Trees, water storage and flooding in upland agricultural landscapes: why do we need to know more?

Ford, Hilary; Smith, Andy; Pagella, Tim; Healey, John

Forestry & Timber News

Published: 01/04/2016

Publisher's PDF, also known as Version of record

Dyfniad o’r fersiwn a gyhoeddwyd / Citation for published version (APA):

Hawliau Cyffredinol / General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Trees, water storage and flooding in upland agricultural landscapes: why do we need to know more?

by Hilary Ford, Andy Smith, Tim Pagella and John Healey, Bangor University

Trees and flooding: it’s obvious isn’t it?
The potential use of trees to mitigate floods has been recognised for over 100 years1, but has come to the fore in recent months following the extreme rainfall and associated flooding across the north of England and parts of Wales, during December 2015. It is increasingly acknowledged that hard-engineered flood barriers have largely reached their capacity to cope with the volume of water reaching the lowlands, so attention is switching to more natural methods of flood mitigation across the whole river catchment. The assertion that trees should be planted in uplands, riparian zones or on other marginal agricultural land in order to enhance water retention and reduce flooding downstream has recently been given serious consideration. But how good is the evidence that this will actually be effective? It would be a mistake for forestry to claim benefits that will not actually be delivered. Firstly, it is important to note that different forms of forestry vary greatly in their hydrological effects. Traditionally, planting conifer forests often involved extensive ground preparation. Whilst they provide an evergreen canopy cover for 12 months of the year (except for larch), open conditions are created at the end of the cycle through large-scale clear-felling. In this article, we will focus on the other end of the spectrum: integration of small-scale tree planting, such as hedgerows and shelterbelts (Figure 1), into the existing agricultural landscape. We review the scientific evidence of their impacts on water storage and flood prevention.

Some groups advocating tree planting to reduce flood risk have often supported their arguments by reference to experimental work that links deciduous trees planted in pasture land to enhanced water movement through the topsoil in summer. These studies, carried out in the Pontbren catchment of mid-Wales do show that soil water infiltration rates were up to 67 times greater in fenced-off land under trees than in adjacent pasture, and that surface run-off was reduced following tree planting2,3,4. Subsequent work in the Cairngorms showed that soil infiltration rates were greater in mature Scots pine plantations (48 and 300 years old) than in either a younger plantation (6 years old) or neighbouring grazed pasture5. However, in another study they found no significant difference in soil infiltration rates between a Scots pine plantation and adjacent pasture6.

How do trees modify water use and storage?
Trees modify water use by several mechanisms, including interception of rainfall, increased water infiltration into the soil matrix via channels created by roots, and evaporation of water via the root-stem-leaf pathway (Figure 2). The trees’ litter can also make an important contribution to soil organic matter and structure, especially if it increases the abundance of burrowing animals such as earthworms.

Precipitation is usually rain but can also be snow, sleet, hail or drizzle. Transpiration is the portion of precipitation that is evaporated, never reaching the ground. Infiltration is the process by which water on the ground surface enters the soil. Runoff is the portion of rain that is stored in the canopy then evaporated, never reaching the ground. Stemflow is the process of water moving through the roots and trunk and water vapour eventually exiting to the atmosphere via pores called stomata on the underside of the leaves. Rooting depth is often restricted by waterlogged soil conditions, particularly in winter when the water table is high and roots die back. Soil water storage is the water held between soil particles and roots in the soil matrix. It is uncertain how much water is stored under trees particularly when the water table is already high.

Continued on page 28
FLOOD MITIGATION

Continued from page 27

earthworms that act to improve soil structure by altering soil particle aggregation and pore size. These mechanisms have been cited in support of the case for trees enhancing water storage and reducing flood risk. There will always be limits to the capacity of land to store water. Using the analogy of a sponge, prolonged rainfall will eventually completely saturate soil so that the rate of water flowing out equals the rate of water flowing in. Therefore, while tree planting can reduce the rate of water flow from the land into streams during short periods of rainfall, it does not necessarily mean that it will continue to do so during the long-duration rain events that can lead to the most serious floods.

