Targeted vs universal provision of support in high-risk communities: comparison of characteristics in two populations recruited to parenting interventions
Hutchings, J.M.; Griffith, Nia; Bywater, Tracey; Williams, Margiad; Baker-Henningham, Helen
Journal of Children's Services

DOI:
10.1108/JCS-03-2013-0009

Published: 01/01/2013

Peer reviewed version

Dyfniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA):

Hawliau Cyffredinol / General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Targeted versus universal provision of support in high-risk communities: comparison of characteristics in two populations recruited to parenting interventions

Judy Hutchings ¹, Nia Griffith²*, Tracey Bywater ³ Margiad Elen Williams⁴ & Helen Baker-Henningham⁵:

¹Professor of Clinical Psychology and Director, Centre for Evidence Based Early Intervention, School of Psychology, Bangor University, Gwynedd, LL57 2PZ, United Kingdom

²Teaching Associate, School of Psychology, Bangor University, Gwynedd, LL57 2PZ, United Kingdom

³Reader in Enhancing Parental Input in Supporting Children's Success in School, Institute for Effective Education, University of York, York, YO10 5DD, United Kingdom

⁴Research Project Support Officer, Centre for Evidence Based Early Intervention, School of Psychology, Bangor University, Gwynedd, LL57 2PZ, United Kingdom

⁵Senior Lecturer and Co-Director, Centre for Evidence Based Early Intervention, School of Psychology, Bangor University, Gwynedd, LL57 2PZ, United Kingdom

*Corresponding author at: Nantlle Building, Normal Site, Bangor University, Bangor, Gwynedd, LL57 2PZ, United Kingdom; Tel: +44 01248 383758; E-mail address: n.griffith@bangor.ac.uk
Abstract

Purpose: To compare the characteristics of parents and children recruited for two RCTs of parenting support in disadvantaged communities in Wales in order to explore the effects of community-based versus individual based targeting in early prevention.

Method: Parents from high-risk disadvantaged communities in Wales, where additional early intervention services were targeted as part of a Welsh Government early intervention strategy, were recruited to two RCTs of parenting interventions. In the first study parents of targeted three- and four-year-olds, children, who were screened, and deemed at risk of long-term problems, were recruited from Sure Start areas in Wales. In the second study parents of one- and two-year-old children living in disadvantaged Flying Start areas were recruited, with residence within the Flying Start area being the only recruitment criterion.

Findings: Flying Start areas are more strategically targeted as communities with a greater percentage of families with high levels of socio-economic disadvantage and associated risk than Sure Start areas. Families in the toddler parenting trial based in Flying Start areas, recruited without any additional screening, were experiencing higher levels of socio-economic deprivation, mental health problems and parenting stress as well as other known risks to child outcomes than the general population. However, when compared with the individually targeted population recruited for the Sure Start study, they were shown to be experiencing significantly lower levels of these and other risks factors for poor child outcomes than the sample recruited for the Sure Start trial where recruitment was based on known child risk factors. The paper discusses these findings and explores the implications of targeting by geographical area (community level targeting) alone versus targeting individual families by known risk factors. The findings suggest that screening measures that would identify children at greatest risk of poor outcomes and whose families might benefit from additional targeted services and suggest some possible screening measures.

Originality/Value: This paper contributes to discussion about effective ways of allocating limited resources to best effect.

Keywords: Sure Start; Flying Start; deprivation; risk-factors; child-outcomes.
Introduction

Living in poverty increases the likelihood of poor long-term outcomes for children, including low academic attainment, delinquency, substance misuse and mental health problems (Kiernan & Mensah, 2009; Brooks-Gunn & Duncan, 1997). In the UK one in five children live in poverty (Eurochild, 2010), with the UK ranking lowest in Europe for child well-being, despite being one of the wealthiest European countries (UNICEF, 2007). Wales has a higher proportion of families living in poverty than the rest of the UK with an estimated 200,000 children (one third of all Welsh children aged 0 - 16) living in poverty (WG, 2010, 2011; Winckler, 2009). Recognition of the increased risk of poor child outcomes associated with poverty has resulted in Government strategies to reduce both poverty and its effects becoming a top priority in the UK with funding over the last 13 years from the Westminster (Belsky et al., 2007) and Welsh Governments (WG, 2010, 2011) to provide additional services for the families of young children in identified disadvantages areas.

