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ABSTRACT

A simple model of an internal wave advected by oscillating barotropic flow

suggests flaws in standard approaches to estimating properties of the internal

tide. When the M2 barotropic tidal current amplitude is of similar size to

the phase speed of the M2 baroclinic tide, spectral and harmonic analysis

techniques lead to erroneous estimates of the amplitude, phase, and energy in

the M2 internal tide. In general, harmonic fits and bandpass or low-pass filters

that attempt to isolate the lowest M2 harmonic significantly underestimate

the strength of M2 baroclinic energy fluxes in shelf seas. Baroclinic energy

flux estimates may show artificial spatial variability, giving the illusion of

sources and sinks of energy where none are present. Analysis of previously

published estimates of baroclinic energy fluxes in the Celtic Sea suggests this

mechanism may lead some values to be 25 to 60% too low.
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1. Introduction21

Interactions of the barotropic tide with sloping ocean bathymetry in the presence of stratification22

produce tidal-frequency internal waves, the internal tide, that carry energy to the ocean interior or23

to the continental margins (see, e.g., Wunsch and Ferrari, 2004 for a review). Where these internal24

waves break, the result is turbulence, energy dissipation and, potentially, vertical mixing. Internal25

waves are consequently the main source of dissipation in the abyssal ocean (e.g., Wunsch and26

Ferrari, 2004), but a significant fraction of the tidal energy in shelf seas is in the internal wave27

field, with the mode-1 semidiurnal (M2) tide responsible for an estimated 20-60 GW of energy28

propagating shoreward of the 175 m isobath and another 40-120 GW dissipating on the continental29

shelf slope (Kelly et al., 2013). Ocean circulation patterns are sensitive to the global distribution of30

the resulting vertical mixing (Melet et al., 2013). Locally, breaking internal waves cause vertical31

mixing that enhances vertical nutrient transport (Sharples et al., 2001) and contributes to the high32

primary productivity of the shelf break region, indirectly supporting fisheries (Sharples et al.,33

2007). Internal tides can create strong vertical shear in the water column, which can impact drilling34

and dredging operations (Osborne et al., 1978), as well as tidal power generation schemes.35

Observations of the internal tide in shelf seas reveal many poorly explained features of the36

wave field. Spectra often show considerable energy at higher harmonics of the semidiurnal (M2)37

tide (Rippeth and Inall, 2002; Robins and Elliott, 2009; Shroyer et al., 2011). In some cases,38

higher harmonics may be more evident than the fundamental tide or inertial forcing frequency,39

as shown for higher vertical modes by MacKinnon and Gregg (2003). Futhermore, large spatial40

and temporal variability in the strength and phase of the internal tide is common: off the coast41

of New Jersey, Shroyer et al. (2011) observed spatial variability in baroclinic energy fluxes, with42

both increases and decreases in strength moving from continental slope to shelf. These energy43
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fluxes were also concentrated in one or two “pulses” during particular phases of the barotropic44

tide. This intermittency is often associated with nonlinear internal waves (NLIW). However, as45

we demonstrate in this article, a linear superposition of barotropic and baroclinic waves can lead46

to many of the features often associated with NLIW.47

Although the generation mechanisms of the internal tide are fairly well understood and the48

energy conversion rate can be quantified (Green and Nycander, 2013), internal tides have proven49

difficult to predict, and temporal variability in the internal tide has been hard to explain. Nash et al.50

(2012) hypothesized that the locally-generated component of the internal tide should have a fixed51

phase relationship to the local barotropic tide, but that long-distance propagation of the internal52

tide across ocean basins, through mesoscale variability, results in remotely-generated internal tides53

with an incoherent phase relationship to the local barotropic tide. Nash et al. (2012) decomposed54

the internal tide into coherent, locally-generated and incoherent, remotely-generated components,55

and found that the majority of shoreward propagating energy has a time-varying phase offset rel-56

ative to the local barotropic tide. They therefore concluded that the internal tide on the New57

England continental shelf is mostly generated at remote locations. Further results incongruous58

with local barotropic forcing were seen by Hopkins et al. (2014) and Inall et al. (2000), who saw59

that baroclinic energy fluxes on the European shelf decreased in strength during the spring tide,60

when generating forces should be greatest. The distribution of energy over vertical wave modes is61

also often a mystery; MacKinnon and Gregg (2003) found that the distribution of energy between62

different vertical modes of the M2 tide varies in time, but with no apparent pattern or coherence.63

While the many processes contributing to temporal and spatial variability in the internal tide64

make internal tide prediction a complicated task, there remains considerable uncertainty in more65

elementary properties of the wave field. In the Celtic Sea, values of the average onshore baroclinic66

energy flux, an important sink term in the global tidal energy budget, range from 73 W m−1 (Green67
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et al., 2008) or 100 W m−1 (Hopkins et al., 2014) to as much as 1600 W m−1 (Inall et al., 2011),68

a difference of more than an order of magnitude. In the Celtic Sea, some of the variability in69

baroclinic energy fluxes has been attributed to the complicated nature of bathymetry at the shelf70

