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Abstract: Mining of metals and coals generates solid and liquid wastes that are potentially 

hazardous to the environment. Traditional methods to reduce the production of pollutants 

from mining and to treat impacted water courses are mostly physico-chemical in nature, 

though passive remediation of mine waters utilizes reactions that are catalysed by 

microorganisms. This paper reviews recent advances in biotechnologies that have been 

proposed both to secure reactive mine tailings and to remediate mine waters. Empirical 

management of tailings ponds to promote the growth of micro-algae that sustain 

populations of bacteria that essentially reverse the processes involved in the formation of 

acid mine drainage has been proposed. Elsewhere, targeted biomineralization has been 

demonstrated to produce solid products that allow metals present in mine waters to be 

recovered and recycled, rather than to be disposed of in landfill. 

Keywords: acid mine drainage; biomineralization; bioremediation; bioshrouding; ecological 

engineering; mine tailings; sulfate-reducing bacteria 

 

1. Introduction: Mine Water Genesis 

The mining of metals and of coals generates waste materials that are potentially hazardous to the 

environment [1–3]. Protecting aquatic and terrestrial ecosystems from pollutants generated from mine 

wastes is a major concern of environmental protection bodies and the mining industry itself. Given the 

increasing demand by an expanding global population for metals in general and for some, such as the 

rare earth elements, for which new markets have arisen in recent years, it will be necessary to continue 

to exploit previously untapped ore bodies, though recovery of metals from other sources, such as 
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reprocessing mine wastes and processing electronic scrap (e-wastes) could also provide significant 

quantities of metals for manufacturing industries. Future developments in the metal mining industry 

are likely to focus on more environmentally-benign technologies that are less demanding of energy and 

have far smaller carbon footprints than opencast and deep-mining operations, and using pyrometallurgy 

to extract metals. For example, in situ biomining could allow target metals to be extracted from 

deeply-buried ore bodies without the need to hoist rocks to the surface, or to crush and mill the ore [4]. 

Solid waste generated by metal mining can be divided into two main categories: waste rock and 

mine tailings. Dumps of waste rock are composed of sand-sized particles to large boulders and have 

less potential to generate polluting drainage waters than tailings. The latter are fine grain wastes 

generated during the separation of target metal minerals from others in milled ores by froth flotation [1]. 

Many commercially-valuable base metals, such as copper and zinc, occur as sulfide minerals, and 

these are often associated in ore bodies with other, relatively non-valuable minerals, such as pyrite 

(FeS2), as well as other gangue minerals. The occurrence of pyrite and other sulfide minerals in tailings 

wastes, as well as their fine grain size, makes them potentially highly reactive. The mechanisms 

involved in the oxidative dissolution of sulfide minerals have been described in many review articles 

and other publications (e.g., [5]). Pyrite can be oxidized by both molecular oxygen and ferric iron, the 

relative importance of which depends on the solubility of ferric iron, which is pH-dependent [6]. Lime 

is often added to suppress the flotation of pyrite, and therefore fresh mine tailings may be alkaline [1]. 

As pH declines, ferric iron becomes increasingly important as the main oxidant of sulfide minerals, for 

example in which pyrite is oxidized via the “thiosulfate” pathway [5]: 

6Fe3+ + FeS2 + 4H2O → 7Fe2+ + S2O3
2− + 6H+ (1)

For the process to continue, ferrous iron has either to be re-oxidized in situ, or ferric iron delivered 

from a more remote location. Unlike ferric iron-catalysed pyrite oxidation, the re-oxidation of the 

ferrous generated does require molecular oxygen and, in low pH liquors, a microbiological catalyst in 

the form of an acidophilic iron-oxidizing bacterium or archaeon. The thiosulfate formed in equation [1] 

is oxidized via various sulfur intermediates, to sulfuric acid, which again involves (sulfur-oxidizing) 

acidophilic prokaryotes, e.g., 

S2O3
2− + 2O2 + H2O → 2SO4

2− + 2H+ (2)

The sulfuric acid produced in this reaction not only increases the rate of sulfide mineral dissolution (by 

increasing the solubility of ferric iron) but also allows other cationic metals (including aluminium, and 

many transition metals) to be retained in solution. 

