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Abstract  

Growth media have been developed to facilitate the enrichment and isolation of acidophilic 

and acid-tolerant sulfate reducing bacteria (aSRB) from environmental and industrial 

samples, and to allow their cultivation in vitro.  The main features of the “standard” solid and 

liquid devised media are: (i) use of glycerol rather than an aliphatic acid as electron donor; (ii) 5 

inclusion of stoichiometric concentrations of zinc ions to both buffer pH and to convert 

potentially harmful hydrogen sulfide produced by the aSRB to insoluble zinc sulfide; (ii) 

inclusion of Acidocella aromatica (an heterotrophic acidophile that does not metabolize 

glycerol or yeast extract) in the gel underlayer of double layered (overlay) solid media, to 

remove acetic acid produced by aSRB that incompletely oxidize glycerol and also aliphatic 10 

acids (mostly pyruvic) released by acid hydrolysis of the gelling agent used (agarose). 

Colonies of aSRB are readily distinguished from those of other anaerobes due to their 

deposition and accumulation of metal sulfide precipitates. Data presented illustrate the 

effectiveness of the overlay solid media described for isolating aSRB from acidic anaerobic 

sediments and low pH sulfidogenic bioreactors. 15 

 

Introduction 

 

Sulfate reducing bacteria (SRB) comprise a large number of phylogenetically-diverse 

prokaryotes that have in common their ability to grow by catalyzing the dissimilatory 20 

reduction of sulfate to sulfide in anoxic environments (Muyzer & Stams, 2008). They have 

been detected in, and isolated from, many different marine and freshwater environments, 

and soils, and also from many “extreme” environments. Thermophilic, psychrophilic, 

halophilic and alkalophilic species have been described. Acidic environments have presented 

something of a conundrum, however, as although there have been numerous reports of 25 

sulfidogenic activity in anoxic sediments in, for example, sulfate-rich streams draining mine 
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sites, attempts to isolate acidophilic or acid-tolerant strains of SRB (aSRB) have, until 

relatively recently, mostly been unsuccessful (Dopson & Johnson, 2012). 

     One of the hazards faced by SRB is that the sulfide they produce (particularly H2S, which 

is the dominant form present at pH < 7) is toxic to them, as to other life forms, at relatively 30 

low (milli-molar) concentrations (Koschorreck, 2008). In many situations (e.g. enrichment 

culture formulations for neutrophilic SRB) ferrous iron acts as a sink for sulfide, removing it 

as insoluble, non-bioavailable, iron sulfide (FeS). However, the solubility product of FeS is 

such that it does not precipitate at pH <5, and therefore cannot act as an effective sink for 

sulfide in moderately to extremely acidic situations (Lewis, 2010). A second generic problem 35 

for acidophiles is the toxicity of small molecular weight organic acids (Ingledew & Norris, 

1992). Many SRB are “incomplete substrate oxidizers”, in that they partially oxidize organic 

substrates and release the end product(s) of their metabolism (frequently acetate) into their 

growth milieu. At pH values below their respective pKa values (4.75 for acetic acid) small 

molecular weight organic acids occur predominantly as non-dissociated, lipophilic molecules. 40 

Acetic acid is toxic to many chemolithotrophic bacteria when present in micro-molar 

concentrations, though some heterotrophic acidophiles (e.g. Acidocella (Ac.) aromatica) are 

more tolerant of this and some other aliphatic acids, and use it as a carbon and energy 

source (Jones et al., 2013). Many media formulations used to enrich neutrophilic SRB utilize 

organic acids, such as lactate, as carbon and energy sources (e.g. Postgate, 1963). As with 45 

acetic acid, lactate exists predominantly as non-dissociated lactic acid at low pH, and again 

micro-molar concentrations of this potential electron donor are sufficient to partially or 

completely inhibit the growth of SRB (and most other bacteria) in acidic media. In contrast, 

organic substrates, such as glycerol, that are uncharged at low pH have been used 

successfully to enrich for acid-tolerant strains (e.g. Sen & Johnson, 1999).  50 

     A variety of solid media formulations have been developed to facilitate the isolation and 

enumeration of acidophilic chemolithotrophic and heterotrophic microorganisms from 

environmental and industrial samples (Johnson & Hallberg, 2007). Most of these media 

employ an “overlay” technique, in which a double-layered gel is used in a standard Petri 
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plate, the lower layer of which is inoculated with an active culture of a heterotrophic 55 

acidophile (usually an Acidiphilium (A.) sp.) while the upper layer is not. The rationale is that 

the heterotrophic acidophile metabolizes the small molecular weight compounds (such as 

pyruvic acid) that derive from acid hydrolysis of commonly-used gelling agents such as agar.  

