such as that provided by the stockmarket.
| Original language | English |
|---|---|
| Pages (from-to) | 78-91 |
| Number of pages | 14 |
| Journal | Mathematics and Computers in Simulation |
| Volume | 86 |
| DOIs | |
| Publication status | Published - Dec 2012 |
| Externally published | Yes |