2. Source Control of Mine Pollution 

Acid mine waters can be generated from abandoned mine workings (deep mines and opencast 

operations) and from mine spoils (waste rock dumps and mine tailings). Decommissioned biomining 

operations (dumps and bio-heaps) can also continue to produce metal-rich acidic waters when 

irrigations ceases, though this is not a cause of concern in some parts of the world, e.g., in the vicinity 

of the Atacama Desert in northern Chile, where there are extensive copper bioleaching operations [7]. 

When active mining ends, pumping of groundwater is terminated and water tables rebound. The 

rate at which this occurs depends on climatic and other factors. In some situations, it can be a rapid 
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process and water levels may approach to the land surface within months of dewatering being 

terminated, as was the case at the Wheal Jane tin mine in Cornwall, UK, which resulted in catastrophic 

pollution of impacted water courses, including a marine site [8]. In contrast, water level rises in pit 

lakes in abandoned opencast metal mines in the more arid Iberian Pyrite Belt are relatively slow (e.g., [9]). 

In both cases, flooding produces water bodies that are stratified in terms of redox potentials, dissolved 

oxygen and other factors. Much of the water in deep mine workings and in pit lakes is anoxic [9,10] 

which limits the extent to which residual acid-generating minerals are oxidized. 

Solid wastes generated by mining and deposited at the land surface often pose more of a threat to 

the environment, both in the short and long term, than abandoned mine workings (e.g., [11]). Since, as 

noted previously, both oxygen and water are required to promote the biological oxidative dissolution 

of pyrite and other sulfide minerals, the engineering approaches used to control the production of acid 

mine drainage (AMD) from solid wastes aim to preclude access of one these essential factors [12]. In 

the case of waste rocks, dry covers can be used to limit water ingress [13]. Mine tailings, which are far 

more reactive because of their smaller grain size and generally far higher content of reactive minerals, 

are usually stored under water to limit contact with oxygen. Even so, ferric iron, generated in the 

aerobic upper water layers, can diffuse into the tailings and oxidize sulfide minerals in the absence of 

oxygen, as noted above. One method of limiting oxidation of mine tailings is to amend them with 

organic materials that are degraded by oxygen-consuming heterotrophic bacteria. Various materials 

have been tested, and some found to be far more effective than others. Lindsay et al. [14] for example 

found that peat was an ineffective carbon source for this purpose, whereas municipal biosolids and 

(especially) spent brewing grain retarded AMD production from mine tailings in a field trial site at a 

metal mine in Alaska. 

Bacteria and archaea that catalyse the oxidative dissolution of pyritic minerals can do this without 

having physical contact with the mineral (non-contact leaching) but in most cases they attach to the 

sulfides, forming biofilms below which corrosion of the minerals progresses (contact leaching; [15]). 

Other bacteria that live in acidic mine waters also attach to minerals and form biofilms, including 

species of heterotrophic acidophiles that reduce ferric iron, rather than oxidize ferrous iron [16]. These, 

in theory, have a protective influence on sulfide mineral oxidation as they can control the availability 

of the main chemical oxidant involved at low pH (Fe3+). Johnson et al. [17] showed that, by colonising 

pyrite grains by heterotrophic iron-reducing bacteria (Acidiphilium and Acidocella spp.) before 

exposing them to autotrophic iron- and sulfur-oxidizing acidithiobacilli, it was possible to  

reduce pyrite dissolution by ~80%, even under conditions deemed highly aggressive (pH < 2 and 

oxygen-saturated shake flask cultures). Interestingly, numbers of planktonic-phase (free-swimming) 

pyrite-oxidizing bacteria were far greater in cultures where the pyrite had been initially colonized with 

the heterotrophs, compared to fresh pyrite, the implication being that biofilm formation by the 

heterotrophs limited the ability of the acidithiobacilli to attach to the minerals. The technique, referred 

to as “bioshrouding”, is illustrated in Figure 1. 