Using this technique, it has been possible to routinely isolate and cultivate chemolithotrophic 

bacteria (such as Leptospirillum spp.) that had previously been considered not to grow on 60 

solid media (Johnson, 1995).  

     Here we describe solid and liquid media that have been developed in the authors’ 

laboratory and used successfully over a number of years to isolate and enumerate aSRB 

from environmental samples, and also to cultivate isolates as axenic cultures in the 

laboratory.  65 

 

Materials and methods 

 

Solid media  

 70 

The standard solid medium developed to isolate aSRB from environmental samples and 

laboratory enrichment cultures was a variant of overlay media previously described for 

aerobic acidophiles (Johnson & Hallberg, 2007). The main differences were (i) higher pH of 

the “standard” aSRB medium (~3.7 compared to ~ 2.7 for the aerobic medium plates); (ii) 

using the type strain of Ac. aromatica rather than A. cryptum strain SJH in the underlay gel; 75 

(iii) inclusion of  4 mM glycerol (as electron donor) and 7 mM zinc (as the sink for hydrogen 

sulfide). Two solutions were prepared and sterilised separately by autoclaving (121˚C, 20 

mins) and a third solution (acidic ferrous sulfate) sterilized by filtration through 0.2 μm (pore 

size) membranes: 

     Solution A - 20 mL of concentrated basal salts solution, containing (g/L) MgSO4∙7H2O 80 

(25), (NH4)2SO4 (22.5), Na2SO4∙10H2O (7.5); KH2PO4 (2.5), KCl (2.5) and Ca(NO3)2·4H2O 
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(0.7),  mixed with 770 mL of reverse osmosis (RO)-grade water, 4 mL of a 1 M glycerol 

solution, 0.1 g of yeast extract, 7 mL of 1 M zinc sulfate and 0.875 g of magnesium sulfate. 

One millilitre of a concentrated trace elements solution was added, the mixture adjusted to 

pH 3.5 with sulfuric acid, and autoclaved. The trace elements solution contained (g/L): 85 

ZnSO4·7H20 (10); CuSO4·5H2O (1.0); MnSO4·4H2O (1.0); CoSO4·7H2O (1.0); 

Cr2(SO4)3·15H2O (0.5); H3BO3 (0.6); Na2MoO4·2H2O (0.5); NiSO4·6H2O  (1); Na2SeO4·10H2O 

(1); Na2WO42H2O (0.1); NaVO3 (0.1). 

     Solution B - 5 g of agarose (Sigma Type I) suspended in 200 mL of RO water.  

     Solutions A and B were combined when they had cooled to about 50C, and 0.1 mL of 1 90 

M ferrous sulfate (Solution C) added. The combined solutions were mixed and split into two 

portions of approximately similar volumes. Ten millilitres of a culture of Ac. aromaticaT (pre-

grown in an acidic (pH 3) medium containing 5 mM fructose, basal salts and trace elements 

(as above) was added to one portion, and ca. 20 mL aliquots of the inoculated molten gel 

poured into sterile Petri plates. When this layer had solidified, the other (sterile) combined 95 

solution, which had been retained in a molten state by storing in a 50˚C water bath, was 

poured on top, again in aliquots of ca. 20 mL/plate (Fig. 1). 

