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Abstract

Until the 1990s, herbivory on aquatic vascular plants was considered to be of minor importance, and
the predominant view was that freshwater and marine macrophytes did not take part in the food
web: their primary fate was the detritivorous pathway. In the last 25 years, a substantial body of
evidence has developed that shows that herbivory is an important factor in the ecology of vascular
macrophytes across freshwater and marine habitats. Herbivores remove on average 40-48% of plant
biomass in freshwater and marine ecosystems, which is typically 5-10 times greater than reported for
terrestrial ecosystems. This may be explained by the lower C:N stoichiometry found in submerged
plants. Herbivores affect plant abundance and species composition by grazing and bioturbation and
therewith alter the functioning of aquatic ecosystems, including biogeochemical cycling, carbon
stocks and primary production, transport of nutrients and propagules across ecosystem boundaries,
habitat for other organisms and the level of shoreline protection by macrophyte beds.

With ongoing global environmental change, herbivore impacts are predicted to increase. There are
pressing needs to improve our management of undesirable herbivore impacts on macrophytes (e.g.
leading to an ecosystem collapse), and the conflicts between people associated with the impacts of
charismatic mega-herbivores. While simultaneously, the long-term future of maintaining both viable
herbivore populations and plant beds should be addressed, as both belong in complete ecosystems
and have co-evolved in these long before the increasing influence of man. Better integration of the
freshwater, marine, and terrestrial herbivory literatures would greatly benefit future research

efforts.

Keywords: climate change, conservation, ecosystem functions, grazing, seagrass, stoichiometry
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1. Introduction: 25 years of research on herbivory on macrophytes

1.1 Setting the scene

In the 1990s two seminal papers appeared in Aquatic Botany that urged for a complete
change in the paradigm that had been dominating macrophyte ecology. Despite some early work on
the impact of waterbirds on freshwater and marine angiosperms (Jupp and Spence, 1977; Jacobs et
al., 1981), until then, herbivory on aquatic vascular plants was considered to be of minor importance,
and the predominant view was that freshwater and marine macrophytes did not take part in the
food web (e.g. Shelford (1918) and their primary fate was the detritivorous pathway (Polunin, 1984;
Duarte and Cebrian, 1996). But in 1991, Lodge argued that, contrary to conventional wisdom, live
freshwater macrophytes are engaged in aquatic food webs. In 1998, Cebrian and Duarte highlighted
that, while seagrasses suffered modest herbivory rates on average, such rates were highly variable,
and the importance of seagrass-herbivore interactions should not be discounted. Following on from
these two papers, Lodge (1998) provided further evidence for the important role of herbivores in
freshwater habitats, as compared to other biomes; and Valentine and Heck (1999) demonstrated
that grazing on seagrasses is widespread in the world's oceans.

Together, these landmark papers put macrophyte herbivory on the map. Since then, there
has been a strong increase in the amount of studies that investigated herbivory on freshwater
macrophytes and seagrasses. In this study, we review what we have learned in the 25 years that
followed the appearance of Lodge (1991). Furthermore, we identify new topics that have emerged
over this time. These new topics include the fast changes that may occur in macrophyte-herbivore
relationships with the ongoing global environmental change, as well as the potential conflicts
between herbivore conservation and herbivore impacts on aquatic ecosystems. Finally, we discuss

how we can improve our understanding of herbivore impacts and what tools may help us in
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achieving this. Following the approach of the seminal papers listed above, we focus primarily on
aquatic angiosperms (submerged, floating and emergent) and address both freshwater and marine

ecosystems.

1.2 Why thinking about herbivory on macrophytes has changed over the last 25 years

The paradigm shift in our perception of macrophyte herbivory, from being considered
negligible to being acknowledged as a key factor shaping benthic ecosystems, is not only caused by
an increase in scientific interest fostered by these landmark papers: the effect of herbivory became
also more conspicuous over the last 25 years. The reasons for this are methodological, anthropogenic
and ecological.

Methodological improvements for estimating herbivory included observation methods, such
as bite mark counts (Cebrian and Duarte, 1998), experimental approaches, such as herbivore
exclusions (see Poore et al. (2012) and Wood et al. (2016) for syntheses of marine and freshwater
habitats, including macro-algae) and direct methods, including video bite counts or isotopic
signatures (see Table 4 for details).

Anthropogenic effects included increases in the densities of aquatic and marine herbivores as
a result of increased protection, predator removal, food subsidies from agriculture, and the
introduction of exotic herbivores (Estes et al., 2011). For example, steep increases in herbivory rates
have been reported for sea turtles in the Arabian Sea and Indonesia (Kelkar et al., 2013b, a),
(Christianen et al., 2014), for herbivorous fish in the Mediterranean (Pages et al., 2012) and for geese
in Northwestern Europe and North America (Jefferies et al., 2003; Van Eerden et al., 2005).
However, it should be noted that despite recent local increases in herbivory, which have attracted
attention to the role of herbivores in benthic ecosystems, over longer time frames in particularly
species of large herbivores have experienced strong global declines (Jackson, 1997; McCauley et al.,

2015; Bakker et al. 2016b).
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Furthermore, the recent spread of exotic herbivores had major consequences for
macrophyte establishment and survival in many areas worldwide. For example, tropical lessepsian
rabbitfishes (Siganus spp.) cause overgrazing of macroalgae and seagrasses at the Eastern
Mediterranean (Verges et al., 2014b), chubs and rabbit fishes (Kyphosus spp. and Siganus spp.,
Siganidae) overgraze Australian and Japanese kelp forests (Verges et al., 2014a), North-American red-
swamp crayfish (Procambarus clarkii) have depleted submerged plant meadows in shallow lakes
across Europe (Rodriguez et al., 2003; Gherardi and Acquistapace, 2007; van der Wal et al., 2013),
and intentional introductions of grass carp (Ctenopharyngodon idella) have been considered a threat
to native macrophytes (Wittmann et al., 2014).

Ecological effects are related to the oligotrophication of many European freshwater systems,
which resulted in their re-colonization with submerged macrophytes (Jeppesen et al., 2005). In many
systems, however, the impact of aquatic herbivores sufficed to halt or reverse such recolonization

(Kérner and Dugdale, 2003; Hilt, 2006; Bakker et al., 2013; Hilt et al., 2013; Eigemann et al., 2016).

2. Quantitative impacts of herbivores in aquatic systems

2.1. Quantitative impact of herbivores on plant biomass across ecosystems

A growing body of primary research has demonstrated herbivore-induced changes in one or
more measures of macrophyte abundance, including biomass, two-dimensional cover, volume, and
individual density (Kirsch et al., 2002; Marklund et al., 2002; Tomas et al., 2005; Prado et al., 2007,
Christianen et al., 2012; Pages et al., 2012; Wood et al., 2012a; Kelkar et al., 2013b, a; Christianen et
al., 2014; Bakker et al., 2016b). These studies, synthesized in several reviews (Cyr and Pace, 1993;
Valentine and Duffy, 2006; Gruner et al., 2008; Poore et al., 2012), confirmed herbivores as key
drivers of benthic ecosystems around the world. The overwhelming majority of studies reported a

reduction in macrophyte abundance as a result of herbivory. Indeed, a recent meta-analysis of 326
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experiments in which freshwater herbivores were excluded found that herbivory reduced
macrophyte biomass by 47.2 + 3.4 % (average * Cl) (Wood et al., 2016). Of these, 300 experiments
reported a reduction in macrophyte biomass, while 26 experiments reported positive effects or no
changes. Similarly, a meta-analysis on grazing impacts on marine macrophytes found that herbivores
reduce macrophyte abundance (both submerged angiosperms and macro-algae) by 68% on average

(Poore et al., 2012).

Despite their historical disregard, the removal of vascular plant biomass by herbivores is, on average,
much larger in aquatic than in terrestrial ecosystems. The most recent meta-analyses available for
terrestrial, freshwater and marine habitats (Turcotte et al., 2014; Wood et al., 2016) show that
median biomass removal by herbivores is 4-8 % in terrestrial ecosystems, while itis 44-48% in
freshwater and 40-44% in marine ecosystems (Fig 1a-c). Thus, herbivores remove on average 5-10

times more vascular plant biomass in aquatic ecosystems than in terrestrial ones.

