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Abstract 9 

Numerous catchment characteristics including topography, geology, soil and vegetation are reported 10 

to exert a strong influence on mean surface water properties. The present study employs a 11 

geographical information system (GIS) approach to examine, for the first time, the relationship 12 

between reservoir water quality (dissolved organic carbon (DOC) concentration, colour, nitrate 13 

concentration and pH) and catchment Phase 1 Habitat coverage. Analysis was conducted on 2 14 

occasions and at 2 different spatial scales. Numerous statistically significant correlations were 15 

identified, suggesting the use of Phase 1 Habitat data could help improve predictive models of 16 

surface water quality. The occurrence and strength of correlations varied seasonally in response, we 17 

argue, to temporal variations in hydrological regime and anthropogenic activity. The data also 18 

suggest that the proximity of habitat types to the reservoir is significant in affecting reservoir water 19 

quality. The findings are used to recommend suitable measures for drinking water companies to 20 

mitigate against water quality issues. 21 

Key words: dissolved organic carbon; drinking water; catchment; Phase 1 Habitat; soil; geographical 22 

information system.  23 
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1. Introduction 24 

The biogeochemical properties of surface waters are acquired, to a large extent, during the passage 25 

of water through the catchment due to the interaction of water with vegetation, soils and mineral 26 

layers. Various organic and inorganic compounds will be solubilised and transported downstream 27 

during runoff, influencing solute concentrations, pH and ionic strength (Stutter et al., 2006). 28 

Although surface water quality exhibits temporal variations in response to weather events and 29 

seasonal drivers (Gergel et al., 1999; Scott et al., 1998; Soulsby et al., 2006), physical catchment 30 

characteristics including topography, geology, soil and vegetation type will, to a large extent, 31 

determine mean biogeochemical characteristics (Billett and Cresser, 1992; Clair et al., 1994; Holden 32 

et al., 2007; Hope et al., 1994; Sobek et al., 2007). Amongst these variables, soil type is widely 33 

considered to represent a dominant control on surface water composition and quality (Aitkenhead 34 

et al., 1999; Billett and Cresser, 1992; Hope et al., 1997; Soulsby et al., 2006; Stutter et al., 2006). 35 

Though its development is strongly influenced by other catchment features including soil 36 

characteristics, habitat type may also be an important factor affecting surface water quality. 37 

Vegetation type influences catchment hydrology, primary production and organic matter inputs 38 

(Ordóñez et al., 2008; Zhang et al., 2011), which affect soil composition and chemistry and in turn, 39 

drainage water quality. Forested catchments for example, have been associated with the production 40 

of dissolved organic carbon (DOC)-rich drainage waters (Grayson et al., 2012; Hope et al., 1994) with 41 

differences in DOC concentration and flux also reported between different tree species (Chow et al., 42 

2009; Fröberg et al., 2011; Gough et al., 2012). Wetland habitat coverage is also reported to be a 43 

strong predictor of surface water DOC concentration (Gergel et al., 1999; Hope et al., 1994).  44 

Surface water characteristics can also be strongly affected by anthropogenic activity. For example, 45 

the application of agricultural fertilisers has been associated with significant leaching of nutrients 46 

(nitrates and phosphates) into surface waters (Badruzzaman et al., 2012). Elevated nutrient 47 

concentrations may in turn result in eutrophication and algal blooms (Correll, 1998; Freeman et al., 48 
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2009; Hecky and Kilham, 1988; Vollenweider, 1968), which are particularly problematic in drinking 49 

water supplies (Smith, 1998). Liming of agricultural land has been associated with increased surface 50 

water pH (Hindar et al., 2003). Drainage of wetland habitats in an attempt to improve their 51 

economic value has also been linked to elevated colour and DOC concentrations in surface waters 52 

(Holden et al., 2004; Wallage et al., 2006). 53 

The Phase 1 Habitat Survey of Wales, completed by the Countryside Council of Wales (CCW) in 1997, 54 

provides a record of habitat coverage and land use (Howe et al., 2005). In its digitised form, using 55 

geographical information system (GIS) software, the data offers a useful means of measuring the 56 

spatial extent of different habitat types within catchments. Since the classification scheme includes 57 

both natural habitats and anthropogenic features (e.g. arable land and improved grassland), the data 58 

holds significant potential for researchers concerned with investigating catchment influences on 59 

surface water quality. The characteristics of surface waters supplying drinking water treatment 60 

works (WTWs) is important for water companies which have a responsibility to provide a safe and 61 

reliable drinking water supply for their customers. The concentration of DOC in surface waters is 62 

particularly important, with the removal of DOC from drinking water supplies representing the single 63 

biggest treatment cost for the water treatment industry (Watts et al., 2001). Elevated DOC 64 

concentrations in raw water can inflate treatment costs by increasing the coagulant and disinfectant 65 

doses required (Chow et al., 2005; Edzwald, 1993) and the frequency of filter backwashes (Eikebrokk 66 

et al., 2004). DOC in finished water is problematic since it can cause undesirable colour, odour and 67 

taste (Davies et al., 2004; WHO, 2011), transports organic and inorganic micro-pollutants (Gao et al., 68 

1998; Rothwell et al., 2007) and leads to bacterial regrowth in distribution systems (Prévost et al., 69 

1998). Crucially, DOC also acts as a precursor to potentially harmful disinfection by-products (DBPs) 70 

including trihalomethanes (THMs). These are formed during chlorination, a treatment necessary to 71 

ensure that finished water meets microbiological safety standards (WHO, 2011). 72 
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Rising surface water DOC concentrations have been observed in many areas of central and northern 73 

Europe and North America in the past couple of decades (Freeman et al., 2001; Hejzlar et al., 2003; 74 

Monteith et al., 2007; Skjelkvåle et al., 2005; Stoddard et al., 2003; Worrall et al., 2003). In the UK, 75 

measurements undertaken at 22 upland sites showed a mean increase in DOC concentration of 91% 76 

between 1988 and 2003 (Evans et al., 2005). DOC concentrations tend to be highest, and rising most 77 

rapidly in peat-dominated, upland catchments (Freeman et al., 2001), which in the UK, supply over 78 

70% of drinking water (Watts et al., 2001). In this context of declining surface water quality, 79 

developing a better understanding of catchment influences is crucial for the drinking water industry. 80 

The importance of catchment characteristics in affecting the quality of drinking water supplies is 81 

recognised by the UK drinking water regulator, the drinking water inspectorate (DWI) who 82 

recommend that “catchment and raw water source protection” is included in the drinking water 83 

safety plans of drinking water providers (DWI, 2005).  84 

A GIS approach, which can offer an effective means of visualising and measuring landscape features 85 

is increasingly being used in the study of catchment influences on hydrochemistry. GIS software has 86 

become an important tool in the modelling of hydrological processes and its use in developing 87 

predictive models for various water quality parameters within catchments based on land use and 88 

other catchment characteristics is particularly relevant for water treatment companies. For example 89 

Foster