Ecological engineering approaches for limiting the production of and treating AMD have gained 

considerable interest. Sites where mine waters display greater or lesser degrees of mitigation with no 

apparent anthropogenic input (“natural attenuation”), can serve as models for the design of 

ecologically engineered systems. One example was an acidic (pH 2.2–2.7) metal-rich stream draining 

an adit at a small copper mine in the Iberian pyrite belt (IPB) which had developed thick, stratified 
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microbial growths [18]. These appeared as green algal streamers overlying light brown and (at the 

lowest depth) black-coloured bacterial mats. Analysis of the mine water at the stream surface and 

within the microbial growths showed that a significant fraction of soluble copper generated in the 

aerobic mine adit was being precipitated as a solid sulfide (CuS or Cu2S) within the black microbial 

mat, which contained novel acidophilic strains of sulfate-reducing bacteria (SRB). No ferrous sulfides 

were formed in the black mats, due to the fact that interstitial water in the mats remained extremely 

acidic (pH 2.9; the solubility product of CuS is many orders of magnitude lower than that of FeS). 

Tuttle et al. [19] were the first to report that SRB could be stimulated in AMD by adding organic 

carbon, and that their activities could promote both immobilisation of some (chalcophilic) metals and 

mitigation of water acidity. The IPB mine stream was, however, a site which was being (partially) 

attenuated naturally, since the stream received no extraneous supply of organic carbon. 

Figure 1. Schematic representation of the “bioshrouding” technique for securing mine 

tailings [17]. Pyrite particles (depicted in gold) colonized by iron/sulfur-oxidizing bacteria 

(in red), generating acid mine drainage (AMD) are shown on the left, and the same 

particles encased with EPS (black lines) produced by heterotrophic acidophiles (in blue) 

suppressing colonization by iron/sulfur-oxidizing bacteria on the right (not to scale). 

 

The assumption that the heterotrophic bacteria (including the SRB) in the microbial mats in the IPB 

mine drainage stream were being sustained by carbon derived from the acidophilic algae was later 

confirmed in laboratory experiments [20] and used as the basis of a novel ecological engineering 

approach for securing mine wastes [21]. The latter involved setting up 60 mesocosms containing 

pyrite-rich mine tailings inoculated with different species of mineral-degrading and heterotrophic 

bacteria (including species shown to “bioshroud” pyrite), and acidophilic micro-algae, and incubated 

for up to one year (Figure 2). Differences in acid genesis and metal mobilization were apparent 

between all inoculation regimes, with the oxidation of the mineral tailings being significantly less  

in mesocosms that had been inoculated with micro-algae and heterotrophic bacteria, as well as 

mineral-degrading acidophiles, than in others. The authors suggested an empirical method for 

safeguarding reactive mine tailings stored under water, in which freshly-deposited tailings are 
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inoculated with acidophilic micro-algae and iron- and sulfate-reducing bacteria, together with small 

amounts of nitrogen and phosphorus to promote their growth. This approach would allow the 

establishment of consortia of microorganisms that retard the oxidative dissolution of sulfide minerals, 

and therefore AMD production. Organic carbon (including soluble exudates) produced by the  

micro-algae would sustain the growth of the heterotrophic bacteria, thereby avoiding the need for 

continuous inputs of extraneous organic materials (Figure 3). 

Figure 2. Mesocosms of pyritic mine tailings inoculated with mineral-oxidizing acidophilic 

bacteria (A), mineral-oxidizing and heterotrophic acidophilic bacteria and acidophilic algae 

(B) and non-inoculated controls (C), and incubated at 22 °C for one year [21]. 