The rationale for targeting high risk communities for additional resources and/or support is that living in poverty is associated with both short- and longer-term negative outcomes for children, including poor physical health (Larson et al., 2008; Hertzman & Weins, 1996; Everson et al., 2002), poor mental health (Black et al., 1982; Caspi et al., 2000; Bruce et al., 1991), delayed development (Duncan et al., 1994; Kiernan & Mensah, 2009; Emerson & Einfeld, 2010), language delay (Hart & Risley, 1992), poor academic achievement (ESTYN, 2010; Feinstein et al., 2004; WG, 2011) behavioural and emotional difficulties including conduct problems, (Caspi et al., 2000; Webster-Stratton, 1998; Colman et al., 2009; Kiernan & Mensah, 2009), Attention-Deficit Hyperactivity Disorder (Counts et al., 2005) and physical abuse (Belsky et al., 2007; Whipple & Webster-Stratton, 1990).

The relationship between developmental delay and behavioural problems is well established (Baker et al., 2003) as is the relationship between behavioural problems in early childhood and subsequent adolescent delinquency, adult criminality, high levels of unemployment and or transient, poorly paid employment is well established. Strong evidence for these longer-term effects comes from longitudinal studies such as the Dunedin study (Poulton et al., 2002) the Cambridge study of delinquent development (Farrington, 1995) and the work of Patterson and colleagues from the Oregon Social Learning Centre, (Patterson et al., 1989; Patterson & Stouthamer-Loeber, 1984; Loeber & Dishion, 1983).

There are well-documented intergenerational effects of disadvantage with negative child-outcomes in one generation, becoming a risk factor for the next generation of that family (Barrientos & DeJong, 2006; Farrington, 2000). Stress and maternal depression are more prevalent in low socioeconomic status (SES) areas, and both are strongly associated with both perceived and actual levels of child behaviour.
problems (Webster-Stratton & Hammond, 1988; Hutchings et al., 2007; Hay et al., 2010).

The contribution of parenting style to poor child outcomes is well established, in particular the effects of harsh and/or inconsistent parenting (Amato & Fowler, 2002; Karreman et al., 2006). However there is growing evidence of the effectiveness of parenting support in changing this (Barrett, 2010; Barlow et al., 2010; Furlong et al., 2012). Intensive investment in enrichment and parenting support programmes has a significant positive effect on the family circumstances and produces long lasting improvements in outcomes for children living in poverty. This was most notably demonstrated by the Nurse Family Partnership intensive parent support programme for young, vulnerable parents delivered as part of the Head Start programme in the US that now has a 30 year follow-up (Olds et al., 1994; Olds et al., 1997; Olds et al., 1998). Parenting interventions reduce negative parenting and reduce child conduct problems (Hartman Stage & Webster-Stratton, 2003). Furthermore structured parenting support increases positive parenting and reduces harsh and negative parenting, reversing problematic parenting patterns and improving child outcomes (Gardner et al., 2010). Consequently the targeted early intervention support in high-risk communities in both US and UK has included support to parents (Glass, 1999; Zigler & Valentine, 1979). The benefit of parenting support was specifically recognised in the WG Parenting Action Plan for Wales (2005).

Head Start

The approach to early intervention in the US has been different from that adopted in the UK with the Head Start (HS) programme, now over 40 years old, targeting high risk families within poor communities rather than targeting entire communities in which there is a greater proportion of families in need of intervention. Using this approach a number of interventions have shown strong positive effects including the Nurse Family Partnership and the Incredible Years (IY) parent, child and teacher programmes. The Nurse Family Partnership (Olds, 2006) intervention, with over 30 years of follow-up, is one example. The programme targeted young high-risk first time mothers. The IY programmes are an evidence-based suite of programmes that, when delivered to targeted HS families, have been shown to increase positive parenting and reduce negative child behaviour (Webster-Stratton et al., 2001; Webster-Stratton & Herman, 2010).