(Vlasenko et al., 2014) or to changes in propagation across the shelf (Stephenson et al., 2015).71

Some part of the difference may be due to the positioning of moorings, time of year, or analysis72

techniques used. Understanding the cause of such a wide spread in observed energy fluxes, and73

whether the same processes apply to other shelf seas, is vital to understanding global patterns of74

tidal energy loss and vertical mixing.75

The objective of this paper is to examine the implications of barotropic / baroclinic tide in-76

teractions for baroclinic energy flux estimates. We show that some of the temporal and spatial77

variability of the internal tide can be explained by a fairly simple advective process. This wave ad-78

vection process is a very simple case of the wave-wave interactions examined by Holloway (1983)79

and Pinkel (2008). Those studies sought to reconstruct the internal wave wavenumber-frequency80

spectral continuum observed in the open ocean by modeling the effects of wave-wave advection81

and Doppler ”smearing” by oceanic currents on the spectra of an internal wave field constructed of82

waves of discrete frequencies. In this paper, we consider only interactions between the barotropic83

tide and one mode of the baroclinic tide; we are interested in the consequences this interaction84

has on estimates of the strength of the baroclinic tide and energy fluxes. Following Green et al.85

(2010), we model a sinusoidal internal tide advected by a sinusoidally oscillating barotropic tidal86

flow. With this linear superposition of a mode-0 and mode-n wave, we reproduce many of the87

features of the internal tide described above. Furthermore, we find that, where the barotropic tide88

is strong, standard analysis techniques and filters may lead to significant underestimates of the89

strength of the internal tide and of baroclinic energy fluxes.90

5



Section 2 describes our model of an advected internal wave. Section 3 discusses the features91

of the model advected wave, while the implications for shelf-seas observations of the tide are92

discussed in Section 4. Conclusions are in Section 5.93

2. Methods94

We assume that a sinusoidal plane wave of a single frequency propagates at an angle θ measured95

clockwise from north. This wave can represent many things: the displacement of the thermocline96

in a two-layer wave, or the baroclinic velocity at a fixed depth, or anything that is in the form of a97

linear, sinusoidal wave, and we thus write:98

η(x,y, t) = Asin(k sin(θ)x+ k cos(θ)y−ωt)+B, (1)

where A is the wave amplitude (of, e.g. isopycnal displacement or baroclinic velocity), B is the99

mean value, k is the horizontal wavenumber, and ω is the frequency of the wave, in the following100

assumed to be that of the M2 tide, 2π/12.42 hour−1. The phase velocity of the internal wave is101

defined as c = ω/k.102

We assume that the internal wave remains sinusoidal when viewed from a reference frame mov-103

ing with the advective flow. To represent the advection of the propagating wave by the barotropic104

flow, we replace x and y by xadv(t) and y = yadv(t), where105

xadv(t) = x−
∫ t

t0
Ubt(τ)dτ and yadv(t) = y−

∫ t

t0
Vbt(τ)dτ (2)

account for advection of the internal wave by barotropic flow Ubt in the east-west direction and106

Vbt in the north-south direction. We introduce107

xr = sin(θ) x+ cos(θ) y and Urot = sin(θ) Ubt + cos(θ) Vbt (3)

6



to represent the coordinates and advective motions projected into the direction of propagation of108

the wave. In these new coordinates, the expression for the advected wave is simplified to109

η(xr, t) = Asin
(

k
(

xr−
∫ t

t0
Ur(τ)dτ

)
−ωt

)
+B. (4)

In a coordinate system moving with the component of barotropic flow in the direction of wave110

propagation, say x?, where111

x?(xr, t) = xr−
∫ t

t0
Ur(τ)dτ = sin(θ) xadv + cos(θ) yadv, (5)

the equation has the familiar form112

η(x?, t) = Asin(kx?−ωt)+B. (6)

113

In the transition to a stationary coordinate system, as at a mooring where x and y are fixed,114

the observed wave has a different expression as a function of time. For a semidiurnal tide, the115

barotropic tidal velocity is represented as Ur = Ucos(ωt), where U is amplitude of the tide pro-116

jected into the wave propagation direction. The waveform observed at a fixed (Eulerian) point in117

space, η0, can be expressed as118

η0(t) = Asin(
U
c

sin(ωt)−ωt +Φ0)+B. (7)