     Variants on this “standard” (glycerol/zinc) aSRB solid medium formulation were: (i) a non-

overlay version; (ii) one in which zinc sulfate was replaced with 7 mM (final concentration) 

ferrous sulfate; (iii) more acidic variants (final pH values of ~2.8 or 2.3, achieved by adjusting 100 

the pH of solution A to either 2.5 or 2.0, respectively) in which zinc sulfate was replaced with 

copper sulfate (CuS has a smaller solubility product than ZnS and precipitates at pH 2.8 

whereas ZnS does not). Because of the greater sensitivity of Ac. aromatica to copper than to 

zinc (Jones et al., 2013) the concentration of copper sulfate added was 0.25 mM; (iv) a 

circum-neutral pH non-overlay variant (adjusting the pH of solution A to 7.0). The pH values 105 

of the gelled media were measured using a calibrated flat-tipped combined pH electrode 

(Hanna instruments, UK) coupled to an Accumet 50 pH/EH meter. 

 

Liquid media 
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 110 

The standard liquid medium used to grow aSRB isolates in vitro contained basal salts/trace 

elements/magnesium sulfate (as above) supplemented with 4 mM (final concentration) 

glycerol, 0.01% (w/v) yeast extract and 7 mM zinc sulfate. The pH of the medium was 

adjusted to either 3.5 or 4.0 with 1 M sulfuric acid, de-aerated under vacuum, and autoclaved 

at 121˚C for 20 minutes. Ferrous sulfate was added to the cooled medium to give a final 115 

concentration of 100 μM (resulting in slight reductions in media pH, to ~ 3.4 and 3.7, 

respectively). The liquid medium was stored at ambient temperature in an anaerobic glove-

box (Plas Labs, Lansing, MI) under a nitrogen/carbon dioxide atmosphere prior to use. A 

second liquid medium in which zinc sulfate was replaced with 7 mM ferrous sulfate (and pH 

adjusted between 3.0 and 5.0) was also used in some experiments.  120 

 

Isolation of aSRB on solid media 

 

(i) Environmental samples. Sediments in an acidic stream draining an abandoned copper 

mine (Cantareras, located in the Iberian Pyrite Belt in south-west Spain; Rowe et al., 2007) 125 

were sampled at the entrance, and 10, 30 and 60 m downstream of the mine adit.  Sediment 

samples were placed in sterile Falcon tubes, which were filled to capacity and sealed at the 

mine site. In the laboratory, 0.5 g of each sediment was mixed with 0.5 ml of pH 2.5 basal 

salts solution and the suspensions serially diluted and spread onto overlay aSRB solid 

media. Inoculated plates were incubated under anaerobic conditions at 30C using the 130 

AnaeroGen system (Oxoid, U.K.), for up to one month. Colonies that grew on SRB plates 

were examined under a binocular microscope, and sulfidogens tentatively identified by their 

deposition of metal sulfides (ZnS or CuS) which gave distinctive coloration and metallic 

sheens to the colonies (Fig. 2). The identities of putative aSRB isolates were confirmed by 

amplifying and sequencing their 16S rRNA genes (Rowe et al., 2007). Other overlay plates, 135 

formulated to support the growth of chemolithotrophic and heterotrophic acidophiles 
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(Johnson & Hallberg, 2007) were inoculated at the same time and incubated at 30˚C under 

aerobic conditions. 

(ii) Laboratory bioreactor cultures. Liquid samples from two continuous-flow sulfidogenic 

bioreactors, maintained at between pH 2.8 and 4.5 and used to selectively precipitate 140 

transition metals from synthetic mine waters (Ňancucheo & Johnson, 2012a) were serially-

diluted and spread onto glycerol/zinc overlay aSRB medium. Terminal restriction enzyme 

fragment length polymorphism (T-RFLP) analysis was carried out in parallel to obtain an 

overview of the compositions of the bacterial communities in the bioreactors (Ňancucheo & 

Johnson, 2012a). The bioreactors had originally been inoculated with pure cultures of two 145 

aSRB: Desulfosporosinus acididuransT (Sánchez-Andrea et al., 2015) and “Desulfobacillus 

acidavidus” strain CL4 (Ňancucheo & Johnson, 2012a), and also with dissected samples of a 

sulfidogenic microbial mat taken from a stream draining the Cantareras mine.  