Sure Start

Unlike HS in the US, the initial approach of the Westminster and Welsh Governments, through their Sure Start (SS) preschool provisions and subsequently the Welsh Flying Start provision, was to identify, and resource services in, high risk communities. SS funding provided universal access services for pre-school children and their families within high-risk communities. Identification of SS areas was done locally and they were intended to be areas with high levels of deprivation, a high concentration of pre-school children and be geographically quite small, so that resources could be concentrated and accessible (Barnes, 2007; Glass, 1999). SS targeted the 20% most deprived communities (Belsky et al., 2007).

The initial evaluation of SS outcomes in England demonstrated that although mothers exhibited less negative parenting practice, the children of highest risk parents, including teen mothers, workless households and lone parents, did not benefit
and had lower verbal ability, lower social-competence and greater levels of behaviour problems than their counterparts in comparison non-SS areas (Belsky et al., 2007). Less disadvantaged families who had ‘more personal, social and economic resources available to them’, benefiting most, albeit only marginally (Belsky & Melhuish, 2007). Subsequent results from the English SS evaluation have shown better outcomes with no significant differences shown between subgroups, e.g. children from the poorest families did just as well as those from not so poor families (Melhuish et al., 2008). A number of possible interpretations of these findings have been proposed including that the families with more personal resources were more effective at accessing the services. Although subsequent SS outcomes have shown better results (Melhuish et al., 2008) this still leaves the question as to whether targeting by community is the most cost-effective way of supporting those children at greatest risk of poor long term outcomes.

In Wales the widespread adoption of the IY parent programme (Webster-Stratton, 1998) in SS services created an opportunity for a randomised controlled trial. However, as the aim was to replicate trials of the programme in US HS settings, this trial targeted families by child risk criteria. Families in Wales were identified by local health visitors (HVs) using a measure of child conduct problems. Eligible parents were those with a child aged three or four years who scored their child as within the clinical range on the Eyberg Child Behaviour Inventory (a well established and standardised measure of behavioural difficulties; Eyberg & Ross, 1978). Ninety-three per-cent of the 164 families that met the inclusion criteria and agreed to be contacted by the research team met inclusion criteria on the measure of child conduct problems and signed up for the study (Hutchings et al., 2007). Although only screened for levels of child behaviour problems these families also had high levels of other disadvantaging circumstances. The results of this trial are reported elsewhere (Hutchings et al., 2007). This paper reports on the baseline characteristics.

Flying Start

Following the SS initiative in Wales, and given concerns that allowing local identification of areas might not targeting the most disadvantaged and high risk communities, in 2007 the WG established Flying Start (FS) (WG, 2010; WG, 2011). To enable effective allocation of scarce resources, the most deprived communities were targeted, encompassing approximately 25,000 0-3 year olds across Wales, (Prabhakar et al., 2008). FS areas were identified centrally by the WG, using strict criteria to ensure consistency. They were based on primary school catchment areas and selected by a combination of a measure of deprivation using the Welsh Index of Multiple Deprivation, (WIMD; WG, 2005) and the level of Free School Meal entitlement (FSM) within the catchment area. The WIMD combines eight indices of deprivation, income, employment, housing, access to services, education, health, community safety and physical environment with indices of employment status and income carrying greater weight (WG, 2008).

As with SS, FS services were available to, and funded for, all parents of children between the ages of 0-3 living within the designated area. FS services were required to deliver four components: free high quality childcare for all two year olds, increased HV support from a dedicated FS HV with a reduced caseload, parenting programmes and parent and child language and play sessions. (WG FS Guidance, 09-10).
Method

Sample

In 2004 the Health Foundation funded an RCT of the IY basic parent programme with high-risk children living in SS areas in North and Mid Wales to evaluate the effectiveness of the programme in reducing child behaviour problems. Parents of 153 children were recruited. In 2007 the WG funded a small-scale randomised controlled trial evaluation of the IY Toddler parenting programme (Webster-Stratton, 2008), targeting parents of one- and two-year-old children living in FS areas. The FS study aimed to evaluate the effectiveness of the IY toddler programme in FS sites across Wales. Local FS parent support staff recruited parents of eighty-nine children.