The observed waveform is strongly dependent on the barotropic/baroclinic phase difference Φ0,119

which is a function of xr (distance along the direction of wave propagation). Therefore, the ob-120

served wave and its energy and spectral characteristics also vary in xr. The phase offset between121

the barotropic tide and the mode-n baroclinic tide can be written122

Φ0 = (kn− k0)xr, (8)

where kn is the horizontal wavenumber of the mode-n internal tide and k0 is the horizontal123

wavenumber of the barotropic tide. k0 is generally much smaller than kn, so Φ0 ≈ knxr. A π124
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radian difference in Φ0 corresponds to ∼ 1
2λn, where λn is the horizontal wavelength of the nth-125

mode internal tide.126

The physics at work are similar in nature to a Doppler shift; the observed frequency changes as a127

result of the wave moving relative to the observer. The key difference is that the frequency of mo-128

tion is close to that of the wave being observed. In a standard Doppler shift, ωshi f ted = ωtrue±Uk,129

but this formulation is insufficient to describe the observed waveform when the wave and advec-130

tive flow have similar frequencies. As we shall see, in this case, the frequency shift occurs in131

discrete steps – to multiples (harmonics) of ω . If there is no barotropic flow (i.e., if U = 0), our132

case reduces to that of a purely sinusoidal wave with all its energy at the M2 frequency. Because133

the barotropic flow is vertically uniform and purely horizontal, we can describe a baroclinic tide134

propagating in the vertical and horizontal directions as a set of stacked horizontally propagating135

waves, each at a phase offset from the one above. As it is advected, under our simplifying assump-136

tions, the tidal beam retains its shape, and the effects on each layer can be computed independently137

using the appropriate phase as a function of depth. For the same reason, vertically well-resolved138

measurements will not mediate the effects of the barotropic advection on the observed waveforms.139

3. Results140

a. Waveforms141

Although the model wave is sinusoidal in x? and t (Equation 2), Eulerian measurements of the142

wave (represented by η0 in Equation 2) are not sinusoidal (Figure 1). Two parameters govern143

the observed waveform; Φ0, the phase offset between the baroclinic and barotropic wave; and144

U/c, the amplitude of the barotropic flow normalized by the internal wave speed. The observed145

waveform retains its 12.42 hour periodicity, but exhibits several unusual features that vary with146
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the normalized barotropic flow speed, U/c, as well as the phase offset between the baroclinic and147

barotropic flows, Φ0. At small values of U/c, these features are limited to a steepening of the148

wave crest. At larger values of U/c, the observed waveform appears more nonlinear, whereas149

multiple wave crests advected past the observing platform during one tidal period appear as higher150

frequency signals. Other shapes are possible: at certain phase-offsets, the waves in Figure 1 look151

like low-frequency solitons (see, e.g., Figure 1b,f). In this example, U/c ≈ 2, and the trough152

or crest is evident for only about 3 hours. One of these waves appears as a wave of elevation153

(Figure 1f); the other, at a phase offset π radians different from the first, is a wave of depression154

(Figure 1c).155

The criteria that U/c be large is equivalent to the flow having a large tidal excursion length scale.156

With a large tidal excursion, many crests and troughs may be advected past a fixed observer. An157

important note, though, is that this ratio is a property of the internal wave being considered. Higher158

vertical modes are slower and have shorter horizontal wavelengths than lower vertical modes. In159

uniform stratification, for example, the phase speed of the nth vertical mode, cn, scales inversely160

with mode number n, therefore U/cn scales linearly in n. Higher vertical mode waves therefore161

are likely to exhibit a greater degree of distortion as a result of advection.162

b. Average values163

Waves are often identified as perturbations to the mean state of some property of the ocean. For164

example, if h(t) represents the depth of the thermocline, h(t) might be decomposed into h(t) =165

h(t)+h′(t), where h′ is the perturbation associated with a wave and the overbar indicates averaging166

over some integer number of wave periods. For a linear internal wave, h′ = 0. When U/c > 0,167

however, the time-average of wave properties observed at a fixed location may be non-zero (as in168

Figure 1), leading to an non-zero offset in the average observed thermocline depth h′. This bias169
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term is a function of both Φ0 and U/c (Figure 2). The maximum value of the offset, or the bias170

in h′, is ∼0.6A for U/c ≈ 1.7, where A is the internal wave amplitude. For example, a moored171

sensor in a flow similar to of Figure 1b would observe a wave crest most of the time, followed by a172

brief downward excursion as the wave trough is swept past by the barotropic flow. A time average173

of measurements at this phase-offset is therefore biased towards the value at a wave crest; this is174

true for any observation window over an integer number of wave periods. Half a wavelength away175

(half a wavelength of the internal tide), the opposite bias is observed: the time-average is biased176

towards the wave trough value, to a minimum value of h′ ≈ −0.6A, as shown in Figure 1f. For177

values of U/c increasing beyond 1.7, more wave crests are swept past the measurement platform178

in one tidal period, and therefore h
′ tends to 0 as U/c tends to infinity.179

This bias has consequences. If we assume that this is a 2-layer wave, then variation of h with Φ0180

will appear as horizontal variations of the mean isopycnal depth, or, equivalently, as a horizontal181

density gradient. In a linear internal wave affected by the earth’s rotation, the zonal velocity182

perturbation u′, vertical displacement h′, and pressure perturbation p′ are π/2 radians out of phase183

with the meridional velocity perturbation v′. If h′ is at a maximum (as in Figure 1b), then v′ = 0184

(π/2 radians offset), but u′ is also at a maximum. The depth-averaged flow remains zero for185

baroclinic motions, and there is therefore no net mass flux as a result of the advective interaction.186

However, in the upper and lower layers, u′ 6= 0 corresponds to time-averaged across-shore flow.187

