Local human impacts decouple natural biophysical relationships on Pacific coral reefs
Williams, Gareth; Gove, J.M.; Eynaud, Y.; Zgliczynski, B.J.; Sandin, S.A.

Ecography

DOI: 10.1111/ecog.01353
Published: 28/02/2015

Peer reviewed version

Cyswllt i'r cyhoeddiad / Link to publication

Dyfyniad o’r fersiwn a gyhoeddwyd / Citation for published version (APA):

Hawliau Cyffredinol / General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
The spotted gar genome illuminates vertebrate evolution and facilitates human-to-teleost comparisons

1Institute of Neuroscience, University of Oregon, Eugene, Oregon, USA. 2Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, USA. 3Department of Biology, University of Kentucky, Lexington, Kentucky, USA. 4Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, USA. 5Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece. 6INRA, UR1037 LPGP Fish Physiology and Genomics, Campus de Beaulieu, Rennes, France. 7Department of Animal Biology, University of Illinois, Urbana-Champaign, Illinois, USA. 8Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA. 9Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah, USA. 10Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom. 11European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom. 12Department of Zoology, University of Oxford, Oxford, United Kingdom. 13School of Biological Sciences, Bangor University, Bangor, Gwynedd, United Kingdom. 14Comparative Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore. 15Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Lyon, France. 16Department of Biology, University of Konstanz, Konstanz, Germany. 17Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA. 18Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina, USA. 19Department de Genética, Universitat de Barcelona, Barcelona, Spain. 20Institut de Recerca de la Biodiversitat, Universitat de Barcelona, Barcelona, Spain. 21University of Victoria, Department of Biology, Victoria, British Columbia, Canada. 22Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China. 23School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu, China. 24Bioinformatics Group, Department of Computer Science, Universität Leipzig, Leipzig, Germany. 25Department of Dental Hygiene, The Niigata Dental University College at Niigata, Niigata, Japan. 26Department of Pediatrics, University of South Florida Morsani College of Medicine, St. Petersburg, Florida, USA. 27Department of Microbiology, The Niigata Dental University School of Life Dentistry at Niigata, Niigata, Japan. 28Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan. 29Molecular Genetics Program, Benaroya Research Institute, Seattle, Washington, USA. 30Department of Biological Sciences, Nicholls State University, Thibodaux, Louisiana, USA. 31Instituto de Ciencias Biologicas, Universidade Federal do Para, Belem, Brazil. 32International Max-Planck Research School for Organismal Biology, University of Konstanz, Konstanz, Germany. 33Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden. 34Present addresses: Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA (I.B.); Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA (M.S.C.); Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom (K.J.M.); Department of Genetics, University of Georgia, Athens, Georgia, USA (D.C.); Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, USA (S.F.); Young Investigators Group, Bioinformatics and Transcriptomics, Department of Proteomics, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany (J.H.); eSeq Bioinformatics, Leipzig, Germany (M.F.); Vertebrate and Health Genomics, The Genome Analysis Center, Norwich, United Kingdom (F.D.P.).

Correspondence should be addressed to I.B. (braasch@msu.edu) or J.H.P. (jpostle@uoneuro.oregon.edu).
Abstract

To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (*Lepisosteus oculatus*), whose lineage diverged from teleosts before the teleost genome duplication (TGD). The slowly evolving gar genome conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the evolution of immunity, mineralization, and development (e.g., Hox, ParaHox, and miRNA genes). Numerous conserved non-coding elements (CNEs, often cis-regulatory) undetectable in direct human-teleost comparisons become apparent using gar: functional studies uncovered conserved roles of such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide association studies. Transcriptomic analyses revealed that the sum of expression domains and levels from duplicated teleost genes often approximate patterns and levels of gar genes, consistent with subfunctionalization. The gar genome provides a resource for understanding evolution after genome duplication, the origin of vertebrate genomes, and the function of human regulatory sequences.

Keywords: GWAS, comparative medicine, polyploidy, zebrafish, medaka, neofunctionalization
Teleost fish represent about half of all living vertebrate species\(^1\) and provide important models for human disease (e.g. zebrafish and medaka)\(^2\)\(^-\)\(^9\). Connecting teleost genes and gene functions to human biology (Fig. 1a) can be challenging, however, due to 1) two rounds of early vertebrate genome duplication (VGD1 and VGD2\(^10\), but see\(^11\)) followed by reciprocal loss of some ohnologs (gene duplicates derived from genome duplication\(^3\)) in teleosts and tetrapods, including humans (e.g.,\(^12\),\(^13\); 2) the teleost genome duplication (TGD), which resulted in duplicates of many human genes\(^14\),\(^15\); and 3) rapid teleost sequence evolution\(^16\),\(^17\), often due to asymmetric rates of ohnolog evolution that frustrates ortholog identification. To help connect teleost biomedicine to human biology, we sequenced the genome of spotted gar (\textit{Lepisosteus oculatus}, henceforth 'gar'; see also Supplementary Note 1, Supplementary Fig. 1), because its lineage represents the unduplicated sister group of teleosts\(^18\),\(^19\) (Fig. 1a).

Gar informs the evolution of vertebrate genomes and gene functions after genome duplication and illuminates evolutionary mechanisms leading to teleost biodiversity. The gar genome evolved comparatively slowly and clarifies the evolution and orthology of problematic teleost protein-coding and miRNA gene families. Surprisingly, many entire gar chromosomes have been conserved with some tetrapods for 450 million years. Importantly, gar reveals conserved non-coding elements (CNEs), which are often regulatory, that teleosts and humans share but that direct sequence comparisons do not detect. Global gene expression analyses show that expression domains and levels of TGD duplicates usually sum to those in gar, as expected if ancestral regulatory elements partitioned after the TGD. By illuminating the legacy of genome duplication, the gar genome bridges teleost biology to human health, disease, development, physiology, and evolution.

RESULTS

Genome assembly and annotation

The genome of a single adult gar female collected in Louisiana (USA) was Illumina sequenced to 90X coverage. The ALLPATHS-LG\(^20\) draft assembly covers 945 Mb with quality metrics comparable to other vertebrate Illumina assemblies\(^20\). To generate a 'chromonome' (chromosome-level genome assembly\(^21\)), we anchored scaffolds to a meiotic map\(^19\) capturing 94% of assembled bases in 29 linkage groups (LGs) (Supplementary Note 2). Transcriptomes from adult tissues and developmental stages (Supplementary Note 3) facilitated a MAKER\(^22\)-annotated gene set of 21,443 high confidence protein-coding genes, while ENSEMBL annotation
identified 18,328 protein-coding genes (mostly a subset of MAKER annotations), 42
pseudogenes, and 2,595 ncRNAs (Supplementary Note 4), compared to human (20,296 protein
coding genes) and zebrafish (25,642). About 20% of the gar genome is repetitive, including
transposable elements (TEs) representing most lobe-finned and teleost TE superfamilies and a
TE profile similar to that of coelacanth23, thus clarifying TE phylogenetic origins (Supplementary
Note 5, Supplementary Tabs.1-3, Supplementary Figs. 2-5).