The following section describes, and compares, the demographic and other characteristics of the SS and FS samples at recruitment and considers whether they represent those most at risk of poor outcomes.

Baseline measures collected for the two studies

Baseline characteristics for both samples were collected prior to randomisation during two home visits. Both studies used a battery of standardised and validated measures. These are described in detail in the SS study protocol (Hutchings, Eade et al., 2004) and the FS study protocol (Griffith et al., 2011).

Given the age difference in the children in the two trials, one and two year olds in the FS sample and 3 and 4 year olds in the SS sample, and the differences in trial entry criteria there were inevitably a number of measures selected for each trial that were unique to that trial. Described below are details of the common measures followed by a summary of the additional measures in each trial is given.

Common measures

The studies collected the following common measures including demographic information (Hutchings, 1996), measures of parental depression (Beck et al., 1996) and stress (Abidin, 1990) and parent-child interactions were assessed using the Dyadic Parent-child Interaction Coding Schedule (DPICS; Eyberg & Robinson, 1981).

Personal Data and Health Questionnaire (PDHQ; Hutchings, 1996)

The PDHQ is a semi-structured interview developed by Hutchings (1996) based on the work of Herbert (1993), and is used to obtain basic socio-demographic and general health data on family members. The interview is conducted with the primary carer, typically the mother, and covers aspects of the child’s health and development, including birth complications, mother’s health during pregnancy and birth. The PDHQ also includes questions about other members of the household, assesses the quality of parent relationships (if applicable), quality of housing, income, and level of primary carer’s education.
Socio-economic Disadvantage (SED6; Hutchings, 1996)

Data for the SED6 is derived from answers provided on the PDHQ. The SED6 is designed to assess family socio-economic status. Six socio-economic risk factors are measured: employment status, marital status, number of children, maternal education, housing, and area of residence (high/low crime); these were selected based on the findings of Dumas and Wahler (1983), and Rutter and Quinton (1977).

Observed Parent Behaviour

This is an observational measure designed to assess the quality of parent-child social interaction. It incorporates thirty-seven parent and child behaviour categories are employed, summarised in terms of: parent behaviours, child deviance, child responses to commands, and parent and child affect. Coding is continuous and results in the total frequency of each behaviour per specified interval. Each behavioural category is clearly defined and accompanied by a series of examples, specific guidelines to aid discrimination between categories, and decision rules designed to aid decision making when there is uncertainty between categories. Webster-Stratton (1985) modified the DPICS-R for use with the IY programmes, and this was the version used in these studies.

Parental Mental Health/Stress

Beck Depression Inventory II (BDI; Beck et al., 1996)

This is a 21-item inventory measuring the severity of depression, and is suitable for use with adults and adolescents aged 13 years and over. Items on the measure have been complied based on descriptions of the experiences of depression sufferers and are consistent with the DSM-IV (1994) criteria for the diagnosis of depression.

The Parenting Stress Index/short form (PSI/SF; Abidin, 1995)

This 36-item inventory measures the stress experienced by the respondent in relation to their role as a parent of a child up to the age of 12 years. The PSI/SF contains three test subscales: Parental Distress (PD), Parent-Child Dysfunctional Interaction (P-CDI), and Difficult Child (DC). The PD subscale enquires about the distress that a parent is experiencing in his or her parental role. The P-CDI subscale focuses on the parent’s perception that his or her child does not meet their expectations. The DC subscale measures the presence of basic behavioural characteristics that could make children either easy or difficult to manage.

