Push–pull configuration of high-power MOSFETs for generation of nanosecond pulses for electropermeabilization of cells

Ilan Davies, C. Merla, M. Tanori, A. Zambotti, M. Mancuso, J. Bishop, M. White, Cristiano Palego, Chris Hancock

Research output: Contribution to journalArticlepeer-review

534 Downloads (Pure)

Abstract

A power MOSFET-based push–pull configuration nanosecond-pulse generator has been designed, constructed, and characterized to permeabilize cells for biological and medical applications. The generator can deliver pulses with durations ranging from 80 ns up to 1 μs and pulse amplitudes up to 1.4 kV. The unit has been tested for in vitro experiments on a medulloblastoma cell line. Following the exposure of cells to 100, 200, and 300 ns electric field pulses, permeabilization tests were carried out, and viability tests were conducted to ver- ify the performance of the generator. The maximum temperature rise of the biological load was also calculated based on Joule heating energy conservation and experimental validation. Our results indicate that the developed device has good capabilities to achieve well-controlled electro-manipulation in vitro.
Original languageEnglish
Pages (from-to)645-657
JournalInternational Journal of Microwave and Wireless Technologies
Volume11
Issue number7
Early online date27 May 2019
DOIs
Publication statusPublished - 30 Sept 2019

Fingerprint

Dive into the research topics of 'Push–pull configuration of high-power MOSFETs for generation of nanosecond pulses for electropermeabilization of cells'. Together they form a unique fingerprint.

Cite this