The gar lineage evolved slowly
Phylogenies of 243 one-to-one orthologs in 25 jawed vertebrates16, including gar and our
transcriptome of bowfin \textit{Amia calva} (Supplementary Notes 3,4, Supplementary File 1), strongly
support the monophyly of Holostei (gar+bowfin) as sister group to teleosts (Fig. 1b,
Supplementary Note 6, Supplementary Fig. 6)24-27, suggesting that morphologies shared by
bowfin and teleosts28,29 may be convergent or ancestral traits altered in the gar lineage.
Darwin applied his term ‘living fossil’ to ‘ganoid fishes’, including gars30; indeed, gars show low
rates of speciation and phenotypic evolution31. Evolutionary rate analyses using cartilaginous
fish outgroups show that gar and bowfin proteins evolved significantly slower than teleost
sequences. Holostei have a significantly shorter branch length to the cartilaginous outgroup
than most other bony vertebrates except coelacanth, the slowest evolving bony vertebrate16,32
(Fig. 1b, Supplementary Note 7, Supplementary Tab. 4). Our results support the hypothesis that
the TGD could have facilitated the high rate of teleost sequence evolution 16,17,33. Gar TEs also
show a low turnover rate compared to teleosts, mammals, and even coelacanth23
(Supplementary Note 5, Supplementary Fig. 5).

Gar informs the evolution of bony vertebrate karyotypes
Gar represents the first chromonome21 of a non-tetrapod, non-teleost jawed vertebrate,
allowing for the first time long-range gene order analyses without the confounding effects of the
TGD. The gar karyotype (2N=58) contains both macro- and microchromosomes (Fig. 2a,
Supplementary Note 8.1, Supplementary Fig. 7). Aligning gar chromosomes to those of human,
chicken, and teleosts revealed distinct conservation of orthologous segments in all species (Fig.
2b-e, Supplementary Note 8.2, Supplementary Figs. 8,9). Strikingly, gar-chicken comparisons
revealed conservation of many entire chromosomes (Fig. 2c). Chicken and gar karyotypes differ
only by about 17 large fissions, fusions, or translocations. Almost half of the gar karyotype
(14/29 chromosomes) showed a nearly one-to-one relationship in gar-chicken comparisons,
including macro- and microchromosomes with highly correlated chromosome assembly lengths
Similarity in chromosome size and gene content is strong evidence that the karyotype of the common bony vertebrate ancestor possessed both macro- and microchromosomes as Ohno (1969) hypothesized, consistent with microchromosomes in coelacanth and cartilaginous fish, for which no chromonomes are yet available.

The gar chromonome also tests the hypothesis that an increase in interchromosomal rearrangements occurred in teleosts after, and possibly due to, the TGD. For each gar chromosome segment, teleosts usually have two ohnologous segments, verifying a pre-TGD gar-teleost divergence. Each TGD pair in teleosts usually shares conserved synteny with more than one gar chromosome, indicating rearrangements before the TGD (Fig. 2e, Supplementary Note 8.2, Supplementary Figs. 8,9). Gar shares many whole chromosomes with chicken (Fig. 2c) but few with teleosts (Fig. 2e). These results show that chromosome fusions thought to have occurred in the ray-finned lineage after divergence from the lobe-finned lineage actually occurred in the teleost lineage after divergence from gar but before the TGD (Fig. 2f, Supplementary Fig. 10). This finding explains how spotted gar has more chromosomes (N=29, Fig. 2a) than typical teleosts (N~24-25) without experiencing the TGD. Comparisons taking the TGD into account further revealed an average fission/translocation rate in percomorphs (stickleback, medaka, pufferfish) relative to gar similar to that in the chicken lineage. Zebrafish has a higher rearrangement rate, however, even after accounting for the TGD (Supplementary Note 8.2, Supplementary Fig. 11). These comparisons indicate that the TGD might not fully account for high teleost rearrangement rates.

Gar clarifies vertebrate gene family evolution

Lineage-specific loss of ohnologs often followed VGD1, VGD2, and the TGD (Fig. 1a), which complicates identification of true orthologs and frustrates translating knowledge from teleosts biomedical models to human biology, e.g.,12. Gar is uniquely informative because its lineage did not experience the TGD and often retained ancestral VGD1/VGD2 ohnologs that were reciprocally lost in teleosts and tetrapods, thus clarifying the evolution of gene families involved in vertebrate development, physiology, and immunity (Supplementary Note 9).

Developmental gene family analyses revealed stability in the gar gene repertoire, including *Hox* clusters (Supplementary Note 9.1). Gar has 43 *hox* genes organized in four clusters expected for an unduplicated ray-finned fish (Supplementary Fig. 12). No *hox* gene has been completely lost in gar since divergence from the last common ray-finned ancestor. The *hoxD14* gene, missing from teleosts but present in paddlefish, is recognizable as a pseudogene in gar (Supplementary Fig. 13). In contrast, teleosts have far fewer *hox* cluster genes than the 82
expected after genome duplication (e.g., zebrafish, 49 genes; stickleback, 46), demonstrating massive hox cluster gene loss after the TGD. Teleosts lack orthologs of hoxA6 and hoxD2, zebrafish lacks all hoxDb cluster protein-coding genes14, and percomorphs lack the hoxCb cluster41, but gar lacks just one hox cluster gene from the last common bony vertebrate ancestor (hoxA14), fewer than tetrapods (e.g., human: three losses) and coelacanth (two) (Supplementary Fig. 12). Gar ParaHox clusters (Supplementary Note 9.2, Supplementary Tab. 5) are also more complete than those in teleosts and tetrapods, with four clusters containing seven genes. Gar retained cdx2, revealing a VGD1/VGD2 ohnolog ‘gone missing’ from teleosts (Supplementary Fig. 14). Gar possesses the VGD1/VGD2 ohnolog pdx2, previously found only in cartilaginous fish and coelacanth42, showing that pdx2 was lost independently in teleosts and tetrapods (Supplementary Figs. 14,15). Retinoic acid regulates Hox cluster gene expression43 but retinoic acid-synthesizing Aldh enzymes (Supplementary Note 9.3) vary in number among vertebrates44: tetrapods have three genes (Aldh1a1, Aldh1a2, Aldh1a3), zebrafish has two (aldh1a2, aldh1a3), medaka just one (aldh1a2)45. Finding all three genes in gar rules out the hypothesis45 that Aldh1a1 was a lobe-finned innovation (Supplementary Fig. 16).