Additional FS measure

The Schedule of Growing Skills II (SOGS; Bellman et al., 1996)
The SOGS is a developmental screening tool used in the FS study to assess the developmental trajectories of children from birth-five years of age. It is comprised of ten different skill areas: passive postural, active postural, locomotor, manipulative, visual, hearing and language, speech and language, interactive, self-care, and additional skills. A cognitive skills score can also be computed. The SOGS was designed to be quick and easy to use, with administration time being approximately 20-30 minutes in total. It can be used by anyone working with children, including HVs and other individuals working within a SS/FS Centre. The SOGS was used both because it had been selected by the Welsh Government for evaluation of the FS project across Wales and also because the age of the children, one and two year olds, meant that they were too young for a reliable assessment of behavioural difficulties. So a measure of child developmental status was include because of the known association between developmental delay and subsequent behavioural difficulties (Baker et al., 2003).

Results

Demographics

We report first on a comparison of the two samples on the common measures. Primary carer parents of 89 children were recruited from eight FS areas across North, Mid and South Wales. The children had a mean age of 21.19 months (SD 6.92) at baseline and included 52 (58.5%) male and 37 (41.5%) female children. The 89 primary caregivers had a mean age of 28.97 (SD 6.72) years and two were male.

Primary carers of 153 children were recruited from 11 SS areas across Mid and North Wales. The children had a mean age of 46.13 months (SD 6.30) at baseline and included 89 (58.2%) male and 64 (41.8%) female children. The 153 primary caregivers had a mean age of 28.70 (SD 6.18) years and five were male.

Families were defined as having below average income if their total weekly income after housing costs fell below 60% of the median income “for families of that type” (WG, 2010). At the time of recruitment to the FS trial (2006/07) this equated to £322 for a family of two adults and two children (equivalent to £83 per adult and £78 per child). For the SS trial, (2003/04) this equated to £257 per week for a family of four (equivalent to £64 per person). Sixty-one percent of families within the FS sample were living below the recognised poverty index and 89% of SS sample.

[Insert Table 1 around here]

Whilst the proportion of FS families living below the recognized poverty is considerably higher than the national average (35%), it is lower than in the targeted high-risk sample recruited in the SS study (89%). See Figure 2.

Multiple risk factors, assessed using SED6
A risk score was calculated for each family from the PDHQ (Hutchings, 1996) for both samples. A one-point score is given for the presence of each of the following risk factors; living in a workless household, lone parent household, a large family (3 or more children), parent with no educational qualifications, housing that is of poor quality/overcrowded and living in an area of high crime (area crime status established via www.police.co.uk), see Table 1. Fifty-five per-cent of FS families had two or more risk factors present as compared with 80% of SS families, a statistically significant difference.

When comparing the number of risk factors, as reported by the SED6 (socio-economic disadvantage indicator), again the SS sample had a higher mean score and a higher proportion of families experiencing two or more risk factors.

Whilst the sample recruited for the FS study had above population mean levels of disadvantaging circumstances, many of the study participants were not those whose children were most at-risk of poor outcomes, when, as demonstrated in Table 1, baseline data from the FS sample was compared with that of the SS study.

Comparison of other measures

Parental Depression

Levels of depression for both samples were assessed using the Beck Depression Inventory (BDI II; Beck et al., 1996) and are reported in Table 2. The FS sample had a mean depression score of 10.82 (SD 9.44), which is defined as minimal depression (<13). Seventy-one per-cent of the sample scored below the cut-off for mild depression and 16% of the sample reported clinically significant levels of depression (>29). This compared with 37% of the SS sample reporting clinically significant levels of depression.

Parenting stress

The mean total score for parenting stress obtained from the Parenting Stress Inventory-SF (Abidin, 1995) for the FS sample was 76.01 (SD 20.54), which is below the cut-off for clinically significant levels of stress of 90 (Table 2). For the SS sample the mean score was 100.36 (SD 23.46) which is above the clinical cut-off of 90. Twenty-one per-cent of FS parents reported clinically significant levels of stress (>90) compared with 67% of SS parents.

Parental mental health, stress and risk
Comparing the depression scores of the FS sample with the targeted SS sample, the mean total scores obtained from the Beck Depression Inventory (Beck et al., 1996) at baseline were significantly different (see Table 2). SS families had a significantly higher mean score than FS families, with many more reporting clinically significant levels of depression.