 

3. Migration Control of Mine Pollution 

Even where source control practices are in place, it is often necessary to collect and treat AMD 

downstream of the mine or mine spoil from which it arises. Various options are available for 

remediating mine waters (reviewed in [12]), which can be broadly divided into “active” and “passive” 

approaches. Active remediation of mine waters usually involves addition of a basic chemical reagent, 

such as lime (CaO) coupled with active aeration to promote oxidation of ferrous iron. Metals are 

precipitated chiefly as carbonates and hydroxides (and calcium as gypsum; CaSO4·2H2O), though the 

water pH may have to exceed pH 8–9 to effectively remove metals such as manganese. Flocculating 

agents may be added to facilitate the production of “high density sludges [22]. The technology is 

proven and effective though expensive, and does not allow potentially valuable metals present in mine 

waters to be recovered and cycled. The latter is also the case for passive mine water treatment 

technologies (constructed wetlands, anaerobic “bioreactors” and permeable reactive barriers [12]) 

where biological processes are harnessed to generate alkalinity and to precipitate metals (sometimes in 

combination with limestone which is incorporated into the bulky organic substrate [23]). However, 

more recent innovative developments in mine water remediation technologies include some that 

facilitate the sequential and/or selective removal of soluble metals and other pollutants from AMD, 

thereby allowing the more valuable components to be recycled and the more toxic pollutants to be 

immobilized in more concentrated forms, as described below. 
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Figure 3. Schematic representation of an ecological engineering strategy for securing 

reactive mine tailings [21]. Freshly-deposited tailings are inoculated with acidophilic algae 

and heterotrophic bacteria. The algae grow as a surface layer on the tailings in the pond, 

fixing carbon and providing organic carbon (CH2O) which sustains the growth of iron- and 

sulfate-reducing bacteria within the submerged tailings, thereby essentially reversing the 

reactions that generate AMD. Additional protection of the minerals may be mediated by 

“bioshrouding” by the heterotrophic acidophiles [17]. 

 

3.1. Iron 

Iron is often the most abundant metal present in waters draining metal and coal mines, chiefly 

because of its occurrence in many sulfide minerals (e.g., chalcopyrite (CuFeS2), arsenopyrite (FeAsS), 

pyrrhotite (Fe(1-x)S, where x = 0 to 0.2) as well as the most abundant of all sulfides, pyrite (FeS2)) 

though it can also derive from acid-catalysed dissolution of other minerals, such as chlorite 

(Mg,Fe)3(Si,Al)4O10). Because of its intense colour, ferric iron is also responsible for the typical 

orange-brown pigmentation of mine water-impacted streams and sediments, making AMD one of the 

most obvious and readily recognized forms of water pollution. 

Iron occurs as both Fe2+ and (complexed) Fe3+ in AMD. At its point of discharge from an adit 

draining an abandoned mine, AMD is often anoxic and iron is present almost exclusively in its more 

reduced ionic form, which is reflected in EH values of <+500 mV. Chemical oxidation of ferrous to 

ferric proceeds slowly below pH 3.5, though iron-oxidizing prokaryotes can catalyse this reaction in 

mine waters that have pH values of <1.0 to >4. Ferric iron is far less soluble than ferrous, for example 

as a (oxy) hydroxide (Table 1) and therefore is more readily precipitated as such from mine waters. 

Prerequisites for this are: (i) the oxidation of ferrous iron which, as noted, is not a spontaneous 

chemical reaction in acidic liquors; and (ii) sufficient availability of hydroxyl (OH−) ions, which may 

require addition of alkali to increase mine water pH to >3 to increase the rate of ferric iron hydrolysis. 

Jarosites, basic ferric iron sulfates (e.g., KFe3(SO4)2(OH)6) which form in extremely acidic (pH < 2) 

oxidized mine waters do so at rates that are too slow for effective mine water remediation. 

There have been a number of reports describing the use of bacteria to accelerate the oxidation for 

ferrous iron as part a remediation strategy for AMD (e.g., [24–26]). The majority of studies have used 

the most well-known of all acidophilic iron-oxidizers, Acidithiobacillus ferrooxidans, often in  

packed-bed bioreactors. However, a study that compared different species of iron-oxidizing 

acidophiles concluded that an iron-oxidizing Acidithiobacillus (referred to at the time as a strain of  

At. ferrooxidans, though this particular isolate was subsequently reclassified as the type stain of  

At. ferrivorans) was actually the least effective of those tested, again in packed-bed bioreactors [27]. 
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Table 1. Solubility products (logKsp values at 25 °C) of hydroxides and sulfides phases of 

metals typically found in acid mine drainage (AMD). 