At these locations, a mooring will observe time-averaged across-shelf flow in each layer. The188

direction of across-shelf flow reverses every half-wavelength. On the other hand, if h′ = 0, then189

u′ = 0, but v′ is at a maximum or minimum, corresponding to time-averaged along-shore flow.190

Assuming the phase offset Φ0 is constant in time at a given location, as for locally-generated191

internal waves (Nash et al., 2012), the bias cannot be removed by extending the averaging time192

interval.193
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c. Perturbations194

As we have shown, where the barotropic and baroclinic waves interact, the observed average195

may be biased. If perturbations, η ′(t) are calculated using the observed average, η0, as η ′(t) =196

η0(t)−η0, this bias is directly transferred to perturbation quantities. In the example in Figure 1b,197

the average observed value of the isotherm depth is 0.6A; therefore, h′ ranges from−0.4A to 1.6A.198

Similar conclusions hold for u′, v′, and p′.199

In computing the baroclinic energy fluxes, we calculate F = u′p′. If the perturbation quantities200

are biased, the range of F increases. In the case of relatively weak advection (U/c = 0.2), the201

maximum value of the flux observed increases by only ∼15%, and at a given location the timing202

of baroclinic energy flux “pulses” is a function of the phase of the IW (Figure 3c). In contrast,203

when U/c≈ 1.7, η ′ ranges from -0.4 to 1.6 times its usual value. Therefore F ranges from 0.2 to204

2.56 times its ‘actual’ value. This serves to exaggerate non-linearity and intermittency in energy205

fluxes, which appear concentrated in a narrow time interval (Figure 3a). Furthermore, in this case,206

the peak baroclinic energy flux occurs at a particular phase of the barotropic tide (Figure 3b), while207

the phase of the IW contributes very little to the timing. The arrival time of a pulse of baroclinic208

energy is nearly uniform in xr.209

Tidally-averaged values (〈〉) of F are also affected (Figure 4). As U/c increases from 0, 〈F〉210

decreases, to a minimum of 0.5 times its value for the case of no advection. For U/c >2 or211

3 (depending on Φ0), 〈F〉 increases to a maximum of ∼1.3 times its value for the case of no212

advection when U/c ≈3.3. The magnitude of the decrease or increase is dependent on Φ0, and213

can be significant for relatively low values of U/c. For example, for U/c ≈ 0.6, a decrease of214

up to 15% in the tidally-averaged fluxes is possible. It should be noted that this decrease is not215
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a result of filtering; rather, it is due to the bias in the observed average altering the values of the216

perturbations used to calculate instantaneous fluxes.217

d. Spectra218

Another consequence of advection by oscillating barotropic flow is the alteration of the spectra219

of the observed wave signal. In the case of no barotropic flow, the pure tone wave has energy only220

at a single frequency. As noted above, as U/c increases, more wave crests are advected past the221

observing platform and energy appears at higher frequencies (Figure 5), but remains concentrated222

in harmonics of the fundamental frequency. This forces the observed signal to remain periodic223

over one wave period while allowing the observed waveform to take many shapes. For the M2224

tide, as U/c increases, more energy appears at the M4, M6, M8, ... frequencies. The power spectra225

depend mostly on U/c; there is some spatial variability in the high-frequency content, but for226

a given U/c only the highest frequency harmonics present are significantly affected by Φ0. The227

amplitude of the spectral peak at each harmonic varies with U/c. In general, less energy is found in228

lower harmonics as U/c increases, but the amplitude of a given harmonic and the relative energies229

of any two harmonics are not simple functions of U/c (Figure 6).230

The results in MacKinnon and Gregg (2003) are consistent with these findings. They examined231

low-pass-filtered energy (M2 and M4) in vertical modes 1 through 5 and found that, although a232

strong peak in M2 energy was present in the lowest modes, it was absent in the higher modes.233

For a given barotropic flow, higher-vertical mode waves have higher values of U/c in general, and234

therefore will have less energy in lower harmonics. As the barotropic tidal amplitude increased,235

MacKinnon and Gregg (2003) found changes in the partitioning of energy between vertical modes,236

but no clear explanation for which modes had energy. This mirrors the results in Figure 6, which237

show the oscillations of first and second harmonic amplitudes at large values of U/c.238
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The spectral energy contained in the observed signal, obtained by integrating the power spectra,239

is a function of both U/c and Φ0 (Figure 7). For U/c∼ 1.7, the observed energy can range from240

0.5 to 1.5 times the true energy of the wave, depending on Φ0. As U/c increases, the sensitivity241

of the spectral energy to Φ0 decreases; this is because Φ0 affects only the amplitude of the few242

highest harmonics, so as energy is spread across more harmonics, Φ0 dependence decreases. Peaks243

in observed energy occur π radians apart; the wavelength of the spectral energy is half that of the244

original wave. The spectral energy may correspond to kinetic or potential energy, depending245

on whether u′ or h′ is being measured. For a normal linear wave, these two quantities are π/2246

radians out of phase. The total observed energy (kinetic plus potential) is then constant, and any247

individual component (kinetic or potential energy) averaged over 1/2 wavelength of the internal248

wave (neglecting k0) will be constant. The periodic spatial variation in kinetic and potential energy249

resulting from the advection mechanism resembles a standing wave; indeed, it is possible that some250

features in shelf-seas with standing wave properties might be attributable to this interaction of the251

barotropic and baroclinic tides.252

This spatial redistribution of kinetic and potential energy may help to explain the distribution253

of vertical mixing on the shelf. Dissipation measurements on the shelf contain many examples of254