The same was true for the PSI-SF scores (Abidin, 1995), where similarly the mean total stress score for the SS sample was significantly higher than the FS sample, and when using a clinical cut off of 90, a much higher proportion of the SS sample were reporting scores in the clinically significant range than the FS families (see Table 2).

Child Development

The Schedule of Growing Skills (SOGS II; Bellman et al., 1996) was used to assess the 89 FS children for developmental delay. Results from the SOGS assessments were converted into developmental quotient (DQ) scores using a formula developed by Hutchings et al. (see Williams et al., in press) and validated by Williams (2010). A child is considered to have delayed development if they score below a DQ of 85 on two or more of the subscales of the measure. The proportion of children functioning within, above and below normal limits on each subscale is illustrated in Figure 2.

Taking the total DQ score, 20% of children are functioning below the DQ 85 cut-off. Further analysis comparing the sample on key measures of risk indicates that there were differences between families of children who are developmentally delayed at baseline and those who are not (Table 3).

Families of children experiencing delay reported higher levels of depression and stress, increased numbers of SED risk-factors, increased levels of observed negative parenting and lower levels of positive parenting when compared with their peers who were not identified as having developmental delay. However, independent t-tests revealed that only parent reported stress was at a significantly higher level for parents of children who were delayed.

Further exploration revealed some significant associations between measures of parent stress, mental health and risk, as illustrated in Table 4.

As expected, there are strong associations between measures of parental mental health and parenting stress. In addition both parental stress and poverty status are the factors that are most strongly associated with poor child developmental status. Developmental delay is a risk for subsequent behavioural difficulties (Baker et al., 2003) and was therefore included as an outcome measure for the FS toddler trial in which children were too young to be assessed for behavioural difficulties. The
associations identified between developmental delay and these other risk factors provide further evidence that overall the FS sample did not represent the population of children most at risk of poor outcomes.

Discussion

Families living in designated FS areas with children aged 12-36 months were recruited for participation in an RCT of an early parenting programme. All families resided in FS areas and families were experiencing higher levels of poverty, were younger parents at the birth of their first child, were more reliant on benefits and social housing, and had fewer qualifications than national averages for families. In addition, some parents were experiencing clinically significant levels of stress (21%) and depression (16%) and 20% of children showed evidence of significant developmental delay using a simple screening tool. The FS method of geographical targeting recruited families who were reporting several of the risk-factors associated with living in deprived areas, indicating that targeting by locality is an effective way of reaching some high-risk families. However, when the FS sample was compared with the targeted SS sample (Hutchings et al., 2007), which was identified by health visitors as having a known risk factor, in this case challenging child behaviour, a sample with significantly higher levels of many other risk factors was recruited. This demonstrates that targeting by locality alone resulted in the recruitment of a lower risk sample in terms of perceived risk to negative outcomes. Consequently, despite the WG intention of overcoming problems of targeting by locality in the FS programme, like the English SS project, the problem of take-up of services by those most in need was not addressed. The comparison of data from the two samples demonstrates the benefits of using additional targeting measures, such as SED status, parental stress and, depending on the child’s age, a developmental assessment or measure of child behavioural difficulties in addition to geographical targeting.

