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carbon (TIC) concentrations rose more steadily than the respective TOC
concentrations. There was an overall decrease in TOC concentrations between 1975
and the mid-1990s. Decreased point source loading contributed to this pattern,
although decreases were also detected in rivers without any major pollution sources.
From the mid-1990s TOC concentrations started to rise and the increase was even
more pronounced than the earlier decrease. The upward trend was ubiquitous, both in
time and space, and it was not possible to link the changes to any specific catchment
characteristics or another single driver. Warming climate, changes in hydrology and
decreases in acidic deposition were the major driving factors although their contribution
varied geographically. At the same time both TOC and TIC export increased slightly,
but the strong upward trends in TOC concentrations were not reflected in TOC export
trends. This was because changes in hydrographic flow had a dominant influence on
TOC export to the sea and any changes in concentrations were masked behind the
variation in flow.
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Abstract 14 

 15 
Finnish rivers exported annually on average 1.2 M t carbon, and total organic carbon (TOC) comprised 16 

the major share (nearly 80%) of this export. The mean area specific carbon export was 4.5 g C m-2 yr-1. 17 

The highest organic carbon export originated from peat dominated catchments, whereas rivers draining 18 

agricultural catchments had the highest area-specific inorganic carbon fluxes. Between 1975 and 2014 19 

total inorganic carbon (TIC) concentrations rose more steadily than the respective TOC concentrations. 20 

There was an overall decrease in TOC concentrations between 1975 and the mid-1990s. Decreased 21 

point source loading contributed to this pattern, although decreases were also detected in rivers without 22 

any major pollution sources. From the mid-1990s TOC concentrations started to rise and the increase 23 

was even more pronounced than the earlier decrease. The upward trend was ubiquitous, both in time 24 

and space, and it was not possible to link the changes to any specific catchment characteristics or 25 

another single driver. Warming climate, changes in hydrology and decreases in acidic deposition were 26 

the major driving factors although their contribution varied geographically. At the same time both TOC 27 

and TIC export increased slightly, but the strong upward trends in TOC concentrations were not reflected 28 

in TOC export trends. This was because changes in hydrographic flow had a dominant influence on TOC 29 

export to the sea and any changes in concentrations were masked behind the variation in flow. 30 

 31 

1. Introduction  32 

 33 

The Baltic Sea and its surrounding catchments are facing multiple major environmental changes that 34 

greatly impact on the ecosystems, and which are in turn tightly linked to the large-scale carbon cycle: 35 

Climate change (Denman et al., 2007), eutrophication (HELCOM, 2009) and acidification (Omstedt et al., 36 

2012). These phenomena interact in a complex manner both on land (Settele et al., 2014), in aquatic 37 

ecosystems (Cole et al., 2007; Cai et al., 2011; Battin et al., 2009) and at the complex interfaces 38 

between the two (Fleming-Lehtinen et al., 2015; Asmala et al., 2013, 2014). Organic and inorganic forms 39 
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 2 

of carbon have different implications for the biogeochemical carbon dynamics of the receiving water 40 

bodies (Cole et al., 2007): Organic carbon (OC) export may strengthen the effects of eutrophication in 41 

marine waters due to the mineralization of organic matter, which will result in enhanced oxygen demand, 42 

production of CO2 and thus also acidification (Cai et al., 2011; Jutterström et al., 2014). On the other 43 

hand coloured organic matter absorbs photosynthetically active radiation, which can result in decreasing 44 

primary production (Thrane et al., 2014). Dissolved inorganic carbon (DIC) export may mitigate 45 

acidification effects (Aufdenkampe et al., 2011) since the inorganic carbon (IC) transported by rivers is 46 

an important source of marine alkalinity (Sundqvist, 1993). Moreover, acidification can be partly 47 

counteracted in anoxic bottom waters by increased alkalinity (Edman and Omstedt, 2013).  48 

 49 

The major components of both the OC and IC pools, especially in coastal waters of the Baltic Sea, 50 

originates in the catchment area and is transported to the sea by rivers (Alling et al., 2008; Humborg et 51 

al., 2010; Räike et al., 2012; Fleming-Lehtinen et al., 2015). OC exported to the sea is mainly of 52 

terrestrial origin, and in Finland peat soils are a major source of OC (e.g. Mattsson et al., 2005; Asmala 53 

et al., 2014; Hoikkala et al., 2015). The sources of IC are more variable and include weathering of 54 

carbonate and silicate minerals, mineralisation of organic matter (both in terrestrial and aquatic 55 

ecosystems), soil respiration and groundwater inputs (Meybeck et al., 1993; Raymond and Cole, 2003). 56 

 57 

The total global carbon (TC) flux from the continents to the oceans is 0.9 G t C yr-1, approximately in 58 

equal proportions of IC and OC (Cole et al., 2007). The geographical variation between the different 59 

forms is globally large e.g. DIC dominates in rivers draining the conterminous United States and in many 60 

Arctic rivers (Striegl et al., 2007; Tank et al., 2012; Guo et al., 2012), whereas dissolved organic carbon 61 

(DOC) dominates in boreal rivers and lakes draining peat dominated catchments (Rantakari and 62 

Kortelainen, 2008; Humborg et al., 2010; de Wit et al., 2015). Finnish rivers export on average around 63 

0.9 M t total organic carbon (TOC) annually into the Baltic Sea (Räike et al., 2012). However, the 64 

corresponding amount of total inorganic carbon (TIC) export has been less studied and the TC (TC = 65 

TOC + TIC) export into the Baltic Sea from Finnish rivers has not been reported.  66 

 67 

Organic carbon concentrations have increased in many freshwaters of the northern hemisphere (Evans 68 

et al., 2005; Monteith et al., 2007; de Wit et al., 2007; Clark et al., 2010) and also in northern Baltic Sea 69 

coastal waters (Fleming-Lehtinen et al., 2014). In contrast, there is no clear indication that DOC export to 70 

the Baltic Sea from Finnish rivers has increased since 1975, although there is evidence that the 71 

projected mild winters in the future will most likely lead to increased DOC export (Räike et al., 2012; 72 

Lepistö et al, 2015; Mattsson et al., 2015). Studies in the USA have shown an increase in DIC export to 73 

the oceans (Stets et al., 2014) and most notably DIC export from the Mississippi River has been 74 

increasing over the last 50 years (Raymond and Cole, 2003). In the Baltic Sea region an increasing trend 75 

in alkalinity has been measured in rivers draining to the Gulf of Finland over the last 100 years, whereas 76 

a decreasing trend was detected in rivers entering the Gulf of Bothnia (Hjalmarsson et al., 2008). 77 

Otherwise, trends in riverine TIC export to the Baltic Sea are largely unknown and it is pertinent to 78 

question whether or not increasing alkalinity export in a warming climate is also happening in high 79 

latitude rivers, such as those draining into the northern basins of the Baltic Sea (Smith et al., 2008)? 80 
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 81 

The aim of this study was to estimate carbon (TIC and TOC) export to the Baltic Sea from Finnish rivers 82 

and to investigate trends in the export and concentrations between 1975 and 2014. By combining the 83 

results of these two carbon fractions we were able to calculate TC export to the Baltic Sea from Finnish 84 

rivers and to estimate the changes in the export over time. To separate the effects of hydrological 85 

changes from other factors we estimated both flow normalised and non-normalised fluxes. We compared 86 