Physiological mechanisms are shared among vertebrates, including light control of circadian rhythms, despite important gene repertoire differences between teleosts and tetrapods 46,47. Analyses of gar circadian clock (Supplementary Note 9.4, Supplementary Tab. 6, Supplementary Fig. 17)48 and opsin genes (Supplementary Note 9.5, Supplementary Tab. 7, Supplementary Fig. 18)49 link gene repertoires of teleosts and tetrapods: e.g., gar clarifies circadian gene origins in VGD vs. TGD events. Gar has pinopsin, present in tetrapods but absent from teleosts, along with exo-rhodopsin, previously thought to compensate the lack of pinopsin in teleosts50.

Evolution of vertebrate immunity becomes clearer using gar (Supplementary Note 9.6). Major-histocompatibility complex (MHC) class I and class II genes (Supplementary Figs. 19-21) are tightly linked in tetrapods and cartilaginous fish but are unlinked in teleosts51,52. In gar, at least one pair of class I and class II genes are linked as in tetrapods53,54, suggesting that gar retains the ancestral configuration although most gar MHC genes remain on unassembled scaffolds (Supplementary Fig. 21). Gar has some class I genes thought to be teleost-specific (Z/P-, L-, and U/S-like, e.g.54-56; Supplementary Fig. 19) and some class II genes similar to, and some distinct from, teleost DA/DB and DE lineages (Supplementary Fig. 20). Several gar MHC region genes are on unassembled scaffolds linked to genes whose human orthologs are encoded in MHC class II or MHC class III regions on Hsa6 and some are adjacent to orthologs of teleost MHC class I genes (Supplementary Tab. 8). The human MHC class III region on Hsa6
has syntenic segments on Hsa1, Hsa9, and Hsa19; these four ohnologons likely arose in VGD1
and VGD2 as supported by the gar genome (Supplementary Tab. 8).

Gar immunoglobulin (Ig) genes (Supplementary Fig. 22) and transcripts generally resemble
those of teleosts. Unexpectedly, gar has a second, distinct IgM locus but lacks IgT (IgZ),
thought to provide mucosal immunity, suggesting that IgT is teleost-specific and that gar
amnoid scales may suffice for exterior surface protection. Gar T-cell receptor genes
(Supplementary Fig. 23) are tightly linked as in mammals, but unlike in Xenopus, they are
downstream of V and J segments. Phylogenetic analyses of Toll-like receptor (TLR) genes
(Supplementary Fig. 24) from tetrapods, teleosts, and gar revealed that the 16 identifiable gar
TLRs embrace all six major TLR families. Gar TLRs appear to share evolutionary histories
with teleosts and/or tetrapods. Gar encodes NITR (novel immune-type receptor) genes
(Supplementary Fig. 25), which function in alloreognition and were thought to be teleost-
specific. The 17 gar nitr genes form 15 families, suggesting few recent tandem duplications
or rapid divergence after gene duplication. In sum, the gar immunogenome bridges teleosts to
tetrapods.

Gar uncovers evolution of vertebrate mineralized tissues

Bony vertebrates share mineralized tissues (bone, dentin, enameloid, and enamel), yet gene
repertoires for the secretory calcium-binding phosphoproteins (Scpp) that form these tissues
differ substantially between teleosts and tetrapods and their evolution remains
controversial. Gar clarifies understanding because it retains ancient characteristics both in
its ganoid scales, which contain ganoin, hypothesized to be a type of enamel, and in its teeth,
which are covered by both enameloid and enamel. Gar genomes were thought to contain the largest number of Scpp genes (human, 23 genes; coelacanth, 14; zebrafish, 15) and only two (Spp1 and Odam) seemed common between lobe-finned vertebrates and teleosts (Fig. 3a). We identified 35 scpp genes in gar in two clusters on LG2 and LG4 (Fig. 3a, Supplementary Note 10, Supplementary Tab. 9), which contain spp1 and odam, respectively. Importantly, gar includes orthologs of five scpp genes previously found only in teleosts and six known only from lobe-finned vertebrates. Another 18 gar scpp genes have no
identified ortholog in either lobe-finned vertebrates or teleosts (Fig. 3a, Supplementary Note 10,
Supplementary Tab. 9).

Enamel matrix protein genes Ameloblastin (Ambn), Enamelin (Enam), and Amelogenin (Amel)
are found in lobe-finned vertebrates with enamel-bearing teeth, but not in teleosts, which lack
enamel-bearing teeth. For the first time in a ray-finned vertebrate, we identified ambn and
enam genes (but no Amel ortholog) in gar genome and transcriptomes. Gar ambn and enam genes show sequence similarities to zebrafish scpp6 and fa93e10, respectively, suggesting that teleosts may have divergent orthologs, supported by conserved gene orders in gar and zebrafish clusters (Fig. 3a).

RT-PCR and our gar skin transcriptome revealed expression of ambn and enam in enamel-containing gar teeth and in gar skin that includes scales with ganoin (Supplementary Note 10, Supplementary Tab. 9), suggesting that strong expression of ambn and enam is limited to enamel and ganoin. Thus, enamel in teeth and ganoin in ganoid scales likely represent the same tissue and common expression of Ambn and Enam in lobe-finned enamel and in gar enamel/ganoin supports homology of these tissues. Analysis of gnathostome fossils suggested that ganoin is plesiomorphic for crown osteichthyan and arose before enamel; thus, enamel-bearing teeth likely evolved by co-opting enamel matrix genes originally used in ganoid scales. Amel may have evolved subsequently to encode the principal organic component of “true enamel” that appears to have originated in lobe-finned vertebrates.

Gar expressed twelve additional scpp genes (including odam and scpp9 hypermineralization genes) in both teeth and scales and another four genes in bone (Supplementary Tab. 9), strongly suggesting that the common ancestor of extant bony vertebrates had a rich repertoire of Scpp genes, many of which were expressed in mineralized tissues, and that although teleosts and lobe-finned vertebrates independently lost subsets of ancient Scpp genes, gar retained characteristics of both lineages.