The provision of additional resources to identified geographical areas provides healthcare professionals with the opportunity to administer more specific targeted interventions. However, different targeting measures will be needed depending on the age of the children. Children in the FS sample were younger than those in the SS sample, and a measure of child conduct (e.g. Eyberg & Ross, 1978), as was used in the SS study, would not have been suitable for identifying families within the FS catchment areas. However, there are several other potentially suitable tools for the identification of children in need of additional services, including income levels, parental stress and depression and child developmental status all of which are associated with increased risk. FS HVs already use the Schedule of Growing Skills (SOGS II; Bellman et al., 1996, 2008) developmental measure with children on their 2nd and 3rd birthday and data collected from this study indicates that the SOGS could help to identify children at greatest risk for poor outcomes, both in terms of the child’s developmental needs and because, as this and other studies demonstrate, this also identifies those families experiencing most stress, depression and poverty (Emerson & Einfeld, 2010). The SS study found that child behaviour problems were highly correlated with parent stress and depression. The FS study suggests that measures of parental depression and stress are also associated with a measure of developmental delay (Hutchings et al., in preparation).
An additional problem that was not addressed by either of these studies, or by Welsh Government policies, is that only half of children living in poverty in Wales live in the most deprived communities (Melhuish & Hall, 2007). Therefore, even successful targeting within FS or SS areas excludes more than half of the high-risk children who could potentially benefit from intervention, and a strategy is needed to ensure delivery of services to high-risk families living outside of high-risk postcodes. There is also the added limitation of stigmatizing disadvantaged families. Families are much less likely to access services if they feel they are being stigmatized (Melhuish & Hall, 2007).

Things have moved on in England and, in addition to area based support through children’s centres, the Westminster Government is now undertaking an RCT of the Nurse Family Partnership programme (Olds, 2006) known in the UK as the Family Nurse Partnership. This is now being delivered to identified high-risk, first time mothers in the UK during pregnancy and the first two years of the child’s life. The UK government initially launched a pilot study in 10 centres with early results suggesting reductions in smoking and alcohol consumption in pregnant women, increased parental competence in both mothers and fathers and increased incidence, and prolonged use, of breastfeeding (Barnes et al., 2008). Data is available on child outcomes up to age 24 months and findings indicate that the number of consecutive pregnancies was reduced, positive parenting practices were evident and parenting competencies had improved, (Barnes et al., 2011). This programme has now been rolled out to a further 40 areas and is the subject of a rigorous RCT. This policy decision, like the results reported in this paper, suggests the need to target scarce resources on those most in need.

At the present time, when the UK government is making considerable cuts in public funding and alterations to the UK benefit system, it is important that resources are targeted on those most in need to ensure that services are both effective and cost effective.

Summary of policy and practice implications

- Geographical targeting effectively reaches some families in need of services
- Additional targeting within geographical areas using simple screens for risk factors can result in the identification of families with a greater need for intervention
- Simple screening for factors associated with poor child outcomes such as poverty, parental stress, poor parental mental health and delayed child development should be utilised to allocate services and resources more effectively.

Reference list

Hutchings, J., Griffith, N., Bywater, T. and Gridley, N. (in prep). Evaluating the Incredible Years Toddler parenting programme with parents of toddlers in disadvantaged (Flying Start) areas of Wales, working paper, Bangor University, Wales, UK, July 2011.

Table 1
Comparison of demographic data for each sample

<table>
<thead>
<tr>
<th>Demographics</th>
<th>FS sample</th>
<th>SS sample</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>89</td>
<td>153</td>
<td>.287</td>
</tr>
<tr>
<td>Child Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>52 (58.4)</td>
<td>89 (58.2)</td>
<td></td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>37 (41.6)</td>
<td>64 (41.8)</td>
<td></td>
</tr>
<tr>
<td>Child Age in Months, mean (s.d.)</td>
<td>21.19 (6.92)</td>
<td>46.13 (6.30)</td>
<td>< .001*</td>
</tr>
<tr>
<td>Parent Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>87 (97.8)</td>
<td>148 (96.7)</td>
<td></td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>2 (2.2)</td>
<td>5 (3.3)</td>
<td></td>
</tr>
<tr>
<td>Parent Age in Years, mean (s.d.)</td>
<td>28.97 (6.72)</td>
<td>28.70 (6.18)</td>
<td>.762</td>
</tr>
<tr>
<td>Parent Age at Birth of First Child, mean (s.d.)</td>
<td>22.00 (5.41)</td>
<td>21.10 (4.65)</td>
<td>.196</td>
</tr>
<tr>
<td>SED6 ≥ 2/6, n (%)</td>
<td>49 (55.0)</td>
<td>123 (80.4)</td>
<td>.006*</td>
</tr>
<tr>
<td>SED6, mean (s.d.)</td>
<td>1.99 (1.60)</td>
<td>2.91 (1.47)</td>
<td>< .001*</td>
</tr>
<tr>
<td>Below poverty level, n (%)</td>
<td>54 (60.7)</td>
<td>137 (89.5)</td>
<td></td>
</tr>
</tbody>
</table>