Yet, the impact of herbivores on vascular plant biomass removal is much more variable in aquatic
than in terrestrial ecosystems, and it ranges as broadly as between 0 and 100% of biomass removal
(Fig 1a-c). Underlying explanations for the large range of herbivore effects in aquatic ecosystems are
still unknown. Potential mechanisms involve bottom-up effects, such as variation in plant
productivity, nutritional quality, stoichiometry, resistance and tolerance to grazing (Cebrian et al.,
2009); and top-down effects, such as variation in herbivore abundance, feeding efficiency, size,

taxonomy, mobility, metabolism and predator effects (Borer et al., 2005).

2.2. Bottom-up effects: the plant’s perspective

2.2.1. Primary productivity and herbivory rates

Studies in aquatic systems traditionally focussed on primary production of phytoplankton in pelagic

habitats, and only recently littoral areas received more attention (Vadeboncoeur et al., 2002;
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Brothers et al., 2013). Theoretical predictions based on Lotka-Volterra models suggest that grazing
should increase with primary productivity (Gruner et al., 2008), because as plants produce more
tissues or do so at faster rates, herbivores can increase their rates of consumption. This prediction
relies in the assumption that herbivory rates are bottom-up regulated by the availability of plant
tissues. Empirical evidence is however conflicting. A meta-analysis by Cyr and Pace (1993) concluded
that herbivory increases with primary production in both terrestrial and aquatic systems. However, a
more recent meta-analysis found no significant effect of productivity on herbivory (or interaction
strength) in aquatic systems (e.g. (Borer et al., 2005)). In fact, it is widely recognized that food quality
and defences also have major effects on herbivore performance that might mask any herbivory-
productivity relationship. Using a plant growth model, Hidding et al. (2016) suggested that herbivore
grazing effects on macrophytes become important above certain thresholds in periphyton shading

and thus reduced production of plants.

2.2.2. Plant stoichiometry

Differences in herbivory rates across plant taxa have also been attributed to differences in
plant quality, as perceived by herbivores (Lodge, 1991; Cronin et al.,, 2002). Generally, there is a
positive relationship between the nitrogen content in the plant’s tissue and its consumption by
herbivores (Cebrian and Lartigue, 2004). This pattern holds both within and across ecosystems (Elser
et al., 2000; Cebrian and Lartigue, 2004; Cebrian et al., 2009). Hence, it has been suggested that
higher herbivore consumption rates in aquatic plants might be explained by their higher quality as
food — arising from the lack of carbon-rich structural compounds that strengthen cell walls, increase
resistance to herbivores, and reduce digestibility in terrestrial plants (Gruner et al., 2008).
Unfortunately, most comparisons between aquatic and terrestrial systems undertaken to date
restricted their estimates of aquatic herbivory to phytoplankton consumption, thus giving limited or

no information on the consumption of aquatic macrophytes (Elser et al., 2000). Comparing herbivory
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rates on, and food quality (e.g., nitrogen content) of, aquatic and terrestrial vascular plants would be
more informative, because they have a close phylogenetic affinity and most differences could be

attributed to the ecosystems they inhabit (Hay, 1991; Gross and Bakker, 2012; Burkepile, 2013).

A compilation of data on C:N ratios of vascular plants in terrestrial, freshwater and marine
ecosystems reveals that they differ strongly between these systems (Fig 1d-f). Median C:N ratio
decreased strongly from terrestrial vascular plants (25-30) and marine macrophytes (24-28) to
freshwater macrophytes (12-16) (Fig 1d-f). The high N content (thus low C:N ratio) of freshwater
macrophytes may indicate a higher quality to herbivores, potentially explaining the high herbivory
rates found in freshwater systems. Taking into account the variation in growth forms that occurs in
aquatic ecosystems makes this pattern stronger (Fig 2a-d). Herbivory rates are lower on emergent
macrophytes (median freshwater = 36-48%; median marine = 24-36%) than on submerged
macrophytes (median freshwater and marine = 48-60%) in both freshwater and marine ecosystems
(Fig 2a,b). These differences fit closely the C:N ratio of the different plant growth forms, as emergent
macrophytes have higher C:N ratios (median freshwater = 28-32; median marine = 24-28) than
submerged macrophytes (median freshwater = 8-12; median marine = 20-24), particularly in

freshwater ecosystems (Fig 2c,d).

Our data compilation indicates that differences in plant quality between terrestrial plants
and macrophytes show close links to variation in herbivory rates. Submerged plants need less
structural components, resulting in higher N content and higher rates of herbivory. In contrast,
herbivory rates and N content of emergent macrophytes are similar to those found in terrestrial
plants (Fig 1a, 1d, 2a-d). Although N content is acknowledged as an important determinant of plant
quality to herbivores, other nutrients and secondary compounds may also influence it. For example,
freshwater macrophytes and seagrassess have anti-herbivore defenses (Verges et al., 2008; Gross
and Bakker, 2012), which may cause low palatability - even in highly nutritious species. Phenolics,

terpenoids and nitrogenated compounds can be efficient deterrents of aquatic herbivores, although
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deterrence of generalist herbivores often comes at the cost of higher preference by specialised
consumers (Verges et al., 2007). Interestingly, in freshwater systems, the concentrations of phenolic
compounds decrease from emergent to floating to submerged plants (Smolders et al., 2000),
suggesting not only higher nutritional quality, but also less defended tissues, resulting in generally
higher palatability of submerged plants. However, this issue still deserves more research, since most
work has focused on macro-algae (e.g. (Hay, 1996)). Besides the differences between ecosystems
discussed above, spatial and temporal variation in herbivory at population and individual-plant level
has also been linked to plant quality (C:N, % N) and to the presence of anti-herbivore defences

(Hacker and Bertness, 1995; Preen, 1995; Verges et al., 2007; Prado et al., 2010).

2.3. Top-down effects: the herbivore’s perspective

2.3.1. Herbivore density

Within individual herbivore species, herbivore impact on aquatic plant abundance is positively
related to herbivore density (Stott and Robson, 1970; Valentine and Heck, 1991; Wood et al., 20123;
Kelkar et al., 2013b). However, analyses of herbivore impacts across multiple herbivore species have
found no relationship between herbivore density and macrophyte abundance, probably due to the
confounding effects of interspecific differences in herbivore ecology (Marklund et al., 2002; Wood et
al., 2012a). For example, among plant-eating waterfowl, substantial differences exist in mean adult
body mass (from the 24 g of ocellated crake, Micropygia schomburgkii, to the 12,000 g of trumpeter
swan, Cygnus buccinator), which is known to influence the species’ diet and the absolute quantity of
vegetation consumed (Wood et al., 2012a). Consequently, when herbivore densities were estimated
as biomass densities (thus accounting for interspecific differences in individual body mass), a
significant negative relationship between herbivore biomass density and macrophyte abundance was

detected (Wood et al., 2012a; Wood et al., 2016). Only at relatively low herbivore densities were

10



239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

positive changes in plant abundance reported, suggesting that in aquatic systems greater herbivore

densities overwhelm plant compensatory growth responses (Wood et al., 2016).

2.3.2. Size, mobility and taxonomy of herbivores

By virtue of their size, large terrestrial herbivores are critical agents of change and maintenance of
the ecosystems they inhabit (Owen-Smith, 1988; Bakker et al., 2016a). In aquatic environments, large
herbivores have also been identified as key species (McCauley et al., 2015), often considered
ecosystem engineers (e.g. (Bakker et al., 2016b)). It is not surprising, thus, that a recent meta-analysis
found significantly stronger impacts of macrograzers (fishes, urchins and large molluscs) than
mesograzers (amphipods, isopods and small molluscs) on marine macrophytes (algae, seagrasses and

salt marshes) (Poore et al., 2012).

Another recent meta-analysis by Wood et al (2016) found substantial between-taxa differences in
effects of herbivores on the abundance of freshwater and marine macrophytes. Echinoderms,
molluscs, and fish had relatively large impacts on plants, while insects and birds had relatively low
impacts. The reason for these differences may be the mobility and habitat preferences of each of
these groups. Fully aquatic species that live underwater permanently, have been shown to produce
the greatest impacts on aquatic plants (Bakker et al., 2016b), while facultative aquatic grazers, such
as insects and birds, spread their activity more between different ecosystems (thanks to their high
mobility), thus spreading also their impact between such ecosystems. Wood et al. (2016) also
pointed out the fact that some herbivores (such as echinoderms, crayfish and molluscs) have
restricted mobility and produce intense impacts due to their bulk grazing strategies, since they
consume multiple tissues types and species, thus affecting a greater proportion of a plant community

(Lodge et al., 1998).
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2.3.3.  Herbivory and omnivory

Most animals that consume aquatic plants are omnivores, very few are strict herbivores.
There is a positive relationship between body size and degree of herbivory in aquatic omnivores: the
larger the consumer, the more important plant consumption (granivory and folivory, particularly the
latter) is in their diet (Clements et al., 2009; Wood et al., 2012a). Hence, per capita, large herbivores
have the largest impact on plant abundance through grazing. The high level of generalistic feeding
and omnivory of aquatic plant consumers may be related to the higher impact of herbivory on
aquatic plants, because it may relax the effect of direct density dependence on consumers: whenever
consumers overgraze plants, they can switch to alternative food sources (algae, detritus or animal
prey) within or nearby the water body (Grey and Jackson, 2012). Furthermore, in aquatic systems,
large herbivores and omnivores often feed on both aboveground and belowground plant material,
which may multiply their impact on plants, due to the depletion of underground plant resources for

regrowth.