Gar connects vertebrate microRNAomes
MicroRNA genes could become teleost- or tetrapod-specific by loss in one lineage or gain in the other. We studied gar miRNAs computationally (Supplementary Note 11.1, Supplementary Tab. 10, Supplementary Fig. 27) and annotated them using a sequence-based approach (Supplementary Note 11.2). Small RNA sequencing from four tissues identified 302 mature miRNAs from 233 genes, 229 belonging to 107 families and four without a known family (Supplementary Tab. 11, Supplementary Fig. 28). Gar-zebrafish comparisons showed that four families and four individual miRNA genes emerged in teleosts. Of 22 families thought to be teleost losses, two actually belong to the same family and orthologs of four gar miRNA genes were previously overlooked in teleosts. Fourteen families are absent from both gar and teleosts, and three are present in gar and many teleosts but absent from zebrafish. A single family present in teleosts and lobe-finned fish (mir150) was not found in gar. Notably, no miRNA family loss was teleost-specific, suggesting that the TGD did not accelerate family loss.
The ‘gar bridge’ helps identify miRNA orthologies. For example, mammalian $\text{Mir}425$ and $\text{Mir}191$, thought to be lost in teleosts17, are orthologs of teleost $\text{mir}731$ and $\text{mir}462$, respectively (Fig. 3b). Additionally, mammalian $\text{Mir}135B$ is orthologous to gar $\text{mir}135c$ and zebrafish TGD ohnologs $\text{mir}135c-1$ and $\text{mir}135c-2$ (Fig. 3c). The post-TGD retention rate for zebrafish miRNA ohnologs is 39% (81/208 analyzable cases), considerably higher than the rate for protein-coding genes (20-24%75), consistent with the hypothesis that miRNA genes are likely to be retained after duplication due to their incorporation into multiple gene regulatory networks$^{76-79}$.

Gar reveals hidden orthology of cis-regulatory elements

Conserved non-coding elements (CNEs) often function as cis-acting regulators80,81, but many are not visible in teleosts, presumably due to rapid teleost sequence evolution (Fig. 1b, Supplementary Note 7); ancient CNEs identified in tetrapods, however, might be detected in ray-finned fish using the slowly evolving gar.

CNE analyses near developmental gene loci ($\text{Hox}/\text{ParaHox}$ clusters, $\text{Pax}6$, $\text{Irx}B$) showed that gar contains more gnathostome CNEs (conserved between bony vertebrates and elephant shark) than teleosts. Analyses incorporating gar identified many bony vertebrate CNEs (i.e., absent from elephant shark) that were not predicted by direct human-teleost comparisons; furthermore, gar-based alignments identified CNEs recruited in the common ancestor of ray-finned fishes (Supplementary Notes 9.2, 12.1, Supplementary Tabs. 12-19, Supplementary Figs. 14-15,29-35).

Gar unravels the origins of tetrapod limb enhancers, evidenced by whole-genome alignments for 13 vertebrates (gar, five teleosts, coelacanth, five tetrapods, elephant shark, Supplementary Note 12.2, Supplementary Tabs. 20-21, Supplementary Fig. 36). For 153 known human limb enhancers$^{32,82-84}$, human-centric alignments identified 71% (108) in gar but only 53% (81) in direct human-teleost alignments. Of 72 limb enhancers lacking a human-teleost alignment, 40% (29/72) aligned to gar, confirming their presence in the bony vertebrate ancestor and loss or considerable divergence in teleosts. Of these 29 enhancers, 15 also aligned to elephant shark, revealing their existence in the gnathostome ancestor. Fourteen occurred in gar but not teleosts and would have been incorrectly characterized as lobe-finned innovations without gar (Supplementary Note 12.3, Supplementary Tab. 22).

Using the ‘gar bridge’ (Fig. 4a), we tested whether these 29 enhancers not directly identified in teleosts might represent rapid divergence rather than definitive loss. Inspection of human-centric and gar-centric alignments revealed 48% (14/29) aligning to at least one teleost (Supplementary Tab. 22). Gar thus substantially improves understanding of the evolutionary
origin of vertebrate limb enhancers and their fate in teleosts (Fig. 4b, Supplementary Tab. 22, Supplementary Fig. 37). Strikingly, despite using the ‘gar bridge’, we found that teleosts lost substantially more limb enhancers (15) than gar (two) (Fig. 4b, Supplementary Fig. 37), suggesting gar as a better model than teleosts for investigating the fin-to-limb transition.

Functional studies of a HoxD limb enhancer tested the utility of a ‘gar CNE bridge’. HoxD and HoxA clusters pattern proximal and distal mammalian limbs by ‘early’ and ‘late’ phases of gene expression, respectively. Early phase HoxD expression in fins and limbs shows several presumed homologous features and may derive from shared but cryptic regulatory elements. Elements CNS39 and CNS65 drive early phase HoxD activation in mammals (Figure 5a).

Human-centric (Supplementary Tab. 22) and local mouse-centric alignments (Figure 5a) failed to detect CNS39 in ray-finned fish, but identified CNS65 in gar. Significantly, CNS65 appeared in teleosts only using the ‘gar bridge’ (Figure 5a, Supplementary Tab. 22).

To test if cryptic CNE orthologs preserve enhancer function, we used CNS65-driven reporter constructs to generate transgenic zebrafish and mice (Supplementary Note 12.4). CNS65 from either gar or zebrafish drove early expression in the developing zebrafish pectoral fin (Figure 5b). Gar CNS65 drove expression in fore- and hindlimbs of stage e10.5 mice (Figure 5c) indistinguishable from murine CNS65. Zebrafish CNS65 activated forelimb expression somewhat weaker than gar CNS65 (Figure 5c). At e12.5, gar CNS65 activated proximal but not distal limb expression (Figure 5c), mimicking the endogenous murine enhancer. These functional experiments demonstrate that regulation of HoxD early phase expression in limbs and fins is an ancestral, conserved feature of bony vertebrates and that gar connects otherwise cryptic teleost regulatory mechanisms to mammalian developmental biology.

Gar bridges human CNEs to teleost biomedical models. Genome-wide, we identified approximately 28% of human-centric CNEs (39,964/143,525) in gar, more than in any of five aligned teleost genomes. Around 19,000 human-centric CNEs aligned to gar but not to any teleost (Supplementary Note 12.2, Supplementary Tab. 21). Without gar, one would have erroneously concluded that these elements originated in lobe-finned vertebrates or were lost in teleosts. The ‘gar bridge’ (Fig. 4a) established hidden orthology from human to gar to zebrafish for many of these human-centric CNEs (30-36%, depending on overlap; Supplementary Note 12.2, Supplementary Tab. 21). These approximately 6,500 newly connected human CNEs contain around a thousand SNPs linked to human conditions in genome-wide association studies (GWAS), thereby connecting otherwise undetected disease-associated haplotypes to genomic locations in zebrafish (Supplementary Tab. 21). The gar bridge thus helps identify...
biomedically relevant candidate regions in model teleosts for functional testing, thereby
enhancing teleost models for personalized medicine.