(iii) Pure cultures of aSRB. Acidophilic and acid-tolerant SRB that had been isolated 

previously were also tested for growth on the various solid media. These were D. 150 

acididuransT (originally isolated from a geothermal site in Monserrat, West Indies), and “Db. 

acidavidus” strain CL4 and Firmicute strain C5, both of which had been isolated from the 

microbial mat at Cantareras. 

 

Results and discussion 155 

 

The solid and liquid media described have been used routinely to isolate and cultivate aSRB 

in the authors’ laboratory for several years. Ac. aromatica is used in the underlayer gel, as, 

unlike Acidiphiliium spp and other Acidocella spp., this heterotrophic acidophile uses only a 

limited range of organic donors (including fructose and acetic acid) but does not grow on 160 

yeast extract, glucose, glycerol or many other small molecular weight organic compounds 

that are commonly metabolized by acidophilic heterotrophic microorganisms. The aSRB 

present in plate inocula and Ac. aromatica do not compete, therefore, for the glycerol and 
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yeast extract included in the aSRB overlay media. However, acetic acid, which is produced 

as a metabolic waste product by some strains of aSRB, is metabolized by the non-165 

sulfidogenic heterotrophic acidophile, thereby circumventing the problem of this (and other) 

aliphatic acids inhibiting the growth of the sulfate-reducers. Both the standard solid and liquid 

media contain zinc sulfate, which has two important functions: (i) removal of toxic hydrogen 

sulfide as ZnS and (ii) buffering pH. In acidic media, sulfidogenesis is a proton-consuming 

reaction, as (a) the end products of organic substrate (e.g. glycerol) oxidation are either 170 

carbon dioxide (complete oxidizers; equation [1]) or a mixture of carbon dioxide and acetic 

acid (incomplete oxidizers; equation [2]), and (b) sulfate is reduced to H2S rather than to HS-: 

 

4 C3H8O3 + 7 SO4
2- + 14 H+ → 12 CO2 + 7 H2S + 16 H2O          [1] 

4 C3H8O3 + 3 SO4
2- + 6 H+ → 4 CH3COOH + 4 CO2 + 3 H2S + 8 H2O     [2]. 175 

 

However, the reaction between soluble zinc ions and hydrogen sulfide generates protons 

(equation [3]), which causes the net reaction in the presence of zinc (shown for the complete 

oxidation of glycerol in equation [4]) to be pH-neutral: 

 180 

Zn2+ + H2S → ZnS + 2 H+             [3] 

4 C3H8O3 + 7 SO4
2- + 7 Zn2+ → 12 CO2 + 7 ZnS + 16 H2O          [4]. 

 

For this to be effective, soluble zinc has to be present in greater or equimolar concentrations 

to the amount of hydrogen sulfide produced. The “standard” solid and liquid media devised 185 

for isolating aSRB contain a molar ratio of glycerol and zinc of 4:7, which provides sufficient 

zinc to react with the theoretical maximum amount of H2S generated (i.e. for aSRB that 

oxidize glycerol completely to CO2)  and an excess in the case of incomplete oxidizers. All 

strains of aSRB isolated in the authors’ laboratory have been found to tolerate zinc 

concentrations well above 7 mM, so that the issue of potential zinc toxicity does not arise. 190 

However, lower concentrations of zinc can also be used (if toxicity is suspected) in both solid 
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and liquid media, so long as the 4:7 ratio (assuming that glycerol is used as electron donor) 

is maintained. Measurement of the pH of solid and liquid glycerol/zinc media confirmed that 

pH changes were minor (increasing from ~ 3.7 to ~ 4.0) in grown cultures, in contrast to 

those containing ferrous sulfate where the pH increased to ~7. The presence of zinc in both 195 

solid and liquid media also served as a useful indicator of growth of aSRB. Formation of ZnS 

in liquid cultures is evidenced by the formation of silver/pink-coloured metallic precipitates 

(which tend to coat the walls of growth vessels), while ZnS-stained colonies of aSRB are also 

readily differentiated from non-sulfidogenic anaerobes. Continued accumulation of ZnS 

causes aSRB colonies to develop hard surface coats with protracted incubation (Fig. 2e).  200 

 

Isolation of aSRB from environmental samples. 