Herbivore impact may also be enhanced by non-consumptive effects, which are documented
to be severe in freshwater and marine macrophytes, e.g. bioturbation (Lodge, 1991). By initiating
bare patches, herbivores can create focal points for further erosion of macrophyte meadows by
waves in shallow areas (Christianen et al., 2013). Trampling, fecal deposition and increasing nutrient
concentrations may also play a role. Whilst previous authors have cautioned against the assumption
that herbivore effects on plants represent exclusively grazing losses due to consumption (Mitchell

and Wass, 1996b), many studies continue to ignore the roles of non-consumptive effects.

2.4. Latitude

Potential variance in herbivore impacts on plant abundance across different latitudes has been a

topic of growing interest among ecologists. However, the evidence for a role of latitudinal effects is
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limited. For example, in macrophyte feeding assays carried out by Morrison and Hay (2012), only one
out of three crayfish species showed a preference associated with latitude (a preference for higher
latitude plants). Schemske et al. (2009) argued that, across all ecosystems, herbivore impacts are
greater at lower latitudes. In contrast, a meta-analysis by Gruner et al. (2008) reported an increase in
herbivore effects at higher latitudes in freshwater ecosystems, but not in marine ecosystems. Three
more recent meta-analyses with larger sample sizes found no evidence of latitudinal gradients in
herbivore impacts on aquatic macrophyte abundances, some including both vascular plants and

macro-algae (Moles et al., 2011; Poore et al., 2012; Wood et al., 2016).

3. Ecosystem consequences of herbivory

With the establishment of herbivory as a an important factor regulating plant abundance, Lodge
(1991) ended his review with the conclusion that “the functional importance of grazing remains
largely untested”. Indeed, this has been an emerging field of research over the last 25 years, with
particular progress over the last 5 years. By their presence, herbivores may induce direct changes in
plant dynamics and indirect effects on ecosystem functioning (Fig. 3). The effects of marine
herbivores may include stimulated production of seagrass (Valentine et al., 1997; Moran and
Bjorndal, 2005; Vonk et al., 2008b; Christianen et al., 2012), changes in seagrass meadow structure
(Lal et al., 2010), and the reduction of the flux of organic matter and nutrients to sediments and
plants (by short circuiting the detrital cycle; (Thayer et al., 1982; Vonk et al., 2008a) or their export to
nearby habitats (Christianen et al., 2012). In salt marshes and aquatic ecosystems, an additional
effect of herbivores is the return of nutrients through faeces and urine (Bazely and Jefferies, 1985;
Hik et al., 1991; Frank et al., 2000), though in seagrass grazed by turtles this effect is reduced by

nutrient transport to turtle resting areas (Christianen et al., 2012).
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3.1 Plant abundance and species composition and diversity

While the largely negative impacts of herbivores on macrophyte abundance have been well
documented through short-term exclosure studies, the persistence of such effects it is often less
clear. In particular, highly-mobile herbivores such as waterfowl can cause large reductions in plant
abundance before switching to ungrazed sites (Wood et al., 2012b). Ecosystem responses to
fluctuating grazing pressure have received little attention to date. However, there is some evidence
that repeated episodes of grazing over time, such as by breeding colonies of snow geese (Chen
caerulescens) in wetlands, can cause sustained long-term shifts in species composition and declines
in plant abundance (Kerbes et al., 1990). Where non-selective, generalist herbivores feed on mixed
assemblages of macrophyte, herbivores can increase species evenness by reducing the abundance of
dominant competitors relative to sub-dominant macrophyte species (Hidding et al., 2010b; Wood et
al., 2012b). However, when they favor certain subordinate plant species over the dominant, they can

reduce eveness (Hidding et al. 2010a).

Herbivory in tropical seagrasses (e.g. by sea urchins and green turtles) can influence species
composition (Vonk et al., 2008b; Kelkar et al., 2013b; Hernandez and van Tussenbroek, 2014), but
often in contrasting ways. In tropical multispecies meadows, slow growing climax seagrass species
(Thalassia hemprichii) were promoted by small herbivores (urchins), while in more intensively grazed
meadows species difference in herbivore’s grazing preferences resulted in the dominance of fast
growing pioneer species (Kelkar et al., 2013b). Larger grazers that consume belowground plant parts
and create bare sediment patches, such as green turtles and dugongs, also introduce species
heterogeneity by setting back species succession in grazed plots (Aragones et al., 2006; Christianen et

al., 2013).

3.2 Ecosystem functions and services of aquatic herbivores
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3.2.1. Seed and propagule dispersal

Besides their direct effects on their food plants, aquatic herbivores provide a key service for aquatic
ecosystems: the passive dispersal of a broad variety of aquatic organisms, including the
aforementioned food plants, as well as many other taxa attached or associated to them (Figuerola
and Green, 2002a; Brochet et al., 2010a; van Leeuwen et al., 2012). Dispersal by most inland-water
herbivores contributes to the redistribution of individuals within single wetlands and among nearby
ones; while waterbirds (most notably, migratory species) are the main vector of long-distance
dispersal among wetlands situated at separated watersheds, from regional to continental scales
(Viana et al., 2013b; Viana et al., in press). Among waterbirds, the frequency and scale of long-
distance dispersal events is known to vary with the vector’s morphology, to depend on the migratory
strategy and to scale negative with body mass (Green and Figuerola, 2005; Viana et al., 2013b; Viana
et al., 2013a). In the marine environment, biotic dispersal by herbivores (sea turtles, ducks and fish)
has been reported for seagrasses (Sumoski and Orth, 2012) and passive transport of other organisms
is also known to occur (e.g. sessile invertebrates transported by sea turtles and crabs (Winston,
2012). The opposite process may also take place — e.g. anecdotal evidence suggests that green turtle

hatchlings use kelp rafts for passive dispersal (Carr and Meylan, 1980).

In terrestrial systems, animal-mediated dispersal is often facilitated by rewards encasing the
propagules or attached to the seeds (such as fruits, elaiosomes and some pods). In contrast, aquatic
plant seeds typically lack rewards; hence, their dispersal is mediated by the ingestion of plant
vegetative parts by herbivores ("foliage in the fruit’, sensu Janzen (1984)), the occasional survival of
seeds ingested by granivores (e.g. teals (Brochet et al., 2010b)) or the accidental ingestion of seeds
by carnivores/omnivores (notably filter-feeders, such as flamingoes and shovelers (Verhoeven, 1980;
Figuerola et al., 2003). This difference results in major differences in selection pressures, which can
be traced to differences in predominant seed traits (Table 1). Aquatic plant seeds are typically small,

which facilitates their ingestion mixed with the foliage, their survival to gut passage, and a prolonged
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gut-passage times resulting in longer dispersal distances (Mueller and van der Valk, 2002;
Charalambidou and Santamaria, 2005; Soons et al., 2008; Figuerola et al., 2010). Larger seeds often
have thick and impermeable coats, necessary to withstand their severe scarification in waterbird guts
(which tend to retain selectively such larger seeds(Kleyheeg, 2015) and the severe physico-chemical
treatment exerted by their guts (Figuerola et al., 2002; Santamaria et al., 2002). Such coat types
often result in strong physical dormancies, which may postpone seed germination until ingestion by a
potential dispersal vector has taken place (e.g. in seeds collected from the sediment bank by
granivores and filter feeders (Figuerola et al., 2003). Invertebrate propagules dispersed by waterfowl
typically show similar traits: small size, one to several protective coats, and delayed or stochastic
hatching (Charalambidou and Santamaria, 2002). In some cases, the encasement of resting eggs in
the mother’s body may provide both protection against their digestion and a reward to potential
dispersers — having thus a function analogous to that of plant fruits, whose functional and adaptive

value of such a trait remains to be studied.