“patchiness,” with turbulence concentrated over a small horizontal extent (e.g., Inall et al., 2000),255

whereas Palmer et al. (2015) found links between dissipation and the ratio of kinetic to potential256

energy. If an internal wave is most likely to break at one point in its phase (e.g., when vertical257

shear is a maximum), partial stalling of the propagating zone of maximum IT shear by opposing258

barotropic flow will tend to spatially concentrate the zone of maximum shear at one location (for259

example, at x=0), while at the same time spatially diluting the shear at another location (x ≈ λ/2260

in this example, where λ is the wavelength of the IT). A similar mechanism may lead to spatial261

variability in bottom drag. The maximum flow speed over the seabed occurs where baroclinic ve-262
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locity in the lower layer is in phase with the barotropic flow. Barotropic advection of the IT leads263

to spatial concentration of the higher bottom velocities, and may cause variability in bottom drag264

with a spatial scale ∼ λ . The advection mechanism also leads to near-bed flows with higher har-265

monic frequencies; as these interact with sea floor topography, it may generate freely-propagating266

waves at the higher harmonics, similar to the processes described in detail by Bell (1976).267

4. Discussion268

a. Implications for baroclinic energy fluxes269

The aforementioned shifts in observed energy, both spatially and towards higher frequencies,270

have important implications for estimates of baroclinic energy fluxes. The effects of advection271

by the barotropic tide introduce a potential source of variability to estimates whose magnitude272

depends in part on how data is collected and in part on how it is analyzed.273

One approach to studying the internal tide is to use an array of moorings spanning the continental274

shelf (e.g., Hopkins et al., 2014). As we have demonstrated, where U/c is large and in the absence275

of actual energy dissipation, the observed kinetic and potential energy of the internal tide will vary276

by up to±50% over one half-wavelength of the internal tide. If the phase offset between a locally-277

generated internal tide and the local barotropic tide is constant, then placement of a mooring may278

bias observations of kinetic or potential energy by up to ±50% (depending on U/c). Although the279

total energy (KE+PE) should remain constant, if moored instruments resolve one but not the other,280

it may introduce a bias into wave field estimates.281

There are many sources of variability in the ocean, and identifying the variability associated282

with one particular process, such as the internal tide, is not easy. A standard analysis technique283

is to filter data using a low-pass or band-pass filter to selectively retain the processes of interest.284
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Hopkins et al. (2014), for example, employed a band-pass filter to retain frequencies from 0.7 to285

1.5 M2. As we showed, however, the barotropic/baroclinic interaction shifts much of the observed286

energy into higher harmonics, even for reasonably small values of U/c. For any U > 0, there is287

some reduction in the energy present in the M2 band. For U/c ≈ 0.5, the observed energy at the288

M2 frequency ranges from 90 to 97% of its “true” value, whereas for U/c = 1, it ranges from 65289

to 88% of the actual energy (Figure 8b). Based on the barotropic velocities reported in several290

studies, and estimating the phase speed of the mode-1 internal tide, we can estimate by how much291

a particular reported baroclinic energy flux may be underestimated.292

Another approach to reconstructing the wave field is to employ a harmonic fit to a signal of293

known frequency. Since the frequency of our model wave is partially shifted, problems arise. A294

harmonic fit to the observed wave in Equation 2 produces amplitude and phase estimates that vary295

with U/c and Φ0 (Figure 8a,c). As with the mean in Figure 2, this implies spatial variability in296

the amplitude and phase of a harmonic fit. If u′ and p′ are fit to a harmonic, baroclinic energy297

fluxes scale as A2
f it(Φ), where A f it is the amplitude of the harmonic fit. Variation of A2

f it(Φ) with298

Φ0 gives the appearance of horizontal divergence and convergence of energy flux. From such299

an observation, it would be natural to infer the existence of sinks (dissipation) or sources (local300

generation / tidal conversion) of energy. Figure 5 shows that the greatest energy flux divergence301

and convergence occurs when U/c≈3.2, where Fobserved ranges from 0.6 F to 1.3 F for an actual302

flux of F , with a second peak where U/c ≈1.4, where Fobserved ranges from 0.5 F to 0.9 F . The303

important point is that there are no such processes in our model. The apparent dissipation is in this304

case only an artifact of a low-pass filter applied to advected internal waves.305

The variation of harmonic fit phase with U/c is less important for baroclinic energy fluxes, but306

is relevant when considering the likelihood of local or remote generation of the internal tide, where307