 

Figure 3 shows data of direct isolation of bacteria from stream sediments taken from the 

abandoned Cantareras copper mine using a variety of overlay solid media. Isolates were 205 

categorized as: (i) iron-oxidizing aerobes (ferric iron-encrusted colonies on aerobically-

incubated ferrous iron overlay plates); (ii) heterotrophic aerobes (colonies that grew on 

aerobically-incubated yeast extract overlay plates): (iii) aSRB (colonies encrusted with ZnS or 

CuS on anaerobically-incubated overlay plates); (iv) other anaerobes (colonies on 

anaerobically-incubated overlay plates that were not encrusted with ZnS or CuS). 210 

Confirmation of sulfide production by putative SRB isolates was confirmed when colonies 

were transferred into liquid media, and isolates identified from sequence analysis of their 16S 

rRNA genes. 

     Numbers of cultivatable acidophiles were relatively low in the sediment sample from the 

mine adit entrance (<103/g) but were generally far greater (in some cases by 2-3 orders of 215 

magnitude) downstream of the adit. This was particularly noticeable with the anaerobic 

acidophiles (both the aSRB and the non-sulfidogenic isolates) and corresponded to samples 

underlying streamer/mat growths that proliferated in the drainage channel at those sampling 

points (Rowe et al., 2007). The surfaces of these stratified macroscopic growths were 
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dominated by acidophilic algae which were thought to provide much of the organic carbon 220 

that sustained the underlying streamer/mat microbial communities, which were predominantly 

heterotrophic (Ňancucheo & Johnson, 2012b). The identities of the non-sulfidogenic 

anaerobic acidophiles were not determined. 

     Colony forming units of putative aSRB were about an order of magnitude fewer on 

glycerol/copper plates (pH 2.8) than on the higher pH zinc-containing plates (sediments 225 

taken at 10 and 30 m downstream of the adit entrance) but were present in slightly greater 

numbers in the other two sediment samples (Fig. 3). No colonies grew on the more acidic 

(pH 2.3) glycerol/copper plates nor on the circum-neutral pH solid medium. Colonies of aSRB 

on copper-containing plates (stained black due to the deposition of CuS) were much smaller 

than those on zinc-containing plates and displayed superior growth when transferred to the 230 

latter. This was considered due, at least in part, to the greater amount of electron donor 

(glycerol) in the “standard” solid medium, but could also reflect a preference of the isolates 

for growing at slightly higher pH.  

  

Isolation of aSRB from laboratory bioreactor samples  235 

 

Bacteria (both aSRB and non-sulfidogens) were isolated on solid media at regular intervals 

from acidic sulfidogenic bioreactors used to selectively remove transition metals from 

synthetic acidic mine drainage waters and operated at different pH values (Ňancucheo & 

Johnson, 2012a; Hedrich & Johnson, 2014). Figure 4 shows T-RFLP profiles of the bacterial 240 

populations when one of the bioreactors was operated at pH 4.5, 3.0 and 2.8. The profiles 

were dominated by four restriction fragments of different lengths, each corresponding to a 

single bacterial species. Two of these were acidophilic sulfidogens (D. acididurans and 

Peptococcaceae strain CEB3; Petzsch et al., 2015) while the other two (Acidithiobacillus 

ferrooxidans and Alicyclobacillaceae strain IR2) were facultative anaerobes that did not 245 

reduce sulfate. The two sulfidogens and strain IR2 were all isolated from bioreactor liquors 

on glycerol/zinc plates incubated under anaerobic conditions, while At. ferrooxidans was 



 

11 
 

isolated on ferrous iron-containing overlay plates incubated aerobically (Johnson & Hallberg, 

2007). Plate counts reflected the relative abundance of bacteria indicated by semi-

quantitative T-RFLP analysis. 250 

  

Growth of pure cultures of aSRB on solid media 

 

Some strains of aSRB isolated and maintained in the authors’ laboratory (e.g. strains CL4 

and C5) grew on both overlay and non-overlay glycerol/zinc solid media, though colonies 255 

tended to grow more slowly and were smaller on the latter. In contrast, D. acididurans only 

grew on the overlay variant of the standard medium, though it also grew on non-overlay 

plates in which ferrous iron substituted for zinc sulfate. In the latter case, the colonies of D. 