External dispersal may take place attached to the animal’s fur or plumage, or adhered to mud-
stained surfaces in the body or feet (Figuerola and Green, 2002b; Frisch et al., 2007). Available
evidence suggests, however, that it is less frequent than internal dispersal (Brochet et al., 2010b).
Once again, small propagules are much more likely to become attached or adhered, and remain in
such situation long enough for long-distance dispersal to occur. Other traits that have been generally
assumed to facilitate external dispersal, such as flat shapes and suitable surface structures (hooks,
thorns, hairs), are known to occur in plant and invertebrate propagules (e.g. Vivian-Smith and Stiles

(1994)). As above, their functional and adaptive value remains to be studied.

Propagule dispersal, particularly over long distances, influences the population, genetic and
community structure of aquatic organisms (Viana et al., 2014). Hence, it is broadly regarded as a key
ecosystem service provided by aquatic herbivores. Its effect is, however, more evident when such

immigrants encounter empty niches (e.g. colonization of disturbed, new or restored wetlands) than
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when they face resident genotypes or species, established before their arrival (Louette and De
Meester, 2005). In such cases, the immigrant’s establishment may be precluded by biotic resistance
arising from intra- and inter-specific competition, mortality caused by natural enemies and
environmental filtering (e.g. habitat changes caused by other species). Even then, the process of
propagule dispersal represents a key element of ecosystem resilience — particularly in inland waters,
which are fragmented and isolated by nature. Such resilience may prove vital, in the near future, for
ecosystem adaptation to global change — by facilitating rapid range shifts and the readjustment of
genetic structure (e.g. locally-adapted genotypes) caused by the accelerating changes in
environmental conditions associated to global warming, land use changes and the perturbation of

global nutrient cycles (Amezaga et al., 2002; Rockstrom et al., 2009; Robledo-Arnuncio et al., 2014).

Propagule dispersal by aquatic herbivores may also entail negative effects for native species and
ecosystems when it mediates the arrival and spread of alien species (Reynolds et al., 2015). Examples
include both plant and invertebrate species (Charalambidou et al., 2003; Brochet et al., 2009; Munoz
et al., 2013), although the effect of dispersal on human-mediated dispersal is often predominant or
difficult to disentangle (Weisz and Yan, 2010; Van Leeuwen et al., 2013). It is also worth noting that,
despite their potential role as seed dispersers, aquatic herbivores may also reduce the frequency of
propagule dispersal by reducing propagule production — due to the consumption of plant vegetative
parts (e.g. (Wood et al., 2012a; Darnell and Dunton, 2015)) and the invertebrates attached or

associated to them.

3.2.2 Biogeochemical cycling

Grazing and bioturbation by aquatic herbivores can have direct and indirect effects on
biogeochemical cycling. In oligotrophic systems, grazing by smaller herbivores can have positive
effects by conserving nutrients within the meadow and closing the cycling of nutrients from leaf

material. Leaf material can be shredded (sea urchins, (Vonk et al., 2008b)), burrowed (Alpheid
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410 shrimp, (Vonk et al., 2008a)) or excreted after grazing (fish, (Kirsch et al., 2002)), thus stimulating
411 nutrient retention. Larger herbivores such as green turtles and dugongs may travel between different
412 habitats and stimulate export of nutrients between foraging (seagrass) and resting (coral reefs) areas

413 (Christianen et al., 2012).

414 By foraging and resting in terrestrial and aquatic environments, herbivores provide aquatic-terrestrial
415 linkages, transporting carbon, nutrients and contaminants from land to water (for instance

416 hippopotamus Hippopotamus amphibius (Subalusky et al., 2015), waterbirds (Hahn et al., 2008;

417 Chaichana et al., 2010) or large savanna herbivores(Moss, 2015) or vice versa (for instance by moose
418  Alces sp. (Bump et al., 2009)). It has recently been suggested that the decline in large herbivore

419 densities and the extinction of Late Pleistocene megafauna caused a strong reduction in the capacity
420 of transport of phosphorus from nutrient hotspots, such as streams or floodplains, towards less

421 fertile inland areas (Doughty et al., 2016). Long distance travel of migratory herbivores also

422 contributes to transport of nutrients across sites of varying fertility (Bauer and Hoye, 2014).

423 In seagrass meadows, grazing by mesoherbivores can increase productivity and possibly carbon
424  sequestration. However below-ground grazing (e.g. by dense populations of green turtles) or other
425 factors of disturbance in the seagrass root mat can cause release of ancient carbon, which may

426 contribute to increased global warming (Macreadie et al., 2015). Similarly, early season below-

427  ground foraging by pink-footed geese (Anser brachyrhynchus) is sufficient to strongly reduce C sink
428 strength and soil C stocks of arctic tundra (van der Wal et al., 2007). Recent studies are therefore
429 stressing that it is critical to maintain intact predator populations that control large herbivore

430 densities to prevent grazer aggregation, protect carbon stocks and avoid seagrass meadow collapse
431 (Atwood et al., 2015). In a subtropical seagrass ecosystem, large predators (e.g. tiger sharks) induce
432 plant species shifts by changing the foraging tactics of large grazers, such as turtle and dugongs

433 (Heithaus et al., 2007). Under low predation risk, dugongs and sea turtles foraged by excavating
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nutrient-rich rhizomes of seagrasses. Under high predation risks, they changed their foraging tactics,

which stimulated slow-growing pioneer species and enhanced carbon stocks.

Aguatic herbivores can also enhance methane emission through the damage of emergent plant
stems (greylag geese (Anser anser ) (Dingemans et al., 2011); grasshoppers (Petruzzella et al., 2015)).
The stems of emergent macrophytes have well-developed lacunar systems for gas transport; hence,
broken stems may act like “chimneys”, providing an open connection between the sediment and the
atmosphere that bypasses the water layer. On the other hand, herbivores can reduce methane

emission through bioturbation and removal of submerged plant beds (Bodelier et al., 2006).

3.2.3 Coastal protection

Seagrasses, mangroves and saltmarshes offer important coastal protection and sediment
stabilization services. For seagrasses this function is generally attributed to seagrass canopy
properties (Hendriks et al., 2010) and could be altered by herbivory. Although intensively grazed
seagrass meadows have been shown to maintain their capacity for effective sediment stabilization,
this function degrades when herbivores switch to belowground grazing , which causes decreased bed
elevation, erosion and reduced coastal protection (Christianen et al., 2013). Similarly, livestock
grazing can lower saltmarshes’ accretion rates (Nolte et al., 2015), weakening the resilience and

coastal protection function of these systems.

3.2.4 Habitat for other organisms

Macrophytes play an important role in structuring aquatic communities because they provide
physical structure, increase habitat complexity and heterogeneity, affect oxygen and nutrient

concentrations and provide refuge from predation (Carpenter and Lodge, 1986; Jeppesen et al.,
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1998). Macrophytes also release dissolved organic carbon (DOC) which can be used by microbes in
the periphyton or plankton (Findlay et al., 1986). Therefore, by consuming macrophytes, herbivores
may deteriorate the habitat for other organisms. Fish productivity was found to be lower in seagrass
meadows grazed by green turtles (Arthur et al., 2013) and after meadow collapse caused by
overgrazing (reported for turtles in (Christianen et al., 2013). Similarly, herbivorous fishes, dugongs,
geese and other waterbirds have been found to drastically reduce invertebrate biomass in seagrass
meadows and salt marshes (Marklund et al., 2002; Sherfy and Kirkpatrick, 2003; Skilleter et al., 2007;
Pages et al., 2012) . Impacts on invertebrates may occur even where the proportional reduction of

vegetation is low (Bortolus et al., 1998).

3.2.5. Primary production

Submerged and emergent macrophytes can significantly contribute to the primary production of
aquatic ecosystems (Blindow et al., 2006; Brothers et al., 2013). This holds especially for small lakes
which represent approximately 99% of all lakes (Downing et al., 2006; Verpoorter et al., 2014). Direct
studies on the effect of herbivory on aquatic plant growth and production are scarce because
guantification of the impact of grazing rates on plant production requires coupled measurements of
age-dependent grazing loss and turnover rate of plant tissue (Sand-Jensen et al., 1994). In general,
fast turnover of the plant tissue (i.e. high specific growth rate) can compensate for intense herbivory
under non-limiting resource conditions (Sand-Jensen and Jacobsen, 2002). Cherry & Gough (2009)
found that Nymphaea odorata may tolerate moderate levels of herbivory by reallocating biomass
and resources aboveground. On the contrary, stands of Myriophyllum spicatum retract their
resources to belowground parts after defoliation by aquatic caterpillars (Miler and Straile, 2010).
Water hyacinths (Eichhornia crassipes) were also found to fully compensate for low levels of
continuous defoliation, regardless of nutrient availability (Soti and Volin, 2010). In seagrass

ecosystems, reported effects of large herbivores were positive for intermediate densities of green
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turtles (e.g. an increased tolerance to eutrophication), and negative for high densities of green
turtles (e.g. switch to belowground grazing causing meadow collapse) (Christianen et al., 2012;
Christianen et al., 2013). Similarly, moderate levels of simulated fish herbivory stimulated seagrass in
primary production (i.e. compensatory growth), while very high levels of herbivory decreased it

(Verges et al., 2008).