Gar illuminates gene expression evolution following the TGD

Ohnologs experience several non-exclusive fates after genome duplication: loss of one copy, evolution of new expression domains or protein functions, and the partitioning of ancestral functions89-92. Because the contribution of various fates has not yet been studied using a close TGD outgroup, we generated a list of gar genes and their orthologous TGD ohnologs or singletons in zebrafish and medaka using phylogenetic93 and conserved synteny analyses94 (Fig. 6a,b, Supplementary Note 13.1, Supplementary Tab. 23).

To compare tissue-specific gene expression patterns, we conducted RNA-seq for ten adult organs and for stage-matched embryos for gar, zebrafish, and medaka, then normalized reads across tissues for each gene in each species (Supplementary Notes 3.2,13.2). For example, gar expressed \textit{slc1a3} mainly in brain, bone, and testis, but both teleosts expressed one ohnolog primarily in brain and the other primarily in liver, a novel expression domain, with little expression in bone or testis (Fig. 6c). Novel expression domains like this are expected if one ohnolog maintained ancestral patterns while the other evolved new functions95 before the teleost radiation. In contrast, gar expressed \textit{gpr22} mostly in brain and heart but both teleosts expressed one ohnolog in brain, the other in heart (Fig. 6d), as expected by partitioning of ancestral regulatory subfunctions89.

To characterize effects of the TGD on evolution of gene expression, we plotted tissue-specific expression levels in gar vs. 1) expression of orthologous teleost singletons, 2) expression of each TGD ohnolog when both were retained, and 3) the averaged expression level of both retained ohnologs (‘ohnolog-pair’), and then calculated correlation coefficients. Results showed that the correlation of \textit{expression patterns} of gar genes to their teleost singleton orthologs (‘Singl’ in Fig. 6e,f) was not significantly different from the correlation of expression patterns of gar genes to either copy of their teleost TGD co-orthologs (‘Ohno1’ and ‘Ohno2’ in Fig. 6e,f); thus, compared to ancestral single-copy genes as estimated from gar, teleost ohnologs binned at random do not appear to have evolved expression pattern differences significantly more rapidly than singletons. In contrast, the average tissue-specific patterns of both TGD duplicates (‘OhnoPair’ in Fig. 6e,f) correlated significantly more closely to gar than either ohnolog taken alone and more closely than singletons; thus, ancestral gene subfunctions tended to partition between TGD ohnologs and to maintain ancestral functions as a gene pair, as predicted by the subfunctionalization model89.
We next calculated average expression levels for each gene over the 11 tissues and computed the ratio of each teleost gene to its gar ortholog. Comparisons showed that individual ohnologs (Fig. 6g,h) were each expressed at significantly lower levels than singletons (Fig. 6g,h) compared to their gar orthologs. The ratio of expression levels of ohnolog-pairs to gar expression levels, however, showed no statistical difference from singleton/gar expression ratios (Fig. 6g,h). This finding suggests that the aggregate expression level of ohnolog-pairs tends to evolve to approximate the level of the pre-duplication gene as expected by quantitative subfunctionalization.

Taken together, our analyses indicate that post-TGD, ohnolog-pairs evolved so that the sum of their expression domains and the sum of their expression levels usually approximated the patterns and levels of pre-duplication genes.

DISCUSSION

Gar is the first ray-finned fish genome sequence not impacted by the TGD. Due to its phylogenetic position, slow rate of sequence evolution, dense genetic map, and ease of laboratory culture, this resource provides a unique bridge between tetrapods and teleost biomedical models. Analysis revealed that gar bridges teleosts to tetrapods in genome arrangement, identifying orthologous genes, possessing ancient VGD ohnologs lost reciprocally in teleosts and tetrapods, understanding evolution of vertebrate-specific features including adaptive immunity and mineralized tissues, and the evolution of gene expression. Clarification of gene orthology and history is crucial for the design, analysis, and interpretation of teleost models of human disease, including those generated with CRISPR/Cas9-induced genome editing. Gar analyses show that sequences formerly considered unique to teleosts or tetrapods are often shared between ray-finned and lobe-finned vertebrates including human. Importantly, the gar bridge helps identify potential gene regulatory elements that are shared by teleosts and humans but invisible in direct teleost-tetrapod comparisons. Availability of gar embryos and ease of raising eggs to adults in the laboratory makes gar a ray-finned species of choice when analyzing many vertebrate developmental and physiological features. In conclusion, the gar bridge facilitates the connectivity of teleost medical models to human biology.
Methods and their associated references are available in the online version of the paper.

Accession codes. GenBank accession number for the spotted gar genome: GCA_000242695.1. RNA-seq data are available under SRA accession numbers SRP042013 (Broad Institute gar transcriptome), SRP044781-SRP044784 (PhyloFish transcriptomes of zebrafish, gar, bowfin, and medaka), and SRP063942 (gar small RNA-seq for miRNA annotation). Gar *scpp* gene sequences are available under GenBank accession numbers KU189274-KU189300.

Note: Supplementary information is available in the online version of the paper.

ACKNOWLEDGEMENTS

We thank the Broad Institute Genomics Platform for constructing and sequencing gar DNA and RNA libraries and Jason Turner-Maier for the gar transcriptome assembly. We thank the teams of the Bayousphere Research Lab (Nicholls State University) and the University of Oregon Fish Facility for gar work and husbandry. We thank John Westlund for design of species illustrations. Generation of gar sequences and assemblies by the Broad Institute of the Massachusetts Institute of Technology (MIT) and Harvard University was supported by NIH/NHGRI grant U54 HG03067. This work was further supported by NIH grants R01 OD011116 (alias R01 RR020833) and R24 OD01119004 (J.H.P.); Feodor Lynen Fellowship, Alexander von Humboldt Foundation and Volkswagen Foundation Initiative Evolutionary
Biology, grant I/84 815 (I.B.); NIH Grant T32 HD055164 and NSF Doctoral Dissertation Improvement Grant 1311436 (A.R.G.); Uehara Memorial Foundation Research Fellowship 2013, Japan Society for the Promotion of Science Postdoctoral Research Fellowship 2012-127, and the Marine Biological Laboratory Research Award 2014 (T.N.); Brazilian National Council for Scientific and Technological Development (CNPq) Grants 402754/2012-3 and 477658/2012-1 (I.S.); The Brinson Foundation and the University of Chicago Biological Sciences Division (N.H.S.); NSF grant BCS0725227 (K.K.); Call “ARISTEIA I” of the National Strategic Reference Framework 2007–2013 (SPARCOMP, #36), Ministry of Education and Religious Affairs of Greece (T.M.); ANR grant ANR-10-GENM-017 (PhyloFish; J.B.); Wellcome Trust (grants WT095908 and WT098051) and the European Molecular Biology Laboratory (D.B., S.M.J.S., B.A.); Biomedical Research Council of Agency for Science, Technology and Research (A*STAR), Singapore (B.V.); European Research Council grant 268513 (P.W.H.H., K.J.M.); Ministerio de Ciencia e Innovación: BFU2010-14875 and BFU2015-71340; Generalitat de Catalunya, AGAUR: SGR2014-290 (C.C.); NIH R01 AI057559 (G.W.L., J.A.Y.); NIH R24 OD010922 and R01 GM079492 (C.T.A.); and National Basic Research Program of China (973 Program) (# 2012CB947600) and the National Natural Science Foundation of China (NSFC) (#31030062) (H.W.).