Metal Hydroxide Sulfide 

Al3+ −33.5 - 
Cu2+ −19.8 −35.9 
Fe2+ −16.3 −18.8 
Fe3+ −38.6 - 
Mn2+ −12.7 −13.3 
Zn2+ −16.1 −24.5 

Few trials using bacteria to oxidise iron and thereby facilitate the removal of soluble iron from mine 

waters have gone beyond the laboratory scale. One notable exception is a pilot-scale operation set up 

and maintained by the German company G.E.O.S., at an opencast lignite mine site at Nochten, eastern 

Germany [28,29]. Groundwater at the site contains ~630 mg soluble iron per litre (>99% as Fe2+) 

which is oxidized in a continuous through-flow aerated bioreactor tank containing bacteria which are 

immobilized on plastic sheets. The bioreactor was initially inoculated with the more well-known  

iron-oxidizing acidophiles At. ferrooxidans and Leptospirillum ferrooxidans. However, very soon after 

the pilot plant was commissioned these bacteria were present either in very low numbers or were not 

detected, and bacteria related to “Ferrovum myxofaciens” (a more recently described iron-oxidizing 

acidophile [30]) and the neutrophilic iron-oxidizer Gallionella ferruginea [31] were the dominant 

bacteria present ([28,29]). The pH of the ground water was pH 4.9, but following treatment in the 

bioreactor this declined to pH 3.0 as a result of iron oxidation and precipitation. This relatively low pH 

resulted in a significant amount of the ferric iron generated (~55%) remaining in solution (aided by the 

fact that biological ferrous iron oxidation can be more rapid that ferric iron hydrolysis at pH 3) while 

the rest was precipitated as the mineral schwertmannite (idealised formula Fe8O8(SO4)(OH)6; [32]). 

Production of schwertmannite also caused the sulfate concentration of the groundwater to be lowered 

from 2700 to 2400 mg/L. 

A strain of “Fv. myxofaciens” (PSTR) had earlier been reported to be the most effective  

iron-oxidizing bacterium in packed-bed bioreactor tests [27]. On the basis of this observation and the 

data from the Nochten plant, a laboratory-scale continuous flow reactor system for generating 

schwertmannite from synthetic metal mine waters was set up in which the type strain of  

“Fv. myxofaciens” (P3G) was used as the sole iron-oxidizing acidophile [33]. In contrast to the 

Nochten plant, which treats groundwater containing only one metal (iron) in significant concentrations, 

tests were carried with waters also containing aluminium, copper, manganese and zinc in order to 

investigate whether a “clean” schwertmannite product (i.e., without other co-precipitated metals) could 

be generated. The modular system (Figure 4) comprised three units: a ferrous iron-oxidizing 

bioreactor, a schwertmannite precipitation module (in which alkali and a flocculating agent were added 

to the oxidized mine waters) and a packed-bed polishing unit. Over 90% of iron present in a synthetic 

mine water containing 280 mg Fe2+/L were oxidized in the bioreactor when operated at a dilution rate 

of 0.41/h, and the fully-processed water contained <1 mg soluble iron/L. The schwertmannite 

produced was virtually free of all other metals present in the synthetic mine waters tested. 
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Figure 4. Schematic representation of a modular system described for precipitating iron 

present in waters draining metal mines as schwertmannite [33].  

 

3.2. Selective Precipitation of Other Transition Metals 

Iron is a relatively low value commodity, though schwertmannite does have potential commercial 

value as a pigment and as a low cost adsorbent of anions, such as arsenate and chromate ([32,34]). In 

contrast, other transition metals that may be present in mine drainage waters, such as copper, nickel 

and zinc, have higher value, and recovery and recycling of these could help off-set the costs of a an 

active bioremediation system. Many divalent transition metals form poorly soluble hydroxide phases, 

though these are have larger solubility products than those of trivalent aluminium and ferric iron 

(Table 1). However, an alternative approach is to precipitate chalcophilic transition metals selectively 

as sulfide minerals. Speciation of sulfide (H2S, HS− and S2−) is dictated by pH, and since the species 

that reacts with divalent transition metals (S2−) occurs in increasingly small amounts as the acidity of 

liquors increases, pH control can be used as a mechanism for selectively precipitating metal sulfides. 