At whole-ecosystem level, herbivory on submerged macrophytes may have different effects on gross
primary production (GPP). If herbivory results in a shift from clear-water to turbid conditions (see
below), GPP can be expected to decline, at least under intermediate concentrations of total
phosphorus (Brothers et al., 2013). On the other hand, large grazers that remove old seagrass leaves
covered in ephiphytes and have been reported to increase primary production (Valentine et al.,

1997; Moran and Bjorndal, 2005; Christianen et al., 2012).

3.2.6. Regime shifts

Shallow eutrophic lakes and lowland rivers may exist in two alternative stable steady states, a clear-
water state dominated by submerged macrophytes and a turbid, phytoplankton-dominated state
(Scheffer et al., 1993; Hilt et al., 2011; Hilt, 2015). In deeper lakes, submerged macrophytes may also
contribute to the stabilisation of clear-water conditions (Hilt et al., 2010; Sachse et al., 2014). Shifts
between clear-water and turbid states have been attributed to changes in nutrient loading, in the
abundance of zooplanktivorous fish (e.g. by biomanipulation) and/or in macrophyte cover (Scheffer
et al., 1993; Sondergaard et al., 2007; Bakker et al., 2010). Herbivory on macrophytes may also play a
significant role for shifting macrophyte-dominated systems into the turbid state, or preventing the
shift from turbid- into clear-water conditions. Mitchell & Wass (1996a) concluded that the
cumulative effect of waterfowl grazing consumption was small but might become critical when other
conditions for macrophyte growth become limiting (due e.g. to light limitation caused by high water

turbidity). A recent modeling study indeed showed that herbivory on macrophytes often becomes
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important in combination with additional stress by periphyton shading (Hidding et al., 2016).

Herbivory by birds and fish may thus trigger the loss of submerged vegetation under high nutrient
loading (Van Donk and Otte, 1996; Paice et al., in press), possibly in combination with other stress
factors. Similarly, after reductions in nutrient loading, herbivorous birds may inhibit the expected

recovery of macrophytes (Lauridsen et al., 1993; Sgndergaard et al., 1996; Hilt, 2006).

4. Perspectives: historical and future changes in herbivore grazing pressure

Herbivore management and global environmental change, including water level fluctuations,
eutrophication, temperature rise and invasive species, feedback on herbivore numbers, herbivore

distribution and grazing pressure.

4.1 Changes in herbivore assemblages over time

There is a growing body of evidence that herbivore assemblages have varied over time considerably
in their diversity and abundance, and are likely to continue to vary in the future. Throughout human
history, people have exploited many aquatic herbivore species, including waterfowl, Sirenians,
beavers, and muskrats, for food, recreation, and animal products such as skins, furs, feathers, and
oils (Domning, 1982; Kitchener and Conroy, 1997). Human overexploitation has had catastrophic
effects on many herbivore populations, with a wide range of species experiencing reduced
population sizes and geographic ranges, and even extinction (Jessen, 1970; Turvey and Risley, 2006).
Profound historical changes in herbivore assemblages were particularly evident in shallow seas and
coastal habitats, where the diversity and distributions of mammalian mega-herbivores (Sirenians
such as manatees and dugongs) were reduced heavily due to hunting by humans (Whitehead, 1978;

Jackson, 1997; Turvey and Risley, 2006; McCauley et al., 2015). Freshwater systems have also seen
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the loss of many large-bodied herbivore species, in particular mammals (Moss, 2015; Bakker et al.,
2016b). Additionally, during the twentieth century a range of semi-aquatic herbivore species
switched from aquatic to terrestrial feeding, particularly during winter (Laubek, 1995), further
reducing herbivore abundance and diversity within aquatic systems. Such habitat shifts have been
most widely documented for avian herbivores such as species of swans, geese, ducks and rails
(Jefferies et al., 2003; Van Eerden et al., 2005). The substantial effects of humans on aquatic
herbivores meant that the twentieth century represented a low point for herbivore abundance and
diversity across aquatic systems. Indeed, we find it interesting to note that earlier authors drew their
conclusions on the apparent unimportance of plant-herbivore interactions in aquatic ecosystems
based on research conducted during a period in which aquatic herbivores were relatively scarce. For
Carribean coastal ecosystems it has even been documented that these were severely degraded long
before ecologists began to study them, through the decimation of large vertebrates including green

turtles and manatees by about the year 1800 (Jackson 1997).

Stricter hunting regulations and conservation efforts in the second half of the twentieth century have
facilitated recoveries in the range and population sizes of many key aquatic herbivore species (Nolet
and Rosell, 1998). An example is the Eurasian beaver (Castor fiber), reduced by overhunting at the
beginning of the twentieth century to ¢.1200 individuals in eight isolated populations across Europe
(Nolet and Rosell, 1998; Halley and Rosell, 2002). Following greater legal protections from hunting,
the Eurasian beaver underwent sustained population recovery and has re-established populations in
all areas within its former natural range (with the exception of Portugal, Italy, and the southern
Balkans), with a total population of at least 1.04 million individuals (Halley et al., 2012). Many species
of herbivorous waterfowl in temperate regions have made similar recoveries (Bellrose, 1976; Ankney,
1996). Of the 21 goose species (Anser spp. and Branta spp.) for whose long-term population trends in
Europe are known, 16 species are currently increasing (Fox et al., 2010). Recent changes in
agricultural practices have resulted in greater terrestrial food availability for overwintering
waterfowl, with larger species benefiting more in terms of population growth (Jefferies et al., 2003;
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Van Eerden et al., 2005). Although many reptilian herbivores remain endangered, certain species
such as the green turtle (Chelonia mydas) have recently shown signs of population recovery in

response to three decades of conservation efforts (Chaloupka et al., 2008).

The recovery of species of aquatic herbivores has been aided by the recent interest in rewilding
ecosystems (Donlan et al., 2006). The key roles that extinct or extirpated large herbivores played in
the structure and functioning of terrestrial ecosystems has received growing recognition from
researchers (Donlan et al., 2006; Sandom et al., 2014; Bakker et al., 2016a; Doughty et al., 2016).
Recently, it has been proposed that large herbivores may have played equally-important roles in
regulating the structure and functioning of aquatic ecosystems (Moss, 2015; Bakker et al., 2016b).
Species of aquatic herbivore which can act as ecosystem engineers, such as the beaver, are typically
prime candidates for rewilding projects due to the wider ecosystem benefits that result from such
engineering (Collen and Gibson, 2001). The recent finding that beaver’s creation of ponds increased
the diversity of herbivorous waterfowl within the landscape indicates that natural recolonization and
rewilding may result in wider changes to herbivore assemblages than the target species alone,

through the facilitation of different herbivore taxa (Nummi and Holopainen, 2014).

The recovery of predator populations, via natural recovery and conservation efforts, can also affect
plant-herbivore interactions (Estes et al., 2011). Evidence from terrestrial and marine systems shows
that herbivore impacts on plants can be reduced as predator numbers recover, because predators
not only lower herbivore abundance through direct consumption, but also alter herbivore
distributions and reduce grazing intensity through indirect effects of predator avoidance behavior
(‘landscape of fear’ sensu (Madin et al., 2011; Kuijper et al., 2013). Similar results could be found for
interactions between predators, herbivores, and macrophytes in aquatic systems, but little research
has been carried out to date. For example, a recent study found that green turtle (Chelonia mydas)
habitat use reflected trade-offs between food resources, body condition, and risk of predation by

tiger sharks (Galeocerdo cuvier) in seagrass beds (Heithaus et al., 2007). A decline in tiger shark
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numbers may thus result in a strong increase of green turtle grazing on seagrass beds, potentially

resulting in a seagrass bed collapse (Heithaus et al., 2014).