AUTHOR CONTRIBUTIONS

COMPETING FINANCIAL INTERESTS

The authors declare no competing financial interests.
REFERENCES for main text

4 Reitzel, A. M. *et al.* Genetic variation at aryl hydrocarbon receptor (AHR) loci in populations of Atlantic killifish (Fundulus heteroclitus) inhabiting polluted and reference habitats. *BMC evolutionary biology* 14, 6 (2014).

Lagman, D. *et al.* The vertebrate ancestral repertoire of visual opsins, transducin alpha subunits and oxytocin/vasopressin receptors was established by duplication of their shared genomic region in the two rounds of early vertebrate genome duplications. *BMC evolutionary biology* **13**, 238 (2013).

Sire, J. Y. Light and TEM study of nonregenerated and experimentally regenerated scales of Lepisosteus oculatus (Holostei) with particular attention to ganoine formation. * Anat Rec* 240, 189-207 (1994).

FIGURE LEGENDS

Figure 1. Spotted gar bridges vertebrate genomes. a) Spotted gar is a ray-finned fish that diverged from teleost fish, including the major biomedical models zebrafish, platyfish, medaka, and stickleback, before the teleost genome duplication (TGD). Gar connects teleosts to lobe-finned vertebrates, such as coelacanth and tetrapods, including human, by clarifying evolution after two earlier rounds of vertebrate genome duplication (VGD1, VGD2) that occurred before the divergence of ray-finned and lobe-finned fish 450 million years ago (MYA). b) Bayesian phylogeny inferred from an alignment of 97,794 amino acid site positions from 243 proteins with one-to-one orthology ratio from 25 jawed (gnathostome) vertebrates using PhyloBayes under the CAT+GTR+Γ4 model and rooted on cartilaginous fish. Node support is shown as posterior probability and bootstrap support from maximum likelihood analysis (Supplementary Fig. 6). The tree shows the monophyly and slow evolution of Holostei (gar plus bowfin) compared to their sister lineage, the teleosts (Teleostei). See also Supplementary File 1 and Source Dataset 1.

Figure 2. Spotted gar preserves ancestral genome structure. a) The spotted gar karyotype consists of macro- and microchromosomes (see Supplementary Fig. 7 for chromosome annotations). b) Circos plot showing conserved synteny of gar (colored, left) vs. human (black, right) chromosomes. c) Gar vs. chicken shows strong conservation of genomes for 450 million years and one-to-one synteny conservation for many entire chromosomes, particularly microchromosomes (e.g., Loc13 and Gga14; Loc23 and Gga11, etc.). d) Assembled chromosome lengths (in megabases, Mb) for gar and chicken chromosomes with one-to-one conserved synteny are highly correlated ($R^2 = 0.97$). e) Gar vs. medaka shows the overall one-to-two double-conserved synteny relationship of gar to a post-TGD teleost genome (e.g., gar Loc24 and Ola16/Ola11). Gar chromosomes are displayed in a different order in d compared to b/c; asterisks indicate chromosomes inverted with respect to the arbitrarily oriented reference genomes. f) Gar-chicken-medaka comparisons illuminate karyotype evolution leading to modern teleosts. The bony vertebrate ancestor genome contained both macro- and microchromosomes, some of which remain largely conserved in chicken and gar, e.g., macrochromosome Loc2/GgaZ and microchromosomes Loc20/Gga15 and Loc21/Gga17. All three chromosomes possess double conserved synteny with medaka chromosomes Ola9 and Ola12, which is explained by chromosome fusion in the lineage leading to teleosts after divergence from gar, followed by TGD duplication of the fusion chromosome and subsequent intrachromosomal rearrangements and rediploidization. Multiple examples of such pre-TGD chromosome fusions explain the absence of microchromosomes in teleosts. See Supplementary Note 8.2 and
Figure 3. Gar helps connect vertebrate protein-coding and miRNA genes. a) Scpp gene arrangement in human, coelacanth, gar, and zebrafish including P/Q-rich (red) and acidic Scpp genes (blue) and Sparc-like genes (yellow) (Supplementary Note 10, ref.68). Orthologies (gray vertical bars) among lobe-finned vertebrates (e.g., human, coelacanth) and teleosts (e.g., zebrafish) had previously been limited to Odam and Spp1. Gar connects lineages through orthologs of genes previously known only from either teleosts (scpp1, scpp3 genes, scpp5, scpp7, scpp9) or lobe-finned vertebrates (enam, ambn, dmp1, dspp1, ibsp, mepe). Further putative orthologies supported by only short stretches of sequence similarity (‘?’) connect gar enam, ambn, and lpq14 with zebrafish fa93e10, scpp6, and scpp8, respectively; gar lpq1 and Scpppq4 in coelacanth; and gar lpq5 with Amtn in lobe-finned vertebrates. Arrows in human and zebrafish indicate intra-chromosomal rearrangements separating originally clustered genes into distant chromosomal locations (distance in megabases, Mb). Conserved synteny analysis of the gar scpp gene cluster on LG2 suggests that the scpp gene regions on zebrafish chromosomes 10 and 5 are derived from the TGD (Supplementary Note 10, Supplementary Fig. 26). b) The gar ‘conserved synteny bridge’ (Supplementary Note 11.2) infers that the miRNA cluster of mir731 and mir462 on gar LG4 and zebrafish chromosome 8 and a miRNA-free region on zebrafish chromosome 2 are TGD ohnologous to the mammalian Mir425-191 cluster. c) Gar newly connects through synteny zebrafish TGD ohnologs mir135c-1 and mir135c-2 with mammalian Mir135B. See Source Dataset 3 for genomic locations in a-c.

Figure 4. Gar provides connectivity of vertebrate regulatory elements. a) The ‘gar bridge principle’ of vertebrate CNE connectivity from human through gar to teleosts. Hidden orthology is revealed for elements that do not directly align between human and teleosts but become evident when first aligning tetrapod genomes to gar, and then aligning gar and teleost genomes. b) Connectivity analysis of 13-way whole-genome alignments reveals the evolutionary gain (green) and loss (red) of 153 human limb enhancers. Direct human-teleost orthology could only be established for 81 elements as opposed to 95 when taking gar as bridge (a). See Supplementary Notes 12.2,12.3, Supplementary Tab. 22, and Supplementary Fig. 37 for details.