Sulfate-reducing bacteria, as noted previously, use sulfate (the dominant anion in AMD) as terminal 

electron acceptor, generating hydrogen sulfide that can be used to precipitate chalcophilic metals and 

metalloids. At least two commercial systems use biosulfidogenesis to capture metals from mine 

waters: the Thiopaques® [35] and Biosulphide® [36] processes. However, the vast majority of SRB 

(and sulfur-reducing bacteria, as used in the Biosulphide process) are highly sensitive to acidity and 

need to shielded from direct contact with acidic mine waters, usually by housing them in separate 

reactor vessels. Some stains of acidophilic SRB have been isolated, though most currently have not yet 

been formally described or validated as novel species. In the first demonstration of its kind, a 

consortium of acidophilic SRB and other acidophiles was used to selectively precipitate copper and 

zinc from mine waters that also contained other dissolved metals, including aluminium and iron, using 

on-line bioreactors receiving direct inflow of mine water [37]. Glycerol was used as the energy source 

(electron donor) for the bacteria, and the generalized reaction (for precipitating zinc sulfide) is:  

4C3H8O3 + 7Zn2+ + 7SO4
2− → 12CO2 + 7ZnS + 16H2O (3)

One of the perceived advantages of using acidophilic SRB species in an on-line reactor is that the 

engineering complexity of a bioremediation system can be much reduced and operating costs 
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minimized, which is one of the constraining factors in using active biological technologies to mitigate 

AMD [38]. 

3.3. Reduced Inorganic Sulfur Compounds and Sulfate 

A variety of reduced inorganic sulfur compounds (RISCs), such as thiosulfate (S2O3
2−) and 

tetrathionate (S4O6
2−), are produced by several mechanisms during the (bio)processing of sulfide ores, 

including reactions that occur during comminution and flotation, and also as intermediates during the 

microbial oxidation of pyrite [5,39]. When discharged into aerated waters, RISCs are susceptible to 

microbial oxidation, generating sulfuric acid (e.g., Equation (2)).The combined effect of acidification 

and oxygen depletion means that RISC-containing waters pose a severe threat to impacted water 

bodies. While RISCs can be destroyed by chemical treatment, a more environmentally-benign 

approach is to accelerate their oxidation biologically and to neutralise the acidity generated, prior to 

water discharge. This has been demonstrated at 37 °C using a mixed culture of mesophilic and 

moderately thermophilic sulfur-oxidizing bacteria (described [40]) and at 4–10 °C using the  

cold-adapted bacterium At. ferrivorans [39]. 

Sulfate can occur in AMD and mine process waters in concentrations of up to hundreds of grams 

per litre, but since the acidity and metal/metalloid content of these waters are rightly perceived as posing 

greater threats to the environment, lowering sulfate concentrations has generally not been perceived as 

a priority issue. However, increasingly stringent regulations, such as the European Water Framework 

Directive, require concentrations of sulfate also to be below an upper limit to allow discharge of mine 

waters. As noted previously, some sulfate is removed (as gypsum) during active chemical treatment of 

AMD, and also (as schwertmannite) as part of biological iron oxidation/precipitation treatment. 

However, this may not be sufficient to meet regulatory demands, and techniques specifically targeting 

sulfate removal may be required. The Thiopaques process, described above, can also be used to 

convert soluble sulfate to soluble element sulfur [35]. This is a two-stage process that involves firstly 

SRB coupling the reduction of sulfate to the oxidation of an organic (e.g., ethanol) or inorganic (e.g., 

hydrogen) electron donor: 

4H2 + SO4
2− → HS− + 3H2O +OH− (4)

followed by a bacterial oxidation of hydrogen sulfide to elemental sulfur under controlled redox: 

HS− +O2 + H+ → S0 + H2O (5)

This application of the Thiopaques process, like that for precipitating metals, also uses neutrophilic 

SRB. Acidophilic SRB may also be used to remove sulfate from mine waters (using glycerol as 

electron donor) in on-line bioreactors maintained at pH 2.8 to 4.5 [41]. 