‘local’ implies constant phase offset relative to the barotropic tide and ‘remote’ is associated with308
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a phase offset that changes in time (e.g., Nash et al., 2012). In our model, the phase of a harmonic309

fit to the observed waveform is a function of the phase offset and the normalized barotropic flow310

speed U/c (Figure 8c). If we consider the spring-neap cycle of the tides as a slowly-modulated311

tide with a frequency close to M2, then it is clear that in the ocean as spring tide approaches, the312

amplitude of the barotropic current U increases, and therefore U/c increases. This alters the phase313

of the least-squares fit solution to the observed wave. Therefore, even if the locally-forced internal314

tide has a constant phase offset relative to the local barotropic tide, the phase of the M2 harmonic315

fit to the observed internal tide will vary as U/c increases. Similarly, as stratification changes,316

whether due to seasonal heating and cooling or a one-off mixing event, the internal wave speed317

will change, altering U/c. Changes in stratification also change the wavelength of the internal tide,318

which may alter its phase offset relative to the local barotropic tide by modifying kn in Equation 2.319

These effects may lead to the locally-generated internal tide being at least partially miscategorized320

as remotely-generated when separating locally- and remotely-generated tides on the basis of local321

coherence.322

Spring-neap changes in U/c also affect the bias in observed baroclinic energy fluxes. With an323

averaging window long enough to capture changes in U/c, the observed bias will tend towards324

an average of the biases for the time-varying values of U/c. The variations in U/c included in325

a longer time-averaging window will not drive the bias towards zero. However, with longer time326

windows, other ocean processes that affect c or Φ0 may influence the energy flux bias in ways that327

are difficult to generalize.328

In light of our results, a reexamination of baroclinic flux estimates in shelf seas may be needed.329

There are two ways to calculate baroclinic energy flux (Kunze et al., 2002). The first decomposes330

motions into barotropic and a baroclinic components. The perturbation velocity (u′) and pressure331

(p′) associated with an internal tide are used to calculate the baroclinic energy flux, defined by332

16



F =< u′p′ >, where <> denotes a time average over a tidal cycle (Nash et al., 2005). This de-333

composition can be done in such a way as to eliminate certain influences of the barotropic tide,334

such as isopycnal heave caused by the motion of the free-surface (Kelly et al., 2010). However,335

these techniques do not correct for effects of the wave-wave interaction, caused by lateral advec-336

tion of isopyncals by the barotropic tide.337

The second approach measures the wave field, then calculates flux as F = Ecg, where E is the338

energy in the internal tide and cg is the group velocity (See Inall et al., 2011 or Hopkins et al.,339

2014 for a more thorough discussion). It is clear that care must be taken in defining perturbation340

quantities, since spatial variability in the observed average is a consequence of advection by the341

barotropic tide. Inall et al. (2011) approached this problem with a towed undulator and found342

energy flux estimates of 940 W m−1 using F =< u′p′ > and 1600 W m−1 using F = Ecg. By343

averaging spatially over one baroclinic wavelength, they avoided the spatial bias in energy fluxes.344

By limiting the amount of filtering done, energy shifted to higher frequency contributed to the345

total, rather than being filtered out. It is not entirely surprising, therefore, that their across-shelf346

baroclinic energy flux estimates are much larger than others in the same region (O(100 W m−1))347

(Green et al., 2008; Hopkins et al., 2014).348

One concern with the second approach (F = Ecg) is the problem of partitioning energy between349

different vertical modes. The best estimate is of the form350

F =
∞

∑
i=1

Eici. (9)

Higher mode waves dissipate over shorter horizontal length scales than low modes, so we expect351

most of the energy away from generation sites to be in the lowest modes. However, the mode-352

1 wave travels more quickly than other vertical modes, so assigning all baroclinic energy to the353

mode-1 wave is likely to overestimate the baroclinic energy.354
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Both approaches may introduce errors into baroclinic energy flux divergence calculations, and355

therefore into indirect estimates of energy dissipation. A tempting solution, reconstruction of the356

‘unadvected’ internal wave field, might be feasible in theory, but has been difficult to implement357

in practice. As Pinkel (2008) explains: “[Doppler smearing] cannot, in general, be unscrambled,358

but the task is much easier if the spectrum consists of a few discrete lines.” This concords with our359

experience: methods that accurately reconstruct synthetic advected waves fail on real ocean data.360

b. Global applicability361

Tidal energy conversion is directly proportional to U , and barotropic velocities generally in-362

crease as water depth decreases, whereas baroclinic wave speeds decrease. Therefore, we expect363

that the bias presented here will be present at most shallow internal tide generation sites and will364

be most pronounced in shelf seas with strong barotropic tides. To estimate the parameter U/c, we365

first calculated dynamical mode estimates of the mode-1 internal wave speed for the M2 internal366

tide by solving the wave equation,367

∂ 2η

∂ z2 +

(
N2−ω2

ω2− f 2

)
k2

η = 0, (10)

where N is the buoyancy frequency, ω is the wave frequency, f is the inertial frequency,368

and k is the horizontal wave number of the internal wave. Stratification profiles were de-369

rived from long-term average temperature and salinity profiles from the World Ocean Atlas370