Figure 5. Identification and functional analysis of the gar and teleost early phase HoxD enhancer CNS65. a) Schematic of the mouse HoxD telomeric gene desert, which contains enhancers CNS39 and CNS65 that drive early phase HoxD expression in limbs (upper part).
Using mouse as baseline, Vista alignments of the HoxD gene desert show sequence conservation with human and chicken for CNS65, but not with teleosts (zebrafish, pufferfish) (lower part, left). An alignment including gar, however, reveals a significant peak of conservation in the gar sequence (middle). Using the identified gar CNS65 as baseline revealed CNS65 orthologs in zebrafish and pufferfish (right). b) Gar (left) and zebrafish (right) CNS65 orthologs drive robust and reproducible GFP expression in zebrafish pectoral fins at 36 hours post fertilization (hpf) (upper panel). Pectoral fin activity of gar CNS65 begins at 31 hpf, drives activity throughout the fin, and becomes deactivated around 48 hpf (lower panel). Dotted lines: distal portion of the pectoral fins. c) Gar CNS65 drives expression throughout the early mouse fore- and hindlimbs (arrows) at stage e10.5 (left). At later stages (e12.5), gar CNS65 activity is restricted to the proximal portion of the limb and absent in developing digits (middle). Zebrafish CNS65 drives reporter expression in developing mouse limbs at e10.5, but only in forelimbs (right). Number of LacZ-positive embryos showing limb signal is indicated at the bottom right; fl, forelimb, hl, hindlimb (c). Scale bars: 50 µm (b); 500 µm (c). See also Supplementary Note 12.4.

Figure 6. Gar illuminates gene expression evolution post-TGD. Origin (a) and distribution (b) of gar and teleost singletons or TGD ohnologs (Supplementary Note 13.1, Supplementary Tab. 23). c) Neofunctionalized ohnologs (slc1a3): novel expression in liver; d) Subfunctionalized ohnologs (gpr22): one is expressed in brain like in gar, the other in heart like in gar; r: correlation of expression profiles of each ohnolog vs. gar pattern. Supplementary Note 13.2 lists neo- and subfunctionalization criteria. e-h) Expression conservation for ohnologs or singletons in zebrafish (Zf; e, g) and medaka (Md; f, h) (Supplementary Note 13.2). e, f) Mean correlations (r values) between expression patterns of gar genes and teleost ortholog(s). Correlations of average expression levels of ohnolog-pairs to gar were greater than ohnologs alone and than singletons, showing sharing of ancestral subfunctions between the ohnolog-pair (multiple Wilcoxon Mann-Whitney tests with Bonferroni correction; alpha value 0.05 for significance). g, h) Mean Log10 ratios between expression levels of gar genes and teleost ortholog(s). Individual ohnologs compared to gar were expressed at significantly lower levels than singletons, but ohnolog-pair/gar ratios were not statistically different from singleton/gar ratios, suggesting that expression levels of ohnolog-pairs approach pre-duplication genes (multiple two-sided Student t-test with Bonferroni correction; alpha value 0.05 for significance). Error bars: standard error of the mean (s.e.m.). ‘OhnoPair’: average expression of ohnolog-pair (Supplementary Note 13.2). Br, brain; Gil, gill; Hrt, heart; Mus, muscle; Liv, liver, Kid, kidney; Bo, bone; Int, intestine; Ov, ovary; Te, testis; Emb, embryo. Source Dataset 4 contains data for Fig. 6c-h.
ONLINE METHODS

A full description of methods can be found in the Supplementary Note. Animal work was approved by the University of Oregon Institutional Animal Care and Use Committee (Animal Welfare Assurance Number A-3009-01, IACUC protocol 12-02RA).

Gar genome sequencing and assembly. The spotted gar genome was sequenced and assembled using DNA from a single adult female gar wild-caught in Bayou Chevreuil, St. James Parish, Louisiana, USA (Supplementary Note 1). It was sequenced by Illumina sequencing technology and jumping libraries to 90X coverage and assembled into LepOcu1 (accession number AHAT00000000.1) using ALLPATHS-LG20. The draft assembly is 945 Mb in size and is composed of 869 Mb of sequence plus gaps between contigs. The spotted gar genome assembly has a contig N50 size of 68.3 kb, a scaffold N50 size of 6.9 Mb, and quality metrics comparable to other vertebrate Illumina genome assemblies20. A total of 209 scaffolds were anchored in 29 linkage groups using 2,153 of 8,406 meiotic map RAD-tag markers19, thus capturing 891 Mb of sequence or 94.2% of bases in the chromonome assembly (Supplementary Note 2).

RNA-seq transcriptomes. The Broad Institute gar RNA-seq transcriptome (Supplementary Note 3.1) was generated from 10 tissues (stage 28 embryo99, 8 day larvae, eye, liver, heart, skin, muscle, kidney, testis) and assembled using Trinity100. PhyloFish RNA-seq transcriptomes of gar (Supplementary Note 3.2), bowfin (Supplementary Note 3.3), zebrafish, and medaka (Supplementary Note 13.2) were generated from 10 adult tissues (ovary, testis, brain, gills, heart, muscle, liver, kidney, bone, intestine) and one embryonic stage (‘pigmented eye’ stage of gar, zebrafish, medaka) and assembled using the Velvet/Oases package101.

Genome annotation. Using evidence from the Broad and PhyloFish gar transcriptomes (Supplementary Note 3), all RefSeq teleost proteins, and all Uniprot/Swissprot proteins, MAKER222 annotated 25,645 protein-coding genes (Supplementary Note 4.1). Using the Broad transcriptome (Supplementary Note 3.1), the Ensembl gene annotation pipeline identified 18,328 protein-coding genes for 22,470 transcripts along with 42 pseudogenes and 2,595 ncRNAs (Supplementary Note 4.2). Annotations for 762 and 6,877 genes are specific to Ensembl and MAKER, respectively. The 21,443 high confidence gene set predicted by MAKER is likely close to the true number of gar protein-coding genes.
Annotation of transposable elements. Manual and automatic classification (using RepeatScout and RepeatModeler) of gar TEs was performed on the basis of Wicker’s nomenclature102 and identified elements were combined into a single library (Supplementary Note 5), which was then used to mask the genome with RepeatMasker. The TE age profile was determined using Kimura distances of individual TE copies to the corresponding TE consensus sequence (Supplementary Note 5).