*Significant difference at p <.01

Table 2

Comparison of baseline depression, stress and observed negative parenting scores for SS and FS parents.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Cut-off</th>
<th>FS sample</th>
<th>SS sample</th>
<th>p-value</th>
<th>FS clinical significance</th>
<th>SS clinical significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDI II Total</td>
<td>13</td>
<td>10.82 (9.44)</td>
<td>16.48 (10.39)</td>
<td><</td>
<td>16%</td>
<td>37%</td>
</tr>
<tr>
<td>PSI Total</td>
<td>90</td>
<td>76.01 (20.54)</td>
<td>100.36 (23.46)</td>
<td><</td>
<td>21%</td>
<td>67%</td>
</tr>
<tr>
<td>DPICS – Critical Parenting</td>
<td>N/A</td>
<td>20.71 (18.40)</td>
<td>21.37 (16.52)</td>
<td>.790</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

*Significant difference at p <.001

Table 3

Comparison of Risk Categories for Families of Delayed Versus Non-Delayed Children at Baseline.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Devel. delay sub-sample</th>
<th>No-devel. Delay sub-sample</th>
<th>P value</th>
<th>Effect Size</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean (SD)</td>
<td>Mean (SD)</td>
<td>r</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>BDI II</td>
<td>12.70 (10.64)</td>
<td>10.28 (9.07)</td>
<td>.314</td>
<td>0.12 (-7.19 to 2.34)</td>
<td></td>
</tr>
<tr>
<td>SED6</td>
<td>2.40 (1.67)</td>
<td>1.87 (1.56)</td>
<td>.193</td>
<td>0.14 (-1.33 to 0.27)</td>
<td></td>
</tr>
<tr>
<td>PSI-SF</td>
<td>83.90 (25.04)</td>
<td>73.48 (18.41)</td>
<td>.04*</td>
<td>0.21 (-20.54 to 0.30)</td>
<td></td>
</tr>
<tr>
<td>Positive Parenting (DPICS)</td>
<td>80.40 (48.70)</td>
<td>83.09 (29.61)</td>
<td>.791</td>
<td>0.03 (-17.48 to 22.87)</td>
<td></td>
</tr>
<tr>
<td>Negative Parenting (DPICS)</td>
<td>27.40 (26.30)</td>
<td>18.81 (15.27)</td>
<td>.244</td>
<td>0.28 (-23.61-6.42 to 1.48)</td>
<td></td>
</tr>
</tbody>
</table>

Note: Using r as effect size, where 0.3 is cut off for medium effect.

Table 4

Correlation of Main Factors

<table>
<thead>
<tr>
<th></th>
<th>PSI-SF</th>
<th>BDI II</th>
<th>SOGS II</th>
<th>WEMWBS</th>
<th>Below Poverty index</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSI-SF</td>
<td>.</td>
<td>.474**</td>
<td>-.257*</td>
<td>-.573**</td>
<td>.181</td>
</tr>
<tr>
<td>BDI II</td>
<td>.</td>
<td>-.018</td>
<td>-.679**</td>
<td></td>
<td>.171</td>
</tr>
<tr>
<td>SOGS II</td>
<td>.</td>
<td>.099</td>
<td></td>
<td>-.252*</td>
<td></td>
</tr>
<tr>
<td>WEMWBS</td>
<td>.</td>
<td></td>
<td></td>
<td>-.086</td>
<td></td>
</tr>
</tbody>
</table>

* Correlation is significant at the 0.05 level (2-tailed)
** Correlation is significant at the 0.01 level (2-tailed)
Figure 1: Percentage of SS and FS study families living below the nationally recognised poverty line.

Figure 2. Proportion of children above, below and within the normal range of functioning across subscales measured using the SOGS.