(https://www.nodc.noaa.gov/OC5/woa13/) (Locarnini et al., 2013; Zweng et al., 2013). Then using371

tidal velocities from TPXO (http://volkov.oce.orst.edu/tides/global.html) (Egbert and Erofeeva,372

2002), we estimate U/c for the first baroclinic mode. The results of the computation, shown in373

Figure 9, show that the ratio is greatest (O(10)) on the European Shelf. Elevated values are also374

evident east of Argentina, northwest of Australia, in the South China Sea, and on the New England375
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Shelf. Overall, these calculations indicate potential for U/c > 1 in ∼3.5% of the ocean, or more376

than one third of the ocean shallower than 500 m. However, these measurements do not account377

for the relative directions of wave propagation and barotropic flow; internal tides propagating at378

angles to the semimajor axis of the barotropic tidal ellipses will have smaller values of U/c. Fur-379

thermore, seasonal variations in stratification will affect the values of c; U/c is likely to be higher380

in winter than summer, especially in shelf seas where the annual cycle in stratification is large.381

Small values of U/c over the deep ocean mean that the abyssal ocean is unaffected by any bias.382

Using the values of U/c in Figure 9, we calculate an ‘underestimation factor’ for baroclinic383

energy fluxes; this is the ‘worst-case’ estimate for how much a linear internal tide may be under-384

estimated using stationary sampling techniques and harmonic fits (the narrowest spectral filter),385

based on barotropic tidal advection of the baroclinic tide (see Figure 10 for details). We now apply386

this estimate to a baroclinic energy flux estimate in the Celtic Sea. At their mooring ST4, moored387

in ∼160 m deep water on the continental shelf 40 km shoreward the shelf break, Hopkins et al.388

(2014) reported total average onshelf baroclinic fluxes of 93 W m−1, and average semidiurnal on-389

shelf baroclinic energy fluxes of 28 W m−1, a phase speed of 0.5-0.6 m/s for the mode-1 baroclinic390

tide, and maximum on-shelf barotropic currents of ∼0.4 m s−1. Here U/c is ∼0.7-0.8. Referring391

to Figure 4, we estimate that the observed, unfiltered energy fluxes may represent as little as 75%392

of the total baroclinic energy fluxes present. Figure 8a indicates that the filtered amplitude of393

the observed internal tide ranges from 0.78 to 0.9 times its actual value. The amplitudes of the394

filtered baroclinic energy fluxes are calculated by squaring two filtered values, so the observed395

fluxes likely range from ∼ 0.6-0.8 times their actual value. In other words, the real values are esti-396

mated to be 25-67% higher. Computing empirical orthogonal functions (EOFs) of the across-shelf397

velocity, Hopkins et al. (2014) found that the mode-1 EOF accounted for 45% of the variance398

in the bandpassed across-shelf velocity fields, while the mode-2 EOF accounted for 11-16% of399
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the variance. With a phase speed of 0.3 m/s for the slower mode-2 baroclinic tide, U/c has a400

value of ∼1.3. This leads to unfiltered baroclinic energy flux estimates that capture only 55-85%401

of the total energy flux (as in Figure 4). With the higher mode wave, more baroclinic energy is402

shifted to higher harmonics that are filtered out before energy fluxes are calculated; the observed403

fluxes in the filtered data are only 0.2-0.6 times the “real” baroclinic energy fluxes, making the404

total values 67-400% larger. However, this and higher modes contain much less energy than the405

first mode. To evaluate the amount by which the filtered baroclinic energy fluxes underestimate406

the total, we need estimates of the modal distribution of energy fluxes. We assume the fraction of407

energy contained in a baroclinic mode is comparable to the fraction of variance explained by EOFs408

of baroclinic velocity in Hopkins et al (2014). For modes 1 and 2, we take these to be 45% and409

16%, respectively, and add a correction for each mode based on the value of U/c for that mode,410

as calculated above. The lower and upper bounds on the correction needed are as follows: mode411

1: (25 to 67% increase needed) × 45% of baroclinic energy + mode 2: (67 to 400% increase) ×412

16% of baroclinic energy, all divided by (45% + 16%), the fraction of baroclinic energy in modes413

1 and 2. The result is that the filtered baroclinic energy fluxes should be between 36% and 150%414

larger than the original estimates. That is, the original estimates represent ∼40-73% of the energy415

flux. Rather than accounting for only 30% of the total baroclinic energy fluxes (28 W m−1 out of416

93 W m−1), the semidiurnal internal tide is likely responsible for 40-75% of the total. Meanwhile,417

the original estimated total (unfiltered) baroclinic energy estimates likely captured 68-96% of the418

total baroclinic energy flux. The revised estimate of the total baroclinic energy flux ranges from419

97-136 W m−1.420

Studies in other shelf seas that have computed baroclinic energy fluxes using low-pass filters,421

bandpass filters, or harmonic fits have likely underestimated baroclinic energy fluxes in similar422

fashion. The information in Figure 4 and Figure 10 may be seen as first-order correction factors423

