iParasitology: Mining the Internet to Test Parasitological Hypotheses

Robert Poulin, Jerusha Bennett, Antoine Filion, Upendra Raj Bhattarai, Xuhong Chai, Daniela de Angeli Dutra, Erica Donlon, Jean-François Doherty, Fátima Jorge, Marin Milotic, Eunji Park, Amandine Sabadel, Leighton J Thomas

Research output: Contribution to journalArticlepeer-review

Abstract

Digital data (internet queries, page views, social media posts, images) are accumulating online at increasing rates. Tools for compiling these data and extracting their metadata are now readily available. We highlight the possibilities and limitations of internet data to reveal patterns in host-parasite interactions and encourage parasitologists to embrace iParasitology.

Original languageEnglish
Pages (from-to)267-272
Number of pages6
JournalTrends in Parasitology
Volume37
Issue number4
Early online date10 Mar 2021
DOIs
Publication statusPublished - 1 Apr 2021
Externally publishedYes

Keywords

  • Data Mining/trends
  • Host-Parasite Interactions
  • Internet
  • Parasitology/methods

Fingerprint

Dive into the research topics of 'iParasitology: Mining the Internet to Test Parasitological Hypotheses'. Together they form a unique fingerprint.

Cite this