How do soil properties and land use affect upland hydrology?

UK uplands have a high proportion of organic, podzol and gley soils. Land use can result in an O horizon of organic material at different states of decomposition which has a high water-holding capacity, an A horizon (topsoil), often compacted by sheep grazing (top 5 cm), or a plough pan at ~10-20 cm, as a result of agricultural improvement, on top of a B horizon of variable depth, sitting on relatively impermeable bedrock. In addition, many upland areas contain field drains, designed to move water downstream as quickly as possible, reducing water-holding capacity. These factors combine to increase the rate of water flow into streams under high rainfall leading to flash flood incidents.

It is possible that planting trees in the uplands where soil depth is sufficient could improve soil structure, water infiltration into deep soil, and water storage, but the gains achieved are likely to depend on interactions between a site’s soil type and the rooting properties of the planted species. For example, tree roots have been shown to alter soil conditions in clay soils but may make little difference in sandier ones. In the un-enclosed uplands, data on soil depth is scarce, but in this heterogeneous landscape there will be areas of shallow soil adjacent to exposed rocky outcrops. Here it is not known how soil properties, such as depth, texture, bulk density and porosity or slope, would interact with deciduous or coniferous afforestation to alter infiltration rates and water storage capacity. It is hoped that the benefits of increased infiltration rates under trees then the size of the riparian area, or the distance trees are planted away from the river’s edge, are also likely to be key factors.

What about hydrological models?

Hydrological models are traditionally designed for flooding solutions downstream, therefore the parameters they include to characterise the upland part of the catchment are often broad, e.g. woodland is ‘rougher’ than grassland so will slow water more. However, Forest Research and the James Hutton Institute have been developing models that work at smaller scales and can incorporate natural flood management. Working at this scale would allow us to work out how trees of different types (position, age, species) influence water storage and flooding peaks.

Initial research seems to suggest that natural flood management, including tree planting, might decrease flash flood peaks at the local scale, but it is unknown how they relate to flooding at larger scales.

What is the evidence from Pontbren and why can’t we extrapolate from it?

Evidence from the upper Pontbren catchment in mid-Wales showed that soil surface runoff was reduced by 78% in tree-planted plots after two years, compared with sheep-grazed pasture by these kinds of mechanisms. However, simply excluding livestock by fencing, without tree planting, caused a 48% reduction. In addition, near-surface bulk density was significantly reduced and soil infiltration rates were 60-67% times greater in fenced plots planted with trees compared with grazed pasture.

The work at Pontbren did not test the effect of tree species or soil type, which will be key factors in determining root morphology and depth, in turn altering infiltration rates, run-off and potential water storage in the B soil horizon. In the recent study, often quoted by those advocating afforestation of the uplands with production forests, plots were planted with a high diversity mix of native deciduous tree species that have a variety of contrasting rooting morphologies, whereas the shelterbelt study site used in the 2009 study comprised a mix of five deciduous and two coniferous species. Despite this initial evidence the extent to which tree roots are able to access a potentially un-saturated B horizon is still unknown.

What is the way forward?

The Multi-Land project, funded by Welsh Government with researchers from Bangor University, Centre for Ecology and Hydrology (CEH) and Aberystwyth University, and involving the Woodland Trust, Coed Cymru, National Trust, Natural Resources Wales, Snowdenia National Park Authority and RSPB, aims to build on this preliminary evidence base and examine the link between upland tree features, water storage and flooding in more detail. We will consider: i) the impact of small-scale tree features in farmland on water movement; ii) whether this evidence can be linked to water storage and flooding and iii) best practice for the future.

References

Footnotes

infiltration rates were measured by field-saturated hydraulic conductivity in both Archer studies. Hydraulic conductivity is a property of soils that describes the ease with which a fluid (usually water) can move through pore spaces or fractures.

* bulk density is defined as the dry weight of soil per unit volume of soil e.g. 1.5 g / cm³.

For more information on the Multi-Land project please see: www.nrn-ice.ac.uk/multi-land/ or contact Dr. Hilary Ford, hilary.ford@bangor.ac.uk.