Phylogenomic and evolutionary rate analyses. Phylogenetic analyses (Supplementary Note 6) were based on protein-coding sequence alignments described for the coelacanth genome analysis16 but updated with orthologous sequences from gar and bowfin (Supplementary Notes 3,4) and from the slowly evolving Western painted turtle103. Phylogenetic reconstructions were carried out with RAXML104 and PhyloBayes MPI105. Molecular rate analyses (Supplementary Note 7) were performed at the protein alignment level with Tajima’s relative rate tests106 and at the level of the reconstructed phylogenies with Two-Cluster tests107.

Genome structure analyses. The spotted gar karyotype was determined from caudal fin fibroblast cell cultures established as described for zebrafish108 (Supplementary Note 8.1). Conserved synteny analyses between gar, tetrapods (human, chicken) and teleosts (Supplementary Note 8.2) were performed with 1) Circos plots109 based on orthology relations from Ensembl75 and as described in Supplementary Note 13.1); 2) the Synteny Database94 after integration of the gar genome assembly (Ensembl74 version); and 3) comparative synteny maps derived as described in refs.16,110.

Gene family analyses. Individual gene families were analyzed as described in Supplementary Notes 9. RT-PCR and sequencing was performed to annotate and to analyze gene expression of scpp mineralization genes using cDNA libraries from gar teeth, jaw, and scales (Supplementary Note 10).

miRNA annotation and analysis. Gar miRNAs were studied \textit{in silico} (Supplementary Note 11.1) by blasting teleost and tetrapod miRNAs from miRBase74,111-113 against the gar genome assembly and confirmed with RNAfold114 (see also ref.72). miRNA annotation and analyses based on sequencing data of gar miRNAs (Supplementary Note 11.2) was performed as described for zebrafish73 by utilizing small RNA-seq data from adult brain, heart, testis, and ovary tissue, which were processed and annotated with Prost!115 according to miRNA gene
nomenclature guidelines; miRNA orthologies based on conserved synteny were established using Ensembl, the Synteny Database and Genomicus.

Analysis of conserved non-coding elements. Investigation of CNEs in developmental gene loci were performed using SLAGAN in VISTA (Supplementary Notes 9.2, 12.1). Gar-, zebrafish-, and human-centric 13-way multi-genome alignments were generated with MultiZ based on lastZ pairwise whole genome alignments (WGAs). We used phyloFit to generate a neutral model of 4d site evolution to identify conserved elements with phastCons; genic elements and repetitive sequences were filtered out to obtain CNEs. Evolution of human limb enhancers was established using WGAs and conserved synteny curation. Genome-wide connectivity of CNEs and embedded GWAS-SNPs from human to zebrafish through gar was established from WGAs using liftOver and BEDtools (Supplementary Notes 12.2, 12.3).

HoxD enhancer functional analysis. Gar and teleost orthologs of HoxD early enhancer CNS65 were identified with VISTA (LAGAN). Gar and zebrafish CNS65 were cloned into pXIG-cFos-eGFP and Gateway-Hsp68-LacZ vectors for zebrafish and mouse transgenesis (Cyagen Biosciences), respectively (Supplementary Note 12.4).

Comparative gene expression analyses. Curated lists of TGD ohnologs and TGD singletons of zebrafish and medaka and their gar (co-)orthologs were generated by integrating phylogenetic information from EnsemblCompara GeneTrees (Ensembl) and conserved synteny data from the Synteny Database (Supplementary Note 13.1). For all three species, RNA-seq reads from the PhyloFish transcriptomes (Supplementary Note 3.2, 13.2) were mapped against the longest Ensembl reference coding sequence of each gene with BWA-Bowtie, counted with SAMtools and normalized for each gene across the 11 tissues using DESeq. The correlation of expression patterns and relative levels of expression between each zebrafish/medaka gene and its gar ortholog and of singletons, ohnolog 1, ohnolog 2, and 'ohnolog pairs' were determined using R. See Supplementary Note 13.2 for additional information including definition of 'ohnolog pair' expression and criteria for detecting neo- and subfunctionalization detection.
Methods-only references

28

Blanchette, M. *et al.* Aligning multiple genomic sequences with the threaded blockset

Harris, R. S. *Improved pairwise alignment of genomic DNA* PhD thesis, Pennsylvania
State University (2007).

Siepel, A. *et al.* Evolutionarily conserved elements in vertebrate, insect, worm, and yeast

Hinrichs, A. S. *et al.* The UCSC Genome Browser Database: update 2006. *Nucleic Acids

Fisher, S. *et al.* Evaluating the biological relevance of putative enhancers using Tol2

Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler

Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient
(2009).

R: A Language and Environment for Statistical Computing (R Foundation for Statistical
Computing, Vienna, Austria, 2015).
Figure 1
Figure 2
Figure 3
Figure 4

(a) GAR BRIDGE PRINCIPLE

No direct sequence alignment

Teleosts → Spotted gar → Human

Alignment to gar

(b) Gene tree

Bony vertebrates (117)

Jawed vertebrates (93)

Lobefins (128)

Tetrapods

Human (153)

Coelacanth (123)

Rayfins (110)

Spotted gar (108)

Teleosts (95)

Elephant shark (93)

Direct human-teleost alignment: 81 elements
Figure 6

(a) Gene origins

- Gar gene a
- Zebrafish gene a1
- Medaka gene a1
- Zebrafish gene a2
- Medaka gene a2

X Zebrafish gene a1

(b) Gene distributions

- Zebrafish TGD Orthologs, n = 314 pairs
- Medaka TGD Orthologs, n = 274 pairs
- Zebrafish Singletons, n = 7,060
- Medaka Singletons, n = 6,315

(c) slc1a3

Expression:
- Br, Gl, Hrt, Miv, Liv, Kid, Bo, Int, Ov, Te, Emb

(d) gpr22

Expression:
- Br, Gl, Hrt, Miv, Liv, Kid, Bo, Int, Ov, Te, Emb

(e) Zebrafish

- Genes: 10,416
- ZfSingl, 1,606
- ZfOhno1, 1,606
- ZfOhno2, 1,606
- ZfOhnoPair, 1,606

(f) Medaka

- Genes: 9,265
- MdSingl, 1,315
- MdOhno1, 1,315
- MdOhno2, 1,315
- MdOhnoPair, 1,315

(g) Zebrafish

- Genes: 10,416
- ZfSingl, 1,606
- ZfOhno1, 1,606
- ZfOhno2, 1,606
- ZfOhnoPair, 1,606

(h) Medaka

- Genes: 9,265
- MdSingl, 1,315
- MdOhno1, 1,315
- MdOhno2, 1,315
- MdOhnoPair, 1,315

Log10 ratio:
- ZfSingl, 10,416
- ZfOhno1, 1,606
- ZfOhno2, 1,606
- ZfOhnoPair, 1,606

- MdSingl, 9,265
- MdOhno1, 1,315
- MdOhno2, 1,315
- MdOhnoPair, 1,315