3.4. Other Metals and Metalloids 

Some other metals and metalloids that occur in AMD and mine process waters may require 

different approaches to those described above, and again microbiological options are often available to 

remove them. Aluminium and manganese are usually found in relatively elevated concentrations in 

AMD, due to their abundance in the lithosphere and solubility in acidic liquors. Aluminium can be 
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precipitated as, for example, basaluminite (Al4(SO4)(OH)10·5(H2O)) at pH 5–6. The alkalinity required 

to increase AMD pH to that required for aluminium hydrolysis can be chemical (e.g., from addition of 

lime) of biological (e.g., via sulfate reduction or oxygenic photosynthesis) in origin. Manganese is 

present in AMD predominantly as Mn2+, and although, like ferrous iron, it can be oxidized biologically 

to insoluble Mn4+, this reaction is thermodynamically unfavourable below pH ~4 and proceeds slowly 

(unless catalysed) below pH 10. Bacteria and fungi have been shown to promote manganese oxidation 

and precipitation at moderately acidic pH values (>5; [42,43]), which is far lower than the pH required 

(> pH 8–9) to secure effective manganese removal using active (lime-based) remediation. 

Arsenic is a common constituent of mine waters. At the abandoned Carnoulès metal mine in the 

south of France, concentrations of soluble As of up to 350 mg/L have been reported [44], while mine 

waters associated with gold ore processing can contain >10 g As/L [45]. Arsenic can occur both as 

As(III) (uncharged H3AsO3 at acidic pH values) and As(V) (H2AsO4−) in AMD. Anionic As(V) can 

co-precipitate with ferric iron (as scorodite; FeAsO4) or be absorbed onto positively-charged particles, 

such as (at low pH) schwertmannite [34]. This requires As(III) to be oxidized, which may be 

biologically-mediated (e.g., by Thiomonas spp., which are abundant in Carnoulès and other moderately 

acidic AMD) or chemically-mediated (e.g., by ferric iron). Alternatively, As(III) may be removed by 

precipitation as a sulfide. Battaglia-Brunet et al. [45] demonstrated this using a fixed bed bioreactor 

colonized by SR fed continuously with an acidic (pH 2.7–5.0) solution containing 100 mg As(V)/L. 

Arsenic (V) was reduced to As(III) either directly or indirectly (via H2S) by the SRB, and orpiment 

(As2S3) generated within the bioreactor. However, a switch from glycerol to hydrogen as  

electron donor resulted in a significant remobilization of arsenic due to the formation of soluble  

thioarsenic complexes. 

Other metalloids, such as selenium and antimony, that are occur in mine water, though more 

infrequently, as oxy-anions can also be removed effectively by adsorption onto iron oxy-hydroxides, 

such as schwertmannite [46,47]. The fact that this ferric iron mineral can be readily produced from 

ferruginous mine waters in a relatively pure form (as described above) presents the opportunity in 

many situations of generating an effective agent for AMD remediation from the mine water itself [48]. 

4. Conclusions 

Recent developments from research carried out with solid and liquid mine wastes have led to new 

opportunities to use biotechnology to secure reactive mine tailings and to selectively remove metals 

and other contaminants from mine drainage waters. New possibilities for the ecological engineering of 

mine wastes, based on mimicking environments that display natural attenuation, and that can limit acid 

production and metal-mobilization in reactive mineral tailings, have been proposed and demonstrated 

at the laboratory scale. Active biological remediation systems allow metals to be recovered and 

recycled, rather than to be disposed of in mixed-metal sludges (from active chemical treatment), or in 

spent composts (from mine water passive treatment). Using empirical engineering, microbiological 

systems can be used to selectively capture (by bio-mineralization) individual metals from mine process 

waters and acid mine drainage. Capturing and recycling metals from mine waters also avoids the 

necessity of storing metal-rich sludges and composts produced in current remediation approaches, 

which have the inherent risk of remobilization of metals and further contamination of the environment. 
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