4.2 Exotic herbivore species

The spread of non-native species has been a key driver of temporal changes in aquatic herbivore
assemblages in recent decades. A wide range of herbivore taxa have established invasive populations
known to impact on native macrophytes. Well-documented examples include birds such as the mute
swan in North America (Tatu et al., 2007), mammals such as the muskrat in Europe (Danell, 1979;
Sarneel et al., 2014), fishes such as the lessepsian rabbitfishes in the Mediterranean (Verges et al.,
2014a), molluscs such as the golden apple snail in Asia (Carlsson et al., 2004), and crustaceans such
as red swamp crayfish in Europe (Gherardi and Acquistapace, 2007; Van der Wal et al., 2013). Despite
attempts to prevent species transfer and establishment through improved biosecurity, rates of

invasion remain at a historic high (Cohen and Carlton, 1998; Jackson and Grey, 2013).

4.3 Climate change and temperature rise

Future environmental change is also predicted to alter herbivore assemblages. In particular, climate-
driven factors such as sea-level rise and changes in vegetation phenology and abundance have the
potential to alter where, when and how much herbivores feed, and thus have the potential to alter
plant-herbivore interactions across aquatic systems (Stillman et al., 2015). For example, northward
shifts in wintering range in response to warming have been recorded for several waterfowl species,
including semi-aquatic herbivores like greylag geese (Ramo et al., 2015). Furthermore, food
requirements change with temperature. With increasing temperatures, the energy requirements of
temperate ectotherm animals increase and they consume more food. Furthermore, they may change

their diet in response to temperature, which has consequences for the degree of plant consumption.
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Omnivorous fish increase their relative consumption of plant material with increasing temperatures
(Prejs, 1984; Behrens and Lafferty, 2007, 2012), a pattern that is recently also found in copepods
feeding on seston (Boersma et al., 2016). For endotherms this pattern may be the opposite, as their
energy requirements decrease with increasing temperatures, but this hypothesis awaits empirical
testing. Warmer temperatures may also induce higher periphyton shading of macrophytes (Mahdy et

al., 2015), making them more prone to herbivory (Hidding et al., 2016).

4.4 Herbivore impacts under human control

Where herbivore impacts on macrophytes affect human activities, such as conservation, recreation,
and aquaculture, they may be viewed as undesirable. In most cases it should be noted that problems
caused by herbivores are often the direct or indirect consequence of earlier human actions. For
instance, ongoing eutrophication of lakes reduces the resilience of submerged plant beds to grazing
due to increased shading by periphyton which profits from the nutrient loading (Hidding et al., 2016),
and re-establishment of submerged vegetation can be inhibited by grazers as well (Hauxwell et al.,
2004). The combined hunting of large predators and the creation of marine protected reserves, as
the place where large herbivores are safe, has locally resulted in very strong grazing pressure on

seagrass beds by green sea turtles (Christianen et al. 2014).

Such herbivore impacts can lead to conflicts between people interested in herbivore welfare and
conservation, and those interested in the activity being affected by the herbivore (Redpath et al.,
2015). To date, conflicts have arisen due to overgrazing by reptilian, mammalian, and avian
herbivores (Table 2). In contrast, we could find no evidence of conflicts associated with invertebrate
herbivory, which may reflect differences in human values rather than ecological impact. Indeed,
evidence from a recent meta-analysis showed that vertebrate herbivores do not have consistently
greater impacts on macrophytes than invertebrate herbivores (Wood et al., 2016). Vertebrate

herbivores such as waterfowl, turtles, and Sirenians are often considered charismatic, and attempts

26



631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

to manage their numbers, behaviour or distributions are likely to attract more opposition from
conservation and welfare groups than the management of invertebrate herbivores (Bremner and
Park, 2007; Small, 2012). Consequently, it can be difficult to implement management to alleviate the

effects of overgrazing (Coluccy et al., 2001).

Despite these conflicts, not all herbivore impacts on macrophytes are viewed as negative by people.
Herbivores have proven to be effective biocontrol agents to help reduce and eradicate undesirable
macrophytes, such as overabundant or invasive species (Newman, 2004; Cuda et al., 2008). A wide
range of herbivore biocontrol agents have been used globally (Table 3). Biocontrol of macrophytes
through herbivory has received growing interest from researchers and managers, particularly as
some biotypes of invasive macrophytes (e.g. Hydrilla verticillata) have developed resistance to
commonly-used herbicides (Cuda et al., 2008). More targeted biocontrol can be achieved by
invertebrate herbivores, which typically show greater specificity for macrophyte species relative to
vertebrate herbivores (Lodge, 1991; Newman, 1991). Since Wilson (1964) argued that “no insects
have yet been used for the biological control of aquatic weeds”, a wide range of species of
coleopteran, lepidopteran, and dipteran biocontrol agents have been used successfully (Newman,
2004; Cuda et al., 2008). Both the conflicts related to overgrazing, and the use of herbivores as
biocontrol agents, show the importance of improving our understanding plant-herbivore
interactions. For example, understanding the density-dependence of herbivore impacts on
macrophyte abundance can inform the densities of biocontrol agents required to reduce
overabundant macrophytes (Cuda et al., 2008), or allow lake managers to predict the response of

macrophytes to changes in wild herbivore density (Wood et al., 2012a).

5. How to improve understanding of herbivore impacts

5.1 Bottom-up versus top-down control across environmental gradients
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Lodge (1991) ended his review with the conclusion that “To understand the influence of herbivory
(relative to other biotic and abiotic factors) on macrophyte populations and assemblages, extensive
comparisons of grazing damage across environmental gradients and across macrophyte and grazer
species must be made.” Whereas meta-analyses have provided valuable insight in the impact of
different herbivores both on Angiosperms and macro-algae (Poore et al., 2012; Wood et al., 2016),
and the relationship between macrophyte palatability and herbivore impact received increasing
attention during the last decade, the variation in the intensity and impacts of herbivory along
environmental gradients has been scantly explored. Bakker and Nolet (2014) suggested that
herbivore impact may increase at nutrient-rich conditions, due to a combination of higher plant
palatability and lower tolerance to grazing damage caused by additional stress factors (such as
reduced light availability due to periphyton shading (Hidding et al., 2016). In an experimental pond
system, herbivory by mallards proved to have stronger impact on submerged macrophytes under
eutrophic than under oligotrophic conditions. We are not aware, however, of any field tests for this
theory. Alternatively, herbivores may facilitate submerged macrophytes with increasing
eutrophication, for example when moderate densities of small grazers such as freshwater snails clean
submerged plants from epiphytes, which becomes more important under eutrophic conditions
(Bakker et al., 2013). Also, when intense grazing stimulates the formation of new shoots, which are
not yet colonized by epiphytes, large grazers such as green sea turtles, can compensate the negative

effect of eutrophication for seagrass growth to a certain extent (Christianen et al., 2012).

5.2 Integrating marine and freshwater studies

Traditionally, freshwater macrophytes and seagrasses have largely been studied separately. To date,
the literature on freshwater and marine herbivore impacts have not been integrated, and have
largely developed separately despite the obvious areas of overlap. If cross-system comparisons were

being made, these were often marine-terrestrial or freshwater-terrestrial comparisons and can
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include both vascular plants and algae (Hay, 1991; Elser et al., 2000; Burkepile, 2013). This is
unfortunate because, leaving a few obvious differences apart (such as the higher salinity and
connectivity of marine systems), the ecology of marine and inland-water vascular macrophytes
shows very few differences. Yet, integrative work on freshwater and marine vascular macrophytes

still awaits its moment.

5.2 Herbivore assemblages: towards functional groups

For a better understanding of herbivore impact, researchers should consider the whole community
of herbivores, which compete and facilitate each other. This has already been done for terrestrial
systems long ago (McNaughton, 1985), but examples for aquatic systems are rare. One such example
is the herbivore community in a shallow freshwater lake that forages on pondweed beds, consisting
mainly of Potamogeton pectinatus. The sprouting plants are being grazed by resident waterfowl|
species like mute swans (Cygnus olor), mallards (Anas platyrhynchos), gadwall (Anas strepera) and
coots (Fulica atra). The intensity and timing of grazing determine how much above-ground plant
material is remaining and growing (Hootsmans, 1999). At the end of the summer, below-ground
tubers are being formed depending on the amount of above-ground plant material (Van Wijk, 1988).
Thus, more and, notably, earlier waterfowl grazing in summer results in less tuber biomass in autumn
(Klaassen et al., 2006; Gyimesi et al., 2011). In autumn, tubers are being depleted by migratory swans
(Bewick’s swans Cygnus columbianus) and diving ducks (mainly tufted ducks Aythya fuligula and
pochards Aythya ferina) until a grazing threshold (Nolet et al., 2001). The diving ducks benefit from
the trampling activity of the swans, without negatively affecting the swans’ intake rate; this therefore
classifies as commensalism (Gyimesi et al., 2012). In accordance with a sequential population model
(Jonzén et al., 2002), highest tuber biomass and in particular tuber production was generally found at

sites foraged down to intermediate thresholds in the previous autumn. In this system a positive
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feedback between tuber grazing and tuber production resulted from a reduction in self-shading or a

decrease in neighbour competition (Nolet, 2004).

