TY - JOUR
T1 - iParasitology
T2 - Mining the Internet to Test Parasitological Hypotheses
AU - Poulin, Robert
AU - Bennett, Jerusha
AU - Filion, Antoine
AU - Bhattarai, Upendra Raj
AU - Chai, Xuhong
AU - de Angeli Dutra, Daniela
AU - Donlon, Erica
AU - Doherty, Jean-François
AU - Jorge, Fátima
AU - Milotic, Marin
AU - Park, Eunji
AU - Sabadel, Amandine
AU - Thomas, Leighton J
N1 - Copyright © 2021 Elsevier Ltd. All rights reserved.
PY - 2021/4/1
Y1 - 2021/4/1
N2 - Digital data (internet queries, page views, social media posts, images) are accumulating online at increasing rates. Tools for compiling these data and extracting their metadata are now readily available. We highlight the possibilities and limitations of internet data to reveal patterns in host-parasite interactions and encourage parasitologists to embrace iParasitology.
AB - Digital data (internet queries, page views, social media posts, images) are accumulating online at increasing rates. Tools for compiling these data and extracting their metadata are now readily available. We highlight the possibilities and limitations of internet data to reveal patterns in host-parasite interactions and encourage parasitologists to embrace iParasitology.
KW - Data Mining/trends
KW - Host-Parasite Interactions
KW - Internet
KW - Parasitology/methods
U2 - 10.1016/j.pt.2021.01.003
DO - 10.1016/j.pt.2021.01.003
M3 - Article
C2 - 33547010
SN - 1471-4922
VL - 37
SP - 267
EP - 272
JO - Trends in Parasitology
JF - Trends in Parasitology
IS - 4
ER -