acididurans were heavily blacked-stained (encrusted with FeS) rather than encrusted with 

silver/pink-coloured ZnS (Figs. 2a & 2b) and the pH of the solid medium increased to ~7 260 

rather than being buffered at ~ pH 4. These differences in behaviour can be attributed to the 

fact that strains CL4 and C5 appear to oxidize glycerol completely to CO2, whereas D. 

acididurans is an incomplete oxidizer. In the pH-buffered glycerol/zinc plates, the acetic acid 

produced by D. acididurans inhibits the growth of the sulfidogen, unless (as in the overlay 

plate variant) it is removed by Ac. aromatica (Kimura et al., 2006). However, in the absence 265 

of zinc, the pH of the medium increased (as evidenced by the formation of FeS) causing 

acetic acid to dissociate to the relatively non-toxic acetate anion, thereby allowing this 

sulfidogen to grow. Overlay plates are considered to be more versatile and efficient, 

particularly for isolating acidophilic sulfidogens from environmental samples, given that these 

may contain both complete and incomplete substrate-oxidizing aSRB. 270 

     While the solid and liquid media described herein have proven effective for isolating and 

cultivating aSRB, other formulations have also been used with varying success. Many 

sulfidogens (including D. acididurans), for example, can use hydrogen as electron donor, and 

in this case the potential problem of toxicity caused by incomplete oxidation of an organic 

electron donor obviously does not arise. There are several pragmatic issues, however, which 275 
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can limit the use of this inorganic electron donor, including the fact that, unlike with glycerol, it 

is extremely difficult or impossible to control the molar ratio of this electron donor to the H2S 

sink (zinc ions) which severely limits the potential for pH buffering in batch liquid cultures and 

solid media. Experiments carried out in which glycerol/zinc plates incubated in anaerobic jars 

with or without hydrogen gas has not resulted in any significant increases in numbers of 280 

aSRB colonies obtained from environmental samples, suggesting that many, if not most 

hydrogen-oxidizing aSRB, can also grow on glycerol. 
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Fig. 1. Schematic representation of the approach used to prepare overlay medium for aSRB 355 
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Fig. 2. Colonies of aSRB grown on solid media: (a) D. acididurans, grown on glycerol/zinc 

overlay medium; (b) D. acididurans grown on glycerol/ferrous iron non-overlay medium; (c) 

“Db. acidavidus” strain CL4, grown on glycerol/zinc overlay medium; (d) Peptococcaceae 

strain CEB3, grown on glycerol/zinc overlay medium; (e) Firmicute strain C5 grown on 375 

glycerol/zinc overlay medium for 6 weeks, showing colonies covered with shell-like coating of 

ZnS. 
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 400 

Fig. 3. Relative numbers of acidophilic bacteria isolated on solid media from sediment 

samples taken from the abandoned Cantareras copper mine, at and downstream from the 

mine adit entrance. Key: red bars, iron-oxidizing aerobes; blue bars, aerobic heterotrophs; 

grey bars, aSRB (isolated on glycerol/zinc plates); black bars, aSRB (isolated on glycerol 

copper plates, pH ~2.8); green bars, non-sulfidogenic anaerobes. No colonies were obtained 405 

on more acidic (pH ~2.3) glycerol/copper plates, or on circum-neutral pH solid media. In 

cases where bars are absent, numbers of bacteria isolated were less than 102 g-1. 
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Fig. 4. Terminal restriction enzyme fragment length polymorphism (T-RFLP) profiles of 

bacterial 16S rRNA genes (digested with HaeIII) of planktonic bacteria in an acidic 

sulfidogenic bioreactor, operated at pH 4.5 (blue bars), pH 3.0 (red bars) and pH 2.8 (green 425 

bars).The main T-RFs corresponded to; 138 nt, Peptococcaceae strain CEB3; 212 nt, 

Alicyclobacillaceae strain IR2; 214 nt, D. acididurans; 253 nt, At. ferrooxidans. 