TIC and TOC export and changes in the export in relation to catchment properties and investigated if 87 

there was a discrepancy between trends in carbon concentrations and export, and the possible reasons 88 

for any differences. 89 

 90 

2. Materials and methods 91 

 92 

The study was based on the long-term monitoring results of 29 Finnish rivers discharging into the Baltic 93 

Sea. The total catchment area of the studied rivers was nearly 275,000 km2, which covers 91% of the 94 

Finnish Baltic Sea catchment area and includes highly variable hydrological and geological features, 95 

land-use patterns and population density. The areas of the 29 river basins range from 357 to 61,466 km2. 96 

For each basin, the different land use classes were derived from satellite image-based land-cover and 97 

forest classification data (CORINE Land Cover 2006: 25×25 m grids).The proportion of upland forests 98 

ranges from 33 to 54% (average 47%) and the proportion of peatlands from 3 to 40% (average 18%). 99 

The percentage of peat is highest at latitudes between 63° and 66° N, whereas forests increase towards 100 

the south. The mean proportion of agricultural land in the river basins was on average 7% (range 1 to 101 

43%), and the majority of this is located close to the southern and western coasts. The water area of the 102 

catchments ranges from 0.5 to 19% (average 10%). Urban areas 3% (range 1 to 20%) are concentrated 103 

in southern Finland. The mean annual flow of all rivers varied from 4 to 622 m3s−1, and annual runoff 104 

from 201 to 459 mm (Table 1). Runoff is usually higher in northern parts of the country where 105 

evaporation is lower. Spring peak-flow normally occurs in April in southern and central parts of the 106 

country and in May in northern regions. More detailed information of the location of sampling stations 107 

and basic catchment characteristics can be found in Räike et al. (2012). 108 

 109 

Data on water quality and water flow from 1975 to 2014 were derived from national databases 110 

maintained by the Finnish Environment Institute (SYKE). Water quality data were derived from the 111 

Finnish National Monitoring Programme of riverine inputs into the Baltic Sea. The sampling depth was 1 112 

m. The total number of analyses used was: 4,400 TIC, 14,500 alkalinity and 13,000 TOC analyses. The 113 

median annual sampling frequency was 12 (varied from 5 to 20 in individual rivers). The total number of 114 

annual alkalinity analyses varied during the study period, reaching a maximum in the late 1990s (nearly 115 

500 analyses per year), whereas in 1981 only 143 alkalinity samples were analysed. The number of 116 

annual TIC analyses varied between 243 and 367. 117 

 118 
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 4 

TIC analyses were first included in the Finnish Monitoring Programme of River Water Quality in 2003, 119 

and in order to reconstruct a time-series back to 1975 TIC concentrations were estimated from the 120 

measured alkalinity values using the regression equation TIC [mg L−1] = 11.8 * Alkalinity [mmol L−1] + 121 

0.52, r2 = 0.95, n = 4436, based on simultaneous TIC and alkalinity measurements (Fig. 1). In most of 122 

the rivers the correlation between TIC and alkalinity was good (median r2 was 0.92; Table 1). The 123 

weakest correlation (r2 = 0.48) was detected in a river in northern Finland (the Oulujoki river, Basin No. 124 

59) loaded both by diffuse and point source pollution. We also reconstructed our time series with river-125 

wise regression equations, but the difference was negligible. Reconstructed data were used only in trend 126 

analyses. 127 

 128 

The acidified TOC samples were bubbled with nitrogen to remove inorganic carbon (CO2) and TOC was 129 

analysed from unfiltered samples by oxidation to CO2 followed by IR-measurements. Samples for TIC 130 

were put into airtight bottles and placed in coolers while in transit to the laboratory. TIC was measured in 131 

the laboratory using infrared spectroscopy. The Gran method (obtained using pH 3.7–4.4 regression 132 

results) was used for alkalinity measurements (Finnish Standard SFS-EN ISO 9963-2).  133 

 134 

Monthly flow-adjusted and non-flow adjusted TIC fluxes were calculated with the FLOWNORM 2.1 135 

programme (Libiseller and Grimvall, 2002). The total TIC export from unmonitored catchments (9% of 136 

the total catchment area) was estimated by extrapolating export from nearby monitored catchments with 137 

similar land cover characteristics using an area specific export coefficient. 138 

 139 

Trends in export and concentration were analysed with the seasonal Kendall test (Hirsch et al., 1982, 140 

1991), using both non-adjusted as well as flow-adjusted values. The magnitude of statistically significant 141 

trends was estimated according to the seasonal Kendall slope estimator (Hirsch et al., 1982). Based on 142 

the graphical outputs we noticed that TOC concentrations commonly decreased from 1975 to the mid-143 

1990s and started to increase after that. Therefore we divided the whole 40-year study period into two 144 

periods of equal length (1975 to 1994 and 1995 to 2014), and also analysed trends for these two 145 

periods. 146 

 147 

3. Results 148 

 149 

3.1. Concentrations of carbon 150 
 151 
Median river specific TIC concentrations varied from 1.6 mg C L-1 to 12.0 mg C L-1 and the respective 152 

TOC concentrations were 5.7 mg C L-1 to 21.0 mg C L-1 (Table 1). The highest TIC concentrations were 153 

measured in rivers draining croplands, whereas the highest TOC values were found in peat dominated 154 

catchments, where TIC concentrations were low (< 3 mg C L-1). The lowest TOC concentrations were 155 

found in catchments in northernmost Finland and in catchments with the highest percentage cover of 156 

lakes (Fig. 3). These effects of land type characteristics were also seen in TIC:TOC concentration ratios, 157 

which varied from 0.07 to 1.12 (Table 1).   158 
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 5 

 159 

The highest TIC concentrations were measured during the low-flow periods in February and March and 160 

the lowest concentrations during the high flow periods in May. This is quite the opposite from that of 161 

TOC, which had low concentrations in February and March, and then the concentrations increased 162 

during the snow-thaw period of April to May. However, the highest seasonal TOC concentrations were 163 

measured in late summer or early autumn. TIC correlated negatively with flow in every river, whereas 164 

TOC had positive correlation with flow in most of the rivers (Table 1). In catchments with numerous lakes 165 

the TOC-flow correlation was weaker.  166 

 167 

 168 

Table 1. Basic TOC, alkalinity and TIC statistics and runoff in 29 Finnish rivers.  169 

 170 

3.2. Export of carbon 171 
 172 

During the whole study period on average Finnish rivers exported annually 260,000 t TIC into the Baltic 173 

Sea and the annual TOC export was 918,000 t. Therefore Finnish rivers exported annually nearly 1.2 Mt 174 

carbon to the Baltic Sea, and 80% of the TC export was in the organic form (Fig. 2). In addition, the 175 

largest Finnish river basin, the Vuoksi River (Basin No. 4) discharged 52,000 t of TIC and 140,000 t of 176 

TOC per year into Lake Ladoga located in Russia that is also part of the Baltic Sea catchment area. 177 

Inter-annual variations in TC export was high (0.6 to 1.7 Mt C yr-1) which was mostly dependent on the 178 

hydrological conditions. During wet years (e.g. 2008) the proportion of TOC export increased in 179 

comparison to TIC export. To smooth out the inter-annual differences in riverine carbon export caused 180 

by hydrological patterns we calculated five-year mean export values. The highest water flow and TC 181 

export occurred between 1980 and 1984, which mainly resulted from high TOC exports. Water flow was 182 

at its lowest from 1975 to 1979 resulting in a low TC export (Fig. 2). From 2005 to 2014 TIC export was 183 

at its highest, and the mild winters also increased TOC export leading to high TC export. TIC:TOC export 184 

ratios were usually lower than TIC:TOC concentration ratios (Tables 1 and 2).  185 