20



that could be employed a posteriori to improve computations from any area. However, since tidal424

amplitude U changes over a spring-neap cycle and wave phase speed c changes with stratification,425

a more accurate estimate of the correction factor requires more specific values of U and c, rather426

than the values based on long-term averages. With a specific value of U/c, the upper and lower427

bounds on the underestimation can be inferred by reference to Figure 8a.428

5. Conclusions429

In this paper, we have explored a very simple model of a baroclinic tide advected by oscillating430

barotropic flow. Despite its simplicity, the model replicates many of the unusual features of the431

internal tide in shelf seas: unusual wave forms, high-frequency energy, and spatial and temporal432

variability in the phase and amplitude of the baroclinic tide. Our results suggest that advection433

of the internal tide by the barotropic tide biases observed average quantities, such as pressure and434

baroclinic velocity and hence also affect the perturbation quantities. As a result, baroclinic energy435

fluxes appear to be larger and more intermittent than they would in the absence of advection. These436

confounding factors make analysis of the internal tide more difficult, and expose a need for great437

care in analysing the internal tide in shelf seas. Neglecting this process where it is important can438

easily lead to a significant underestimate of the strength of baroclinic energy fluxes. On the other439

hand, although this barotropic/baroclinic interaction may lend the appearance of randomness to a440

well-ordered internal tide, it introduces the possibility that mechanisms governing temporal and441

spatial variability in internal tides may be less complicated than has been thought.442

Our results suggest that correcting for the low bias in energy flux estimates in the Celtic Sea443

(Hopkins et al., 2014) may significantly increase estimates of total baroclinic energy fluxes, and444

will also increase the proportion of baroclinic energy fluxes attributed to the semidiurnal tide. In445

cases where data are strongly filtered, the increase can be a factor of 2 to 3. The adjustments446
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we have applied are fairly crude, however, and they do not close the gap in Celtic Sea baroclinic447

energy fluxes. Accounting for and correcting the biases in various quantities, from, for example,448

average thermocline displacement (Section 3.2) or baroclinic energy flux magnitude (Section 3.5)449

will require some effort, and may change how we understand other shelf break processes. This450

process is likely to be significant in many other shelf seas, but the global significance of the upward451

adjustment we project in shelf seas baroclinic energy fluxes remains a subject of inquiry.452
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FIG. 1. Observed waves (black) as in Equation 2 and least-squares sinusoidal fit to the observed wave (red)

for U
c = 1.7 and phase offsets a) Φ0 = 0, b) Φ0 =

π

3 , c) Φ0 =
2π

3 , d) Φ0 = π , e) Φ0 =
4π

3 , and f) Φ0 =
5π

3 . Dashed

lines indicate the mean value of the observed wave, averaged over an integer number of wave periods.
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FIG. 2. The mean of the observed wave, as in Equation 2, as a function of Φ0 and U/c.
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FIG. 3. Baroclinic energy flux, F = u′p′, where u′ and p′ are defined using Equation 2 with A = 1 and with

the time-mean removed. a) Timeseries of F for U
c = 0, Φ0 =

π

2 (green), U
c = 1.7, Φ0 =

π

2 (red), and U
c = 1.7,

Φ0 = π (blue). Similar plots for a range of Φ0 with b) U
c =1.7, and c) U

c =0.2.
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FIG. 4. Tidally-averaged baroclinic energy flux 〈F〉 = 〈u′p′〉, where u′ and p′ are defined using Equation 2

with A = 1 and with the time-mean removed. 〈F〉 is further normalized by the case where U/c = 0. Average

fluxes vary with Φ0, but generally reach a minimum where U/c∼ 2 and a maximum where U/c∼3.
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FIG. 5. Power spectra against frequency (y-axis) of the wave in Equation 2 as a function of U
c . Spectra have

been averaged over Φ0 ∈ [0,2π). As U
c increases, more energy is present at higher harmonics.
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FIG. 6. Normalized spectral amplitude at harmonics of the M2 tide for a freely propagating sine wave advected

by sinusoidally oscillating flow of the same frequency, where the advective velocity, U , has been normalized by

the speed of the wave, c.
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FIG. 7. The integral of the power spectra of the observed wave (as in Equation 2) over one wave period,

normalized to 1 when U = 0. Observed signal power varies with U
c and Φ0.
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FIG. 8. a) The maximum (red) and minimum (blue) amplitude of a harmonic fit to the advected wave, as a

function of U/c. The b) amplitude and c) phase of harmonic fits to the advected wave vary with U/c and Φ0.

Contours are spaced 0.2 units apart.
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FIG. 9. Global map of U
c for (i) M2 and (ii) K1 tidal constituents. A mask (gray) has been applied over land

surfaces and poleward of the critical latitude for each tidal frequency.
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FIG. 10. Based on U
c in Figure 9, the factor by which a harmonic fit (the most restrictive spectral filter) will

underestimate an advected internal wave amplitude. For example, a value of 0.2 means that the amplitude of the

harmonic fit is 20% the amplitude of the advected IW.
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