Together, the interactions within herbivore communities will determine the effect of herbivore
diversity, a topic rarely touched upon in aquatic vascular plant beds (but see marine macro-algae and
seagrass systems, e.g (Duffy et al., 2003; Burkepile, 2013). Whereas all interactions at the species
level are interesting, a way forward can be to generalize beyond species by grouping herbivores in
guilds or functional groups and working out which traits best explain their relative effects. Such traits
could include body size, diet (herbivory-omnivory), habitat (terrestrial-aquatic linkages), migratory
strategy (sedentary versus migratory) and movement ecology (foraging ranges). Recently, grouping
of large savanna herbivores proved to be useful to understand their ecosystem impacts (Hempson et
al., 2015). Similarly, the ecosystem functions of aquatic large herbivores may be understood from
their habitat use, in particular how dependent on the aquatic systems they are in combination with

their movement ecology (Bakker et al., 2016b).

5.3 Tools to study herbivore impacts

Practically, the high variance in estimates of macrophyte abundance, even within a single study
system, can make herbivore effects difficult to detect in aquatic systems without large sample sizes
(Wood et al., 2012b). However, numerous methods have been developed and employed to detect
and/or quantify herbivory on macrophytes and seagrasses (Table 4). The most direct approach for
detection and quantification of effects is a technique known as tethering (Kirsch et al., 2002; Tomas
et al., 2005; Prado et al., 2007; Pages et al., 2014). With this technique it is possible to estimate the
biomass (or cm of leaf) eaten daily, i.e. direct herbivory rates (see Table 4). Another direct approach
to detect and quantify herbivore effects are in situ exclosure cages with subsequent biomass

measurements in- and outside.
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Other less direct herbivory detection and quantification methods focusing on macrophytes include
visual estimations of leaf damage and measurements of macrophyte performance across naturally-
occuring spatial or temporal gradients in herbivore assemblage properties (e.g. density) (Table 4).
Aerial photographs taken from drones (Brandt et al., 2015), echo-sounding (Jager et al., 2004) and
remote sensing (Silva et al., 2008) may increasingly being used in the future for larger scale
guantifications of macrophyte consumption by herbivores. At the herbivore side, underwater videos,
aquarium feeding experiments, molecular markers, stable isotope signatures, gut and faeces

analyses, and whole-lake fish telemetry have been applied (Table 4).

Finally, mechanistic models allow assessments of herbivory over larger spatial and temporal scales
than field-based methods, e.g. long-term predictions of future herbivory. They initially need to be
tested against field data to demonstrate accuracy and have been developed for both, the herbivores
and the plants (Table 4). Recently, a plant growth models for a specific macrophyte species has been
used to detect a synergy between herbivory and shading by periphyton as additional stressor
(Hidding et al., 2016). Simulation models of herbivore foraging can be useful tools to predict foraging

impacts, and test strategies for grazing management (Wood et al., 2014a; Nolet et al., 2016).

6. Conclusions

Over the last 25 years, a substantial body of evidence has developed that shows that herbivory is an
important factor in the ecology of macrophytes across freshwater and marine habitats. Compiling the
most recent data, we conclude that herbivore impacts in freshwater and marine ecosystems are
typically 5-10 times greater than those reported for terrestrial ecosystems. This corresponds with
lower C:N stoichiometry of submerged aquatic plants. Furthermore, aquatic habitats are
characterized by large variation in grazing pressure. Considerable changes have occurred, and are
predicted to occur, in herbivore diversity and abundance, with wide implications for the composition

and dynamics of macrophyte communities, as well as for the structure and functioning of aquatic
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ecosystems. There are pressing needs to improve our management of undesirable herbivore impacts
on macrophytes (e.g. leading to an ecosystem collapse), and the conflicts between people associated
with the impacts of charismatic mega-herbivores. While simultaneously, the long-term future of

maintaining both viable herbivore populations and plant beds should be addressed, as both belong in

complete ecosystems and have co-evolved in these long before the increasing influence of man.

Most research to date has focused on the short-term impacts of herbivores on macrophyte
abundance and community composition. To understand the roles of herbivores more fully we need
to consider their longer-term impacts and the role of herbivory in the (co-)evolution of both
macrophyte and herbivore species. Furthermore, a better integration of the freshwater, marine, and

terrestrial herbivory literatures would greatly benefit future research efforts.
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Captions to figures

Figure 1. Frequency diagram of percentage of herbivory (% herbivory) on vascular plants (a: mean
percent damage; b, c: net primary production removal) and biomass C:N ratio (g/g) across (a,d)
terrestrial, (b,e) freshwater and (c,f) marine ecosystems. Freshwater and marine data include both
submerged and emergent plants. The median values in each panel are indicated with an arrow

accompanied by “M”.

Data sources: terrestrial (a) herbivory: percentage of leaf area damaged (Turcotte et al. 2014), (d)
biomass C:N ratio: in foliage (Elser et al. 2000); freshwater (b) herbivory: percentage of emergent and
submerged vascular plant biomass removed by herbivores in herbivore exclosure/enclosure or
addition/removal experiments (Wood et al. 2016), (e) biomass C:N ratio: in submerged and emergent
vascular plants (Cloern et al. 2002; Bakker unpublished data); marine, (c) herbivory: percentage of
emergent and submerged vascular plant biomass removed by herbivores in herbivore
exclosure/enclosure or addition/removal experiments (Wood et al. 2016), percentage of leaf area
damaged in seagrasses (Cebrian and Duarte 1998) (f) biomass C:N ratio: in seagrass leaves (Atkinson
& Smith 1983, Duarte 1990, Fourqurean et al. 1993, Cebrian and Duarte 1998, Fourqurean et al.
2010, Olsen en Valiela 2010), in salt marsh plants (Cloern et al. 2002). The duration of the herbivroy
studies varied from instantaneous measurements of percentage leaf damage in terrestrial plants and
seagrasses to exclosures studies in freshwater and marine ecosystems ranging from about a week to
multiple study years (study durations reported in Wood et al. 2016 who found no effect of study

duration on percentage herbivore plant biomass removal).

Figure 2. Frequency diagram of net primary production removal (% herbivory) and biomass C:N (g/g)

for vascular freshwater and marine macrophytes of different growth forms (emergent and
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submerged). Emergent plants include floating plants and wetland or salt marsh plants. The median

values in each panel are indicated with an arrow accompanied by “M”. Data sources as in Fig. 1.

Figure 3. Synthesizing scheme indicating the effects of herbivores on macrophyte beds and the
functioning of shallow freshwater (a) and marine (b) aquatic ecosystems. Herbivores affect plant
abundance and species composition by grazing and bioturbation. Their presence alters
biogeochemical cycling and primary production, they transport nutrients and propagules across

ecosystem boundaries, modify habitat for other organisms and affect the level of shoreline

protection by macrophyte beds. Symbols in the figure are courtesy of the Integration and Application

Network, Univ. of Maryland Center for Environmental Science (ian.umces.edu/symbols/).
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Table 1. Plant and herbivore traits promoting propagule dispersal by aquatic herbivores.

Trait

Effect

References

Herbivores

Ability to chew or grind food

Furry or sticky appearance of

animal body

Diet selection

Travelling distance

Habitat use

The presence of a gizzard or grinding teeth reduces propagule survival. Among waterfowl, heavier

gizzards reduce seed survival but higher grit content may enhance germination of undigested seeds.

Animals with a surface on which propagules can attach disperse more propagules

Targeted feeding on seeds may result in more transport, but also in more seed predation — thus
reducing the transport through untargeted feeding which, particularly when mixed with large bulks of

food (plant parts, animal food, debris), may result in high propagule survival.

Larger travelling distances results in further potential dispersal, particularly for migratory species that

cover long distances in single leaps

Animals with specialized use of aquatic habitats are more likely to deposit the propagules in suitable

habitat. In particular, targeted arrival to aquatic habitats at stopovers may increased the deposition of

Figuerola et al. (2002)

Figuerola et al. (2003)

Viana et al. (2013b)

Figuerola and Green (2005)
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propagules ingested at departure sites, especially after the first drinking and feeding bout.

Plants
Propagule dimensions Small, round seeds survive digestive tract better than large, elongated seeds. Small size, in particular, Mueller and van der Valk
may enhance ingestion mixed with vegetative plant material, increasing propagule ingestion (“foliage is  (2002); Soons et al. (2008);
the fruit”, sensu Janzen (1984)) and survival to gut passage. Figuerola et al. (2010)
Hardness and permeability of  Thicker, harder and less permeable seed coats increase survival to disperser’s gut passage, but may Mueller and van der Valk
seed coat reduce germination in the absence of uningested seeds. (2002); Santamaria et al.
(2002); Figuerola et al.
(2010)
Adaptations for Hooks, rough or sticky surface have been proposed to enhance dispersal potential Van der Pijl (1982)
epizoochorous dispersal
Resistance to dessication Organism’s and/or propagule’s resistance to dessication may enhance epizoochorous dispersal of Panov and Caceres (2007);
aquatic organisms Havel et al. (2014)
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Table 2. An overview of reported conservation conflicts that have arisen from the impacts of overgrazing by herbivores on macrophytes.

Herbivore Issue Parties in conflict Location(s) Duration Current status References
Green turtle Overgrazing of seagrasses can Turtle and seagrass Indo-Pacific 1980s - Ongoing Arthur et al. (2013);
(Chelonia mydas) undermine conservation efforts  conservationists, oceans present Christianen et al.

in protected areas and reduce fishermen (2014)

fish catches for local people
West Indian Overgrazing has hindered Manatee and Freshwater and  1990s - Ongoing Hauxwell et al. (2004)
manatee efforts to restore submerged macrophyte brackish present
(Trichechus macrophyte beds conservationists ecosystems in
manatus) south-east USA
Beaver (Castor Impacts on aquatic habitats, via  Conservationists, Freshwater Unknown - Ongoing Nolet and Rosell
spp.) effects on vegetation and wider  animal welfare habitats across present (1998); Collen and

ecosystem (e.g. fish)

groups, fishermen,
and statutory wildlife

management

North America,

Russia

Gibson (2001); Halley

and Rosell (2002)
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Coypu (Myocastor
coypus) and
muskrat (Ondatra

Zibethicus)

Mute swan

(Cygnus olor)

Geese (Anser spp.,
Branta spp., and

Chen spp.)

Overgrazing on emergent

macrophytes degrades aquatic

habitats

Overgrazing of macrophytes

degrades aquatic habitats

Overgrazing of emergent

macrophytes degrades wetland

habitats

agencies

Conservationists,
animal welfare groups,
and statutory wildlife

management agencies

Conservationists,
animal welfare
groups, and statutory
wildlife management

agencies

Conservationists,
animal welfare
groups, and statutory

wildlife management

Freshwater 1930s —
lakes and present
wetlands in

Europe

Freshwater 1950s -
habitats in present
Europe and USA

Canadian Arctic  1970s -
and sub-Arctic present

wetlands,

freshwater lakes

Resolved by Gosling and Baker

1970s via (1989); Barends
extirpation of (2002)
coypu in Britain;

ongoing

elsewhere in

Europe

Ongoing Perry and Perry
(2008); Wood et al.
(2014b, 2015)

Ongoing Kerbes et al. (1990);

Nichols (2014)
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agencies

and wetlands in
Europe and

North America
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Table 3. A summary of key herbivore taxa used as biocontrol agents in the management of macrophytes.

Herbivore biocontrol agent Target macrophyte(s) Herbivore generalist or References

specific?
West Indian manatee Wide range of macrophyte species, including Cabomba aquatica, Generalist Allsopp (1960)
(Trichechus manatus) Anacharis spp., Leersia spp., Utricularia spp.
Geese (Anser spp) Wide range of macrophyte species Generalist Ross (1971); Wilson et

al. (1977)

Grass carp Wide range of macrophyte species, including invasive species such as Generalist Clayton (1996); Hanlon
(Ctenopharyngodon idella) Hydrilla verticillata et al. (2000)
Cichlid fishes, e.g. blue tilapia  Wide range of macrophyte species Generalist Schwartz et al. (1986)
(Oreochromis aureus)
Crayfish, e.g. papershell Wide range of submerged macrophyte species Generalist Letson and
crayfish (Orconectes immunis) Makarewicz (1994)
Weevils, e.g. milfoil weevil Species-specific biocontrol agents identified for many macrophyte Specialist Creed and Sheldon

67



1506

1507

(Euhrychiopsis lecontei),

Hydrilla tuber weevil (Bagous

affinis)

Apple snails (Pomacea spp.)

Dipteran larvae, e.g. Asian
hydrilla leaf-mining fly

(Hydrellia pakistanae)

Lepidopteran larvae, e.g.
waterlettuce moth

(Spodoptera pectinicornis)

Hemiptera, e.g. Eccritotarsus

catarinensis

Orthoptera, e.g. water
hyacinth grasshopper

(Cornops aquaticum)

species, e.g. Hydrilla (Hydrilla verticillata), Eurasian water milfoil

(Myriophyllum spicatum)

Wide range of macrophyte species

Species-specific biocontrol agents identified for many macrophyte

species, e.g. Hydrilla verticillata

Species-specific biocontrol agents identified for many macrophyte

species

Species-specific biocontrol agents identified for many macrophyte

species, e.g. Water hyacinth (Eichhornia crassipes)

Species-specific biocontrol agents identified for many macrophyte

species, e.g. Water hyacinth (Eichhornia crassipes)

Generalist

Specialist

Both generalist and

specialist species reported

Specialist

Specialist

(1993); Newman

(2004)

Rushing (1973)

Wheeler and Center

(2001); Bownes (2014)

Wheeler et al. (1998);
Gross et al. (2001);

Newman (2004)

Coetzee et al. (2007);

Hernandez et al. (2011)

Bownes et al. (2010)
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1508 Table 4. Different methodologies used to detect and quantify herbivory on macrophytes.

1509

Methodology

Explanation

References

Exclosures

Tethering

Underwater videos

Visual estimation of leaf damage

Installation of cages (fully closed or open at the bottom) to protect macrophytes from

different herbivores (fish, muskrats, waterfowl, crayfish, turtles)

Shoot herbivory rates (cm shoot-1 day-1) are estimated for marked shoots by

measuring leaf elongation over time.

Video recording and quantification of fish activities including plucking of leaves

Sgndergaard et al. (1996);
Koérner et al. (2002); Hilt (2006);
Christianen et al. (2012); Poore
et al. (2012); Veen et al. (2013);
Van der Wal et al. (2013);

Sarneel et al. (2014)

Kirsch et al. (2002); Tomas et al.

(2005); Prado et al. (2007);

Pages et al. (2014)

Koérner & Dugdale (2003);
Bennett & Bellwood (2011);

Verges et al. (2014b)

Francescini et al. (2010)
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Natural gradients

Drones

Molecular markers

Stable isotope analyses

Gut analyses and stable isotope

analyses

Measure macrophyte performance (e.g. growth rate, biomass, etc) across naturally-

occuring gradients in herbivore assemblage properties (e.g. density)

Identificaton of muskrat damage in constructed wetlands by digitizing low-altitude

aerial photographs

Assessments of genetic variation in plants across environmental or geographical

(latitudinal) gradients using different molecular markers

Measurement of carbon, nitrogen and hydrogen stable isotopes in resources and

consumers and application of mixing models

Gut analyses in fish combined with stable isotope analyses of basal food resources and

fish

Wood et al. (2012b)

Brandt et al. (2015)

Mader et al. (1998);
Hangelbroek et al. (2002) ; King
et al. (2002); Hidding et al.

(2014)

France et al. (1996); Solomon et
al. (2011); Dorenbosch and
Bakker (2012); Mendonca et al.
(2013); Vander Zanden et al.
(2013); Scharnweber et al.

(2014); De Kluijver et al. (2015)

Mao et al. (2014)
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Telemetry

Bird counting and determination

of lignin content in faeces

Laboratory feeding rate

determination in fish

Mechanistic models

Whole-lake fish telemetry

Determination of fish feeding rates in aquaria

Simulations of foraging herbivores or effects on plant growth can predict the location,

timing, and magnitude of herbivore effects on macrophytes

Hanson et al. (2007)

Dos Santos et al. (2012)

Kérner & Dugdale (2003)

Hootsmans (1999); Van Nes et

al. (2003); Nolet et al. (2006);

Wood et al. (2014a); Nolet et al.

(2016); Hidding et al. (2016)
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