 186 

Table 2. TOC, TIC and TC export of 29 Finnish rivers.  187 

 188 

The highest area specific TOC export (8.0 g C m-2 yr-1) was measured in a small river basin with no 189 

lakes, some croplands and high (>20% of the catchment) peatland area (Fig. 3 and Table 2). The 190 

highest area specific TIC export (>2.0 g C m-2 yr-1) was found in rivers located in south-western Finland’s 191 

heavily cultivated catchments (Fig. 4), whereas in peat dominated catchments the area specific TIC 192 

export was commonly below 1.0 g m-2 yr-1. Three catchment characteristics, lakes, peatlands and 193 

croplands, had the strongest impact on riverine TIC and TOC export: Lakes are efficient in retaining TOC 194 

(where retention includes both sedimentation and losses to the atmosphere) whereas they seemed not 195 

to have a strong influence on TIC export (Fig. 5a). Peatlands are the major source of TOC in Finnish 196 

watercourses and they have a negative impact on TIC export (Fig. 5b). Croplands contribute greatly to 197 

TIC export, but not so much to TOC export (Fig. 5c).   198 
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 199 

3.3. Trends of carbon  200 
 201 
3.3.1. Trends of carbon concentrations  202 
 203 
No statistically significant changes were measured in river flow except in the two northern rivers (the 204 

Simojoki, Basin No. 64; and Tornionjoki rivers, Basin No. 67) in which the annual river flow increased 205 

between 1975 and 2014.  During the whole 40 year study period 12 positive trends were detected in 206 

TOC concentrations, whereas two rivers, formerly heavily polluted by pulp and paper industry, had a 207 

negative trend. TOC concentrations decreased in 19 of the 29 rivers from 1975 to 1994 and the median 208 

magnitude of the decrease was 30% (Table 3). An upward trend in TOC concentration was discernable 209 

in 21 rivers from 1995 to 2014 and the median magnitude of this increase was 26%. The changes (both 210 

decreases and increases) during the two periods were detected in different parts of Finland and in rivers 211 

with different catchment properties.  212 

 213 

Between 1975 and 2014 TIC concentrations increased in 19 rivers and decreased in one river and the 214 

median magnitude of the increase was 37%.  In contrast to TOC concentrations, the TIC concentrations 215 

showed a more uniform trend during the 40 year period: They increased in Southern Finland and did not 216 

change in Northern Finland (Table 4).  There were differences in TIC concentrations between the 217 

periods investigated: From 1995 to 2014 increases were more common than during the two previous 218 

decades, and decreases were detected in three rivers in Northern Finland (the Oulujoki, Basin No. 59; 219 

Kiiminginjoki, Basin No. 61, and Simojoki rivers, Basin No. 64). 220 

 221 

Table 3. Trends, significance, slope and proportional change of TOC concentrations in Finnish rivers 222 

from 1975 to 2014, 1975 to 1994 and 1995 to 2014. 223 

 224 

Table 4. Trends, significance, slope and proportional change of TIC concentrations in Finnish rivers from 225 

1975 to 2014, 1975 to 1994 and 1995 to 2014. 226 

 227 

 228 

3.3.2. Trends of carbon export 229 
 230 

The overall trend in TC export was positive since the early 1990s and both TOC and TIC export 231 

increased to contribute to this trend (Fig. 2). There were differences in the trends of the region-wise 232 

export: Rivers in the Gulf of Finland and the Bothnian Bay drainage basin showed the most evident 233 

positive trend in TOC export, whereas export to the Bothnian Sea and Archipelago Sea dropped during 234 

the last five-year period mainly due to decreased flow (Fig. 3). TIC export increased to all sub-regions of 235 

the Baltic Sea, except into the Bothnian Bay. The most remarkable increase has been into the Gulf of 236 

Finland (Fig. 4), where the upward trend was quite linear until the end of our study period irrespective of 237 

the changes in water flow. 238 

 239 
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 7 

Compared to the trends in TOC concentrations the river-wise trends in TOC export were less statistically 240 

significant, and the magnitude of the change was of relative minor importance (<3%) over the 40 year 241 

period (Table 5). From 1975 to 1994 only one statistically significant (negative) trend could be deduced, 242 

whereas from 1995 to 2014 TOC export increased in five rivers, four of them situated in Northern 243 

Finland.  244 

 245 

Trends in TIC export and concentrations were more similar in terms of the number of rivers with 246 

statistically significant trends than the respective TOC results. TIC export increased from 1975 to 2014 in 247 

12 rivers and decreased in one (Table 6), and the magnitude of the changes differed remarkably: The 248 

proportional increase in TIC concentrations was 37% and the respective TIC export increase 3%. Flow 249 

normalisation removed the upward TIC and TOC trends in the Simojoki River (Basin No. 64, northern 250 

Finland) and thus the increasing TC export could be attributed to the increased water flow during winter.  251 

 252 

Table 5. Trends, significance, slope and proportional change of TOC export of Finnish rivers from 1975 253 

to 2014, 1975 to 1994 and 1995 to 2014. 254 

 255 

Table 6. Trends, significance, slope and proportional change of TIC export of Finnish rivers from 1975 to 256 

2014, 1975 to 1994 and 1995 to 2014. 257 

 258 

3.3.3. Seasonal trends 259 

Despite being able to detect only few rivers with annual changes in flow, the seasonality of the flow 260 

changed over the study period: Flow decreased in nearly half of the rivers in May between 1975 and 261 

2014 (Fig. 6a). These rivers were mainly located in southern Finland. In contrast the winter flow rates 262 

increased in northern Finland. There were no overall changes in flow between 1975 and 1995 (Fig. 6b) 263 

and the decrease in flow in May occurred between 1995 and 2014 (Fig. 6c). 264 

 265 

Monthly TOC concentrations showed proportionally more increases than decreases between 1975 and 266 

2014 (Fig. 6a). The increases were common during the winter and decreases during the summer. Clear 267 

periodical differences were observed in TOC trends: Only decreases were detected between 1975 and 268 

1995 (Fig. 6b), whereas only increases were recorded between 1995 and 2014 (Fig. 6c). Fewer rivers 269 

showed increases in the monthly export compared to the concentrations over the whole period and the 270 

most remarkable difference was the decrease in export in May (Fig. 6a). The clear differences in the 271 

trends of TOC concentrations between the two periods (1975 to 1994 vs. 1995 to 2014) were not clearly 272 

reflected in the periodical export trends (Fig. 6b and Fig. 6c). 273 

 274 

TIC concentrations increased commonly in every month from 1975 to 2014 (Fig. 6d). From 1975 to 1994 275 

few changes were detected except increases in May (Fig. 6e), which continued from 1995 to 2014 and 276 

upward trends were also detected in June in many rivers (Fig. 6f). TIC export was increasing in the 277 

winter months during the whole 40 years period (Fig. 6d). The periodical export trends showed few 278 

changes (Fig. 6e and Fig. 6f). 279 

 280 
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4. Discussion                                                                                                             281 

 282 

4.1 Export of carbon 283 
 284 

Peatlands cover one third of the Finnish land area and they have a strong influence on carbon dynamics 285 

of the Finnish freshwaters. TOC concentrations in rivers draining peat dominated-catchments are 286 

commonly close to 20 mg L-1, whereas the respective TIC concentrations are below 1.0 mg L-1. The 287 

influence of the high percentage of peat in Finnish catchments was clearly reflected in the riverine 288 

carbon export measured during this study period: TOC dominated and only 20% of the 1.2 Mt TC yr-1 289 

export was in the inorganic form, which is similar to the respective proportion 75% of TOC in Norway (de 290 

Wit et al., 2015).  This is opposite to the rivers in the contiguous USA, where over 75% of the carbon 291 

export is in inorganic form (Stets and Striegl, 2012) and also in North American Arctic rivers DIC is the 292 

predominant form in which carbon is exported to the coastal waters (Guo et al., 2012; Tank et al., 2012). 293 

The median TIC:TOC concentration ratio in the Finnish rivers was 0.54, which is considerably less than 294 

the average global ratio 1.9 (Meybeck, 1987; Tank et al., 2012). 295 

 296 

Most of the inorganic carbon in rivers entering the Baltic Sea consists of bicarbonates (Kulinski and 297 

Pempkowiak, 2012), which originates from weathering of aluminosilicate or carbonate rocks. Silicate 298 

weathering dominates in Finland (Starr et al. 1998) as well as elsewhere in the boreal region (Millot et 299 

al., 2003; Zakharova et al., 2007). Inorganic carbon may also be derived from the decomposition of 300 

dissolved and particulate organic matter (Brink et al., 2007; Guo et al., 2012). In two northern Swedish 301 

rivers, silicate weathering was estimated to be responsible for about 70% of the inorganic carbon export 302 

and the rest originated mainly from respiration of organic matter in soils (Brink et al., 2007).  303 

 304 

The highest TIC concentrations, and area specific export, were measured in rivers in Southern Finland 305 

draining urban and agricultural areas. The area specific TC export by Finnish rivers was 4.5 g C m-2 yr-1, 306 

which was higher than the respective export of 4.0  g C m-2 yr-1 in Norway (de Wit et al., 2015) but less 307 

than the corresponding export of 5.5 g C m-2 yr-1 in the USA (Stets and Striegl, 2012). Three key factors 308 

decrease the riverine TC export from Finnish rivers: Firstly, the scarcity of carbonate rocks substantially 309 

reduces weathering rates leading to low TIC leaching (Lahermo et al., 1996). Secondly, lakes in Finland 310 

are efficient in retaining terrestrial-derived TOC (if losses to the atmosphere are also counted). Mattsson 311 

et al. (2005) estimated that the average annual retention of TOC in lakes in Finnish river basins is 312 

approximately 15 g C m-2 yr-1 lake area. In the boreal zone in Sweden 30 to 80% of the TOC entering 313 

lakes was estimated to be retained (Algesten et al., 2004), and in another Swedish study comprising 53 314 

rivers the respective estimate was 50% (Weyhenmeyer et al. 2012). The fraction of the DOC input that is 315 

lost internally through sedimentation or degradation increases with water retention time (del Giorgio and 316 

Peters, 1994). However, not all TOC mineralised in lakes is lost from TC balances since the 317 

mineralisation process also generates TIC (Brink et al., 2007) and photo-degradation of NOM potentially 318 

contributes to alkalinity and buffering capacity (Köhler et al. 2002). Thirdly, Finland is sparsely populated 319 

and urban areas cover just 3.3% of the total land area. In Britain, the highest DIC concentrations were 320 
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measured in highly urbanized catchments and an urban land cover of greater than ~5% seemed to be 321 

critical threshold for land-cover to affect DIC (Baker et al., 2008). Only 11of the 29 rivers included in our 322 

study had an urban area larger than 5%. In addition, carbon loading originating from point sources in 323 

Finland, especially from pulp and paper production, has decreased remarkably during the last three 324 

decades (Räike et al., 2012). 325 

 326 

4.2 Trends of carbon concentrations and export 327 
 328 

Annual water flow increased in two rivers in northern Finland, but more important, in regard of C export, 329 

were the seasonal changes: Flow decreased in May in southern Finland and increased in winter in 330 

northern Finland. Between 1975 and 2014 both TOC and TIC concentrations generally increased, and 331 

partly in the same rivers, but the timing and location of the trends differed markedly: Upward trends in 332 

TIC concentrations were more uniform during the 40 years, whereas TOC concentrations at first 333 

decreased and then started to rise (Tables 3 and 4). Furthermore upward TIC trends from 1975 to 2014 334 

were located predominantly in southern Finland, and the respective TOC trends in more northerly peat-335 

dominated catchments. Common to both parameters was that the trends in concentrations were not 336 

reflected in export trends (Tables 3 and 6). This was especially true for TOC. 337 

 338 

4.2.1 Trends of TOC concentrations and export 339 

 340 

The overall eutrophication status of the Finnish freshwaters is decreasing (Räike et al., 2003), but the 341 

TOC concentrations have been increasing in headwater streams and lakes (Vuorenmaa et al., 2006; 342 

Sarkkola et al., 2009). Most of the TOC in boreal freshwater systems is allochtonous originating from 343 

catchments and therefore increasing concentrations in freshwaters indicate that more organic carbon of 344 

terrestrial origin is leached into lakes and rivers. Beside the amount of organic matter produced in 345 

terrestrial ecosystems and its decomposition, TOC export to the sea is dependent on leaching into the 346 

aquatic systems and processes affecting its transport to the sea. 347 

 348 

TOC concentrations between 1975 and 1994 decreased comprehensively in Finland, and after that 349 

(1995 to 2014) they started to increase (Table 3). The negative trend can mostly be explained by 350 

decreased point-source pollution: Organic matter export into the Baltic Sea originating from point 351 

sources is now less than 20% of the total export, whereas in the late 1980s it was approximately 50% 352 

(Räike et al., 2012). The upward trend was so ubiquitous, both in time and space, and it was not possible 353 

to link the changes to any specific catchment characteristics or single driver. It is likely, as also noted by 354 

other studies, that instead of one driver, several drivers are interacting simultaneously (Lepistö et al., 355 

2008; Sarkkola et al., 2009) and that geographically drivers may vary (Clark et al., 2010).  356 

 357 

One possible explanation behind the TOC increase is the recovery from acidification, which has occurred 358 

in Northern European terrestrial and aquatic ecosystems (Arvola et al., 2010; Evans et al., 2006; 359 

Monteith et al., 2007; Vuorenmaa et al., 2006). The mechanism behind this assumption is that increases 360 
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in mineral acid inputs are buffered by decreasing solubility of organic acid and inversely declining 361 

sulphur deposition reduces soil solution acidity and increases the solubility of organic acids (Krug and 362 

Frink, 1983). Evans et al. (2012) estimated that recovery from acidification alone could have led to soil 363 

solution DOC increases between 46 and 126% since 1978 in the UK. In contrast, the solubility of organic 364 

matter decreased in Swedish upland soils, as a result of the acidification recovery (Löfgren and 365 

Zetterberg, 2011). They emphasised the role of riparian zone as a source of organic carbon as an 366 

explanation for this apparent discrepancy. Many studies have not found any major effects of acidification 367 

to changes in DOC (Clair et al., 2008; Lepistö et al., 2008; Sarkkola et al., 2009; Worrall and Burt, 2007). 368 

The differences in response to acidic deposition have been suggested to be linked to base cation status, 369 

which governs the sensitivity of the DOC response to deposition between catchments (Monteith et al., 370 

2007). Acidic deposition started to decrease in Finland on the latter part of the 1980s and continued to 371 

decrease substantially up to1993. Since then there has been no remarkable changes (Vuorenmaa, 372 

2004). Even if the increases in TOC concentrations and the decrease in acidic deposition did not take 373 

place simultaneously we cannot eliminate the role of deposition in the changes, especially considering 374 

that the role of thresholds and time-lags in large-scale biogeochemical processes such as these. Acidic 375 

deposition was greatest in southern and western parts of Finland (Vuorenmaa, 2004) and it is unlikely 376 

that it has been the driving factor in northern Finland.  377 

 378 

Changes in aquatic DOC concentrations/export have often been associated to climate change, which 379 

can affect OC in multiple ways (Evans et al., 2006; Freeman et al., 2001; Sarkkola et al., 2009; Worrall et 380 

al., 2003). The annual mean temperature in Finland has increased by about 0.7 ºC since 1900 (Jylhä et 381 

al., 2004), and this has influenced also river waters: Temperature increased in most of the rivers (in 24 of 382 

29) and this increase happened mainly from 1995 to 2014 (data not shown). This in turn may have led to 383 

enhanced mineralisation of organic matter in the aquatic ecosystems. Sarkkola et al. (2009) 384 

demonstrated that stream temperature is one of the key drivers explaining TOC concentration trends in 385 

Finnish streams. 386 

 387 

Although inland waters cover only about 3% of the Earth's surface area (Downing et al., 2006) they have 388 

a significant role in the sequestration, transport and mineralization of organic carbon (Algesten et al., 389 

2004; Cole et al., 2007; del Giorgio and Peters, 1993; Kortelainen et al., 2006; Tranvik et al., 2009). In 390 

Sweden 50% of the total organic carbon entering lakes was estimated to be retained (Weyhenmeyer et 391 

al., 2012). In Finnish lakes permanent C accumulation in sediments has shown to be minor compared to 392 

CO2 fluxes through lakes to the atmosphere (Kortelainen et al., 2006). We detected upward TOC trends 393 

also in catchments with high lake percentage, even if the proportional magnitude of the increase was 394 

generally smaller compared to lake poor catchments. This indicates that lakes were only partly able to 395 

mineralise increased terrestrial loading. On the other hand, the seasonality of TOC export has changed 396 

especially in southern Finland and winter fluxes have increased. During winter organic matter 397 

mineralisation is slower and photo-oxidation processes are weaker (Miller and Moran, 1997; Reichstein 398 

et al., 2000).   399 

 400 
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In Finland seasonal changes in discharge has been regarded as the most evident impact of climate 401 

change, especially increase in winter runoff (Veijalainen, 2012). Since 2004 Finland has experienced 402 

several relatively mild winters where instead of snow, precipitation fell as rain leading to high runoff and 403 

DOC export during the winter months. In the northernmost Finnish rivers the winter North Atlantic 404 

Oscillation index (NAO) was detected to predict rather well the TOC export in March (Arvola et al., 2004). 405 

The decreased amount of snow on the ground decreased DOC export during the spring thaw. Earlier 406 

melting periods in winter and spring, reduced the role of the spring runoff peak, and higher temperature 407 

and precipitation in autumn increased the autumn export peak. Despite the decrease in spring DOC 408 

export the total annual export was higher during mild winters than the long term mean export (Räike et 409 

al., 2012; Mattsson et al., 2015).  410 

 411 

 412 

4.2.2 Trends of TIC concentrations and export 413 

 414 

As a product of TIC concentration and water flow TIC export was affected by changes in water flow, but 415 

it was not influenced as strongly as the TOC export. In contrast to TOC, TIC concentrations correlated 416 

negatively with flow, which has also been found in British and North American Arctic rivers (Baker et al., 417 

2008; Tank et al., 2012). TIC concentrations were the highest during low flow periods and the lowest 418 

during spring thaw, leading to lower annual TIC export compared to TOC. The high concentrations 419 

during the low flow periods indicated the importance of groundwater as a TIC source (c.f. Humborg et al., 420 

2010; de Wit et al., 2015). 421 

 422 

TIC export from Finnish rivers to the Baltic Sea increased from 1975 to 2014. It started to rise in the early 423 

1990s and has been increasing nearly linearly since then. There are some clear regional differences: 424 

Rivers draining the agricultural-dominated Archipelago Sea catchment did not show change. Our results 425 

are partly contradictory to Hjalmarsson et al. (2008) who found that the alkalinity of rivers entering the 426 

Gulf of Finland was increasing and alkalinity in rivers entering the Gulf of Bothnia decreasing. One 427 

explanation for this difference could be the different time periods in these studies i.e. the time period in 428 

Hjalmarsson et al. (2008) was 100 years (1900–2000).  429 

 430 

There are several driving factors, which may be behind the shifts in riverine TIC export. These include 431 

changes in weathering, acid deposition, leaching, land use and groundwater discharges (Millot et al., 432 

2003; Raymond and Cole, 2003; Humborg et al., 2010). The positive trend in alkalinity in the River 433 

Mississippi, and also in many other North American rivers, has been linked to changes in agricultural 434 

practices (Raymond and Cole, 2003; Stets et al., 2014). However, we could not find an overall increasing 435 

trend in the rivers draining most heavily cultivated areas in Finland. Furthermore, during the last decades 436 

there have been no significant changes in the land use. Few increases in Mg concentrations (data not 437 

shown) did not indicate that the amount of groundwater in river flow has increased, which does not 438 

support the possibility that increases in TIC concentrations and export have been caused by increased 439 

TIC discharge from groundwater. 440 

 441 
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As stated earlier in Finland, sulphur deposition started to decrease in mid 1980s and the strongest 442 

decrease happened in southern Finland between 1987 and 1993 (Vuorenmaa, 2004), earlier than the 443 

riverine TIC export began to increase. Acid deposition has decreased and positive trends in alkalinity 444 

and pH since the early 1990s have been common in small headwater systems in Europe and North 445 

America indicating recovery from acidification (Stoddard et al., 1999). In a recent study of acid sensitive 446 

sites in North America and Europe alkalinity increased in 11 of 12 regions between 1990 and 2008, and 447 

also DOC concentrations increased (Garmo et al., 2014). Similarly, Hjalmarsson et al. (2008) linked the 448 

increasing alkalinity in Swedish rivers, beside changes in land use, to decreased acid deposition. In 449 

Swedish acid-sensitive lakes alkalinity has increased only slightly, whereas the increase in DOC 450 

concentration was remarkable (Futter et al., 2014).  451 

 452 

We analysed TIC and TOC export trends for the whole 40 years period and detected that increases in 453 

TIC export were more common in rivers with high lake percentage in their catchment. As increases in 454 

TOC concentrations in Finnish freshwaters were first detected in upstream lakes and streams 455 

(Vuorenmaa et al. 2006; Sarkkola et al. 2009), but not at the river mouths TOC mineralisation in lakes 456 

might have contributed to those differences. TIC increase in the rivers might be linked to lake processes 457 

and water residence time. Lakes in the catchment increase water residence time enabling e.g. more 458 

efficient organic matter degradation (either in lake water, or sediments). Finnish lakes have been shown 459 

to decrease TOC transport to the sea (Mattsson et al., 2005; Räike et al., 2012) and to release 460 

significant amounts of CO2 to the atmosphere (Rantakari and Kortelainen, 2005; Kortelainen et al., 461 

2006), thus contributing to landscape biogeochemical processes linked to alkalinity production. Part of 462 

the increased TIC export to the sea could originate from mineralization of organic carbon (Brink et al., 463 

2007). Dividing the 40 years study period into two parts revealed that the positive trend in TIC export did 464 

not coexist simultaneously with increase in TOC concentrations and therefore it is unlikely that 465 

mineralization would have been the major driver behind the increase. 466 

 467 

 468 

4.2.3 Why are trends in TOC export and concentrations not similar? 469 

 470 

Fewer upward trends in TOC export were recorded from 1975 to 2014 compared to trends in 471 

concentrations (Table 5) and the magnitude of the export increase was negligible (median increase in 472 

export was 1.7% vs 11% in concentrations).  During the period 1995 to 2014 TOC concentrations 473 

increased in 21 rivers (median increase 26%) and export in 6 rivers (median increase was 5.9%). There 474 

is still a clear discrepancy between the export and concentration trends, but slightly increasing TOC 475 

export to the Finnish coastal waters is in agreement with increasing TOC concentrations in Finnish 476 

coastal waters in the 27 years from 1975 to 2011 (Fleming-Lehtinen et al., 2015). 477 

 478 

The variation in TOC export followed closely changes in water flow, whereas the increase of TIC export 479 

was more independent of hydrological shifts: e.g. low water flow period between 2000 and 2004 did not 480 

stop the positive trend (Fig. 2). Changes in flow had an overarching influence on TOC export to the sea 481 

and the changes in concentrations were masked behind the variation in flow, which was noted also in a 482 
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Canadian study (Eimers et al., 2008).  Normalising the data by flow reduced the variability (especially in 483 

small catchments) allowing the trends to be elucidated and nearly all rivers had an upward trend in 484 

normalised TOC export in southern Finland, although in general the magnitude of the changes were very 485 

slight (<4%).  486 

 487 

It is evident that the increases in TOC concentration during the spring thaw in southern Finland were 488 

counterbalanced with decreases in flow and the amount of TOC exported to the sea in May decreased. 489 

This is important since the major share of annual TOC was exported from 1975 to 1994 to the sea during 490 

the spring freshet. During the last year’s mild winters over half of the annual TOC export in southern 491 

Finland may have discharged to the sea during the winter months. 492 

 493 

4.3 Projected changes in C export/concentration and consequences 494 
 495 
Climate change is projected to increase precipitation and runoff especially in the northern parts of the 496 

Baltic Sea over the next century (Graham, 2004). Scenarios predict further warming, wetter winters and 497 

drier summers in Northern Europe (Settele et al., 2014). Snow cover will diminish or almost vanish in 498 

southern Finland, and its duration will become shorter (Heino et al., 2008). Changes in the seasonality of 499 

flow might cause large shifts in DOC export geographically in Finland, since DOC export is linked to 500 

seasonal differences and catchment characteristics (Ågren et al., 2007, Rantakari et al. 2010; Mattsson 501 

et al. 2015). In a typical boreal catchment (peat coverage10-20%) DOC has been suggested to originate 502 

predominantly from wetland sources during low flow conditions, whereas during high flow forested areas 503 

are the main source (Laudon et al., 2011). Projected mild winters with shorter soil frost and/or snow 504 

cover periods will enhance chemical weathering, mineralization and leaching of carbon into the 505 

watercourses (Rantakari et al., 2010; Räike et al., 2012), which may lead to increased export of both TIC 506 

and TOC to the Baltic Sea (HELCOM, 2009; Omstedt et al., 2012). 507 

 508 

Fleming-Lehtinen et al. (2015) demonstrated increasing TOC concentrations in Finnish coastal waters 509 

from 1975 to 2011. In contrast, based on the few available data from the open-sea area of the Baltic 510 

Sea, no trend towards increase in DOC concentrations can be found from the 1970s to 2010 (Hoikkala et 511 

al., 2015).  Brownification of coastal waters will have multiple effects on the ecosystems as light climate 512 

change unfavourable to phytoplankton and bacterial production increases (Berglund et al., 2007). 513 

Mineralisation of organic matter impairs oxygen conditions in bottom wasters, which in turn may lead to 514 

anoxia and release of phosphorus from sediments (Lehtoranta et al., 2009; Conley et al., 2011).  515 

 516 

Conclusions 517 

 518 

The carbon in rivers near the river mouths integrate C loading from a variety of sources and processes 519 

over large land areas. Consequently, it is often difficult to differentiate the influence of single driving 520 

factors in the drainage basin. Instead of a single driver several drivers are interacting simultaneously and 521 

geographically the major drivers may vary. The upward trend in TOC concentrations in Finnish rivers 522 
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was so ubiquitous, both in time and space since the mid’ 1990s, that it is tempting to link it to the climate 523 

change: River water temperature was increasing, mild winters have been more common during the last 524 

twenty years, seasonality of flow and precipitation is changing etc. In addition, the recovery from 525 

acidification was partly behind the increase in southern Finland. Increasing OC concentrations will create 526 

many challenges to the protection of Finnish freshwaters, and although we did not find any substantial 527 

increase in the carbon export to the Baltic Sea, carbon concentrations in Finnish coastal waters have 528 

been shown to have increased (Fleming-Lehtinen et. al., 2015). This carbon is mostly originating from 529 

terrestrial sources and will create new challenges to the protection of Baltic Sea coastal waters. 530 
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Basin No

TOC
analyses

(n)

TIC
analyses

(n)

Alkalinity
analyses

(n)
Mean flow

(mm)

TOC
Median
(mg l-1)

TIC
Median
(mg l-1)1)

TIC:TOC
concentration

ratio

TIC vs.
alkalinity

correlation
TIC vs. TOC
correlation

TOC vs.
flow

correlation

TIC vs.
flow

correlation
4 477 46 566 377 7.0 2.7 0.36 0.67 0.10 -0.12 -0.62

11 280 134 269 394 15.0 2.9 0.16 0.90 -0.42 0.20 -0.32
14 706 149 688 271 7.8 3.5 0.44 0.76 -0.05 0.03 -0.65
16 367 153 381 305 9.8 7.6 0.65 0.93 -0.43 0.26 -0.59
18 461 154 509 295 11.0 11.0 0.82 0.98 -0.57 0.42 -0.66
19 362 153 375 263 14.0 7.5 0.49 0.97 -0.39 0.27 -0.56
21 502 153 502 292 12.0 10.0 0.79 0.96 -0.57 0.42 -0.66
23 441 152 455 255 7.9 7.7 0.90 0.95 0.41 -0.05 -0.43
24 362 87 383 322 10.0 4.4 0.40 0.94 -0.11 0.12 -0.40
25 393 104 390 308 11.0 12.0 1.12 0.96 -0.46 0.16 -0.55
27 422 93 450 261 12.0 9.4 0.70 0.96 -0.17 0.01 -0.53
28 421 97 533 263 14.0 9.1 0.56 0.98 -0.26 -0.05 -0.45
34 329 97 374 201 9.9 6.7 0.67 0.97 -0.39 0.61 -0.61
35 467 94 457 252 10.0 4.4 0.43 0.76 -0.22 0.56 -0.41
37 418 121 501 404 16.2 2.1 0.12 0.97 -0.77 0.34 -0.45
39 315 111 412 303 21.0 1.8 0.08 0.93 -0.16 0.15 -0.24
42 425 114 689 279 19.3 2.3 0.11 0.92 -0.08 0.04 -0.21
44 430 119 506 245 20.0 1.8 0.09 0.84 0.17 0.28 -0.22
49 398 117 512 303 20.0 1.6 0.07 0.83 -0.09 0.19 -0.16
51 384 117 570 299 20.0 1.7 0.07 0.92 -0.58 0.31 -0.30
53 420 156 611 353 21.0 2.7 0.11 0.85 -0.17 0.10 -0.25
54 500 189 550 287 18.0 2.5 0.13 0.90 -0.63 0.42 -0.32
57 480 189 614 313 19.0 2.4 0.12 0.78 -0.33 0.29 -0.21
59 519 168 524 372 9.4 1.9 0.18 0.48 -0.26 -0.09 -0.18
60 463 179 561 396 14.6 1.7 0.11 0.91 -0.51 0.25 -0.45
61 468 185 557 388 10.0 2.0 0.16 0.91 -0.66 0.57 -0.63
64 482 173 514 459 12.0 2.0 0.16 0.89 -0.54 0.40 -0.49
65 511 177 515 346 7.9 3.4 0.39 0.93 -0.64 0.55 -0.41
67 504 186 518 388 5.7 2.7 0.46 0.95 -0.48 0.48 -0.65

Median 430 149 512 303 12.0 2.7 0.36 0.92 -0.39 0.26 -0.45
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Basin No
TOC

export (t)
TIC

export (t)
TC export

(t)
TOC  export

(t km-2)
TIC  export

(t km-2)
TC export

(t km-2)

TIC:TOC
export
ratio

4 143274 59437 202710 2.7 1.1 3.8 0.41
11 2641 378 3019 7.4 1.0 8.4 0.14
14 74862 34037 108899 2.0 0.9 2.9 0.46
16 3536 1850 5386 4.0 2.0 6.0 0.51
18 5365 3188 8552 4.2 2.6 6.8 0.61
19 3580 1214 4793 4.6 1.6 6.2 0.35
21 7389 4051 11440 4.4 2.4 6.8 0.56
23 4639 3947 8586 2.3 2.1 4.4 0.93
24 4052 1338 5390 3.9 1.3 5.1 0.33
25 2341 1612 3953 4.1 2.9 7.1 0.71
27 4192 2231 6423 3.9 2.1 6.0 0.55
28 3857 1504 5361 4.4 1.9 6.3 0.42
34 3387 1308 4695 2.5 1.0 3.5 0.39
35 74929 29363 104292 2.8 1.2 3.9 0.42
37 8831 965 9797 8.0 0.9 8.9 0.11
39 6856 547 7403 6.9 0.5 7.5 0.08
42 30044 2864 32908 6.1 0.6 6.7 0.09
44 22718 1838 24557 5.5 0.5 6.0 0.08
49 19406 1255 20661 7.7 0.5 8.2 0.07
51 10007 738 10745 7.3 0.5 7.8 0.07
53 12025 1532 13557 2.8 0.4 3.3 0.15
54 22253 2533 24786 6.0 0.7 6.7 0.11
57 30217 3454 33671 7.0 0.8 7.8 0.11
59 85353 16411 101764 3.8 0.7 4.5 0.19
60 26499 2940 29439 6.9 0.7 7.7 0.10
61 67487 12744 80231 4.8 0.9 5.6 0.19
64 20338 3277 23614 6.4 1.0 7.4 0.15
65 140020 60051 200071 2.8 1.2 4.1 0.44
67 90423 35782 126205 6.3 2.5 8.8 0.39
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TOC concentration

1975 to 2014 1975 to 1994 1995 to 2014
Basin Change Change Change
No. Trend p Slope % Trend p Slope % Trend p Slope %
4 0.717 0.0 0.001 -0.133 -38.1 0.006 0.040 11.4
11 0.000 0.1 17.1 0.626 0.000 0.004 0.177 22.1
14 0.029 0.0 -12.0 0.000 -0.200 -44.4 0.000 0.093 24.8
16 0.003 0.1 16.7 0.003 -0.118 -26.3 0.000 0.200 40.0
18 0.059 0.0 0.017 -0.080 -14.5 0.011 0.167 30.3
19 0.079 0.0 0.302 -0.077 0.056 0.125
21 0.884 0.0 0.016 -0.129 -21.4 0.183 0.056
23 0.001 0.1 21.4 0.002 -0.231 -66.0 0.000 0.146 36.0
24 0.157 0.0 0.011 -0.161 -33.6 0.012 0.131 26.3
25 0.541 0.0 0.022 -0.167 -30.3 0.077 0.089
27 0.139 0.0 0.017 -0.135 -22.6 0.103 0.068
28 0.078 0.1 0.048 -0.192 -29.6 0.026 0.125 17.9
34 0.434 0.0 0.005 -0.200 -40.0 0.339 0.039
35 0.003 -0.1 -19.3 0.000 -0.460 -76.7 0.005 0.080 16.3
37 0.003 0.1 13.2 0.826 -0.007 0.231 0.100
39 0.195 0.0 0.026 -0.320 -30.8 0.016 0.227 21.6
42 0.061 0.1 0.004 -0.180 -19.0 0.004 0.250 25.0
44 0.009 0.1 9.1 0.824 -0.003 0.005 0.272 27.2
49 0.001 0.1 11.2 0.645 -0.017 0.005 0.286 28.6
51 0.001 0.1 11.1 0.392 -0.050 0.009 0.250 23.8
53 0.011 0.1 9.2 0.373 -0.070 0.002 0.333 31.7
54 0.040 0.1 6.7 0.113 -0.100 0.010 0.250 27.8
57 0.001 0.1 10.5 0.075 -0.075 0.002 0.286 28.6
59 0.118 0.0 0.005 -0.093 -20.7 0.000 0.147 30.6
60 0.000 0.1 13.7 0.147 -0.084 0.000 0.250 33.3
61 0.009 0.0 8.7 0.034 -0.082 -17.7 0.002 0.143 26.0
64 0.075 0.0 0.049 -0.120 -21.9 0.043 0.113 18.8
65 0.094 0.0 0.003 -0.130 -32.5 0.514 0.015
67 0.167 0.0 0.001 -0.150 -50.0 0.971 0.000

1975-2014 1975-1994 1995-2014 = Increase
12 0 21 = No trend
15 10 8 = Decrease
2 19 0

29 29 29
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TIC concentration

1975 to 2014 1975 to 1994 1995 to 2014
Basin Change Change Change
No. Trend p Slope % Trend p Slope % Trend p Slope %
4 0.000 0.025 34.4 0.012 0.019 16.0 0.026 0.014 9.3
11 0.000 0.029 43.0 0.807 0.000 0.033 0.033 23.8
14 0.000 0.052 59.8 0.000 0.055 47.0 0.709 0.002
16 0.000 0.042 24.5 0.833 0.000 0.111 0.041
18 0.000 0.077 36.3 0.104 -0.063 0.055 0.101
19 0.000 0.059 36.8 0.966 0.000 0.003 0.099 29.5
21 0.000 0.078 38.8 0.630 0.016 0.001 0.160 35.8
23 0.000 0.088 55.8 0.125 0.024 0.000 0.093 25.9
24 0.000 0.035 35.9 0.408 0.015 0.110 0.029
25 0.000 0.096 35.9 0.786 0.023 0.003 0.149 27.1
27 0.000 0.063 32.1 0.927 0.000 0.020 0.090 21.7
28 0.008 0.044 24.3 0.751 0.029 0.054 0.071
34 0.000 0.105 80.9 0.012 0.059 28.8 0.006 0.102 35.9
35 0.000 0.054 58.1 0.000 0.052 33.2 0.093 0.023
37 0.905 0.000 0.891 0.000 0.744 0.006
39 0.003 0.024 58.2 0.485 0.000 0.012 0.062 73.3
42 0.002 0.023 49.1 0.442 0.005 0.005 0.063 73.2
44 0.001 0.022 58.3 0.135 0.020 0.004 0.052 69.7
49 0.006 0.009 26.9 0.617 0.000 0.090 0.016
51 0.091 0.005 0.757 0.000 0.184 -0.012
53 0.531 -0.003 0.098 -0.026 0.765 -0.004
54 0.230 -0.007 0.918 0.000 0.216 -0.025
57 0.030 0.010 16.7 0.963 0.000 0.089 0.026
59 0.987 0.000 0.016 0.007 6.4 0.003 -0.020 -19.3
60 0.011 -0.012 -22.8 0.354 -0.009 0.010 -0.038 -38.3
61 0.472 -0.001 0.974 0.000 0.330 -0.010
64 0.249 -0.005 0.627 0.005 0.016 -0.032 -25.0
65 0.397 0.003 0.969 0.000 0.343 -0.014
67 0.990 0.000 0.224 0.009 0.289 -0.013

1975-2014 1975-1994 1995-2014 = Increase
19 5 11 = No trend
9 24 15 = Decrease
1 0 3

29 29 29
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TOC export

1975 to 2014 1975 to 1994 1995 to 2014
Basin Change Change Change
No. Trend p Slope % Trend p Slope % Trend p Slope %
4 0.303 -36.0 0.770 -31.0 0.172 155.4
11 0.294 0.4 0.881 -0.2 0.379 0.8
14 0.047 -47.9 -2.7 0.205 -75.6 0.027 162.8 6.4
16 0.091 1.2 0.928 -0.2 0.089 5.3
18 0.640 -0.5 0.771 -0.6 0.372 3.7
19 0.891 -0.1 0.814 -0.5 0.512 -1.9
21 0.707 -0.5 0.515 -2.0 0.410 5.6
23 0.236 -1.9 0.033 -10.4 -8.9 0.375 3.9
24 0.724 0.3 0.975 -0.1 0.541 1.7
25 0.496 -0.2 0.412 0.9 0.349 -1.9
27 0.360 0.6 0.854 0.4 0.842 0.8
28 0.734 -0.2 0.855 0.2 0.311 -2.6
34 0.435 0.6 0.286 2.6 0.844 -1.0
35 0.013 -53.2 -2.7 0.118 -86.3 0.845 -13.1
37 0.570 0.7 0.893 -0.4 1.000 0.1
39 0.980 0.0 0.172 -4.7 0.489 2.3
42 0.325 5.2 0.942 1.6 0.082 30.6
44 0.082 8.3 0.114 18.5 0.074 24.6
49 0.037 8.5 2.1 0.668 2.3 0.070 26.9
51 0.049 3.3 1.7 0.518 3.1 0.057 12.3
53 0.022 12.2 1.7 0.619 -5.2 0.026 49.7 5.9
54 0.567 1.9 0.883 1.1 0.075 28.1
57 0.113 9.0 0.411 10.5 0.020 54.9 8.0
59 0.239 24.2 0.698 -23.4 0.102 104.5
60 0.025 9.2 1.6 0.813 2.0 0.027 35.0 5.5
61 0.031 24.1 1.6 0.586 -16.3 0.023 87.3 4.8
64 0.003 9.0 2.1 0.618 2.0 0.243 13.4
65 0.364 -22.3 0.073 -133.8 0.663 33.3
67 0.621 4.4 0.248 -30.4 0.714 28.2

1975-2014 1975-1994 1995-2014 = Increase
6 1 5 = No trend

21 28 24 = Decrease
2 0 0

29 29 29
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TIC export

1975 to 2014 1975 to 1994 1995 to 2014
Basin Change Change Change
No. Trend p Slope % Trend p Slope % Trend p Slope %
4 0.000 51.27 4.0 0.006 72.84 6.3 44.750 0.1
11 0.254 0.06 0.616 -0.08 0.109 0.4
14 0.000 42.84 6.1 0.001 71.16 12.1 35.616 0.1
16 0.038 0.78 2.0 0.292 1.16 1.598 0.1
18 0.476 0.42 0.897 0.21 1.804 0.2
19 0.699 0.08 0.875 0.05 -0.444 0.6
21 0.067 1.33 0.794 0.49 3.898 0.1
23 0.029 1.72 2.0 0.149 3.57 1.229 0.6
24 0.087 0.49 0.178 1.16 0.211 0.8
25 0.972 0.01 0.050 1.36 -0.450 0.6
27 0.167 0.70 0.432 0.99 0.897 0.6
28 0.725 0.11 0.305 0.57 -0.630 0.5
34 0.009 1.08 3.8 0.036 2.10 8.1 0.597 0.6
35 0.006 22.21 3.4 0.015 49.49 7.8 -5.680 0.8
37 0.024 -0.32 -1.3 0.984 -0.02 -0.151 0.6
39 0.055 0.20 0.222 -0.43 0.927 0.0 8
42 0.001 1.93 3.7 0.052 2.39 6.512 0.0 12
44 0.001 1.27 3.7 0.002 2.07 7.0 4.157 0.0 11
49 0.006 0.76 3.1 0.230 0.67 1.954 0.0 8
51 0.093 0.28 0.256 0.43 0.844 0.1
53 0.029 1.50 1.7 0.570 -0.76 5.186 0.1
54 0.937 -0.05 0.362 1.48 2.425 0.2
57 0.152 0.87 0.455 1.28 5.677 0.0 8
59 0.570 1.99 0.086 14.75 -8.438 0.3
60 0.621 -0.29 0.884 -0.26 1.828 0.3
61 0.069 3.54 0.904 -0.54 9.319 0.1
64 0.003 2.15 2.9 0.267 1.70 0.041 1.0
65 0.008 22.36 1.5 0.916 2.80 8.424 0.8
67 0.051 8.50 0.359 10.59 4.905 0.6

1975-2014 1975-1994 1995-2014 = Increase
12 5 5 = No trend
16 24 24 = Decrease
1 0 0

29 29 29
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Figure captions 

 

Fig. 1. Correlation between alkalinity and TOC in 29 Finnish rivers. 

 

Fig. 2. Total riverine carbon export (kt yr-1): Total inorganic carbon (TIC) and total organic carbon (TOC; bars) and flow (m3 s-

1, line) from Finland to the Baltic Sea from 1975 to 2014 grouped into five-year periods. The pie chart shows the proportions 

of TIC and TOC to the total carbon export. 

 

Fig. 3. Area specific total organic carbon (TOC) export (g m-2 yr-1, map) from Finnish catchment areas, TOC export (kt yr-1, 

bars) and flow (m3 s-1, lines) by sea-regions from 1975 to 2014 grouped into five-year periods. Note: The scale of the y-axes 

differs. 

 

Fig. 4. Area specific total inorganic carbon (TIC) export (g m-2  yr-1, map) from Finnish catchment areas, TIC export (kt yr-1, 

bars) and flow (m3 s-1, lines) by sea-regions from 1975 to 2014 grouped into five-year periods. Note: The scale of the y-axes 

differs. 

 

Fig 5. Relationship between area specific total organic carbon (TOC) and total inorganic carbon (TIC) export (g m-2  yr-1) and 

proportional (%) lake area (a), peat area (b) and cropland area (c) of the 29 river catchments. 

 

Fig 6. Proportion (%) of rivers with an increase (positive values) or decrease (negative values) in flow, TOC and TIC 

concentrations and export during three different time periods. Altogether data covered 29 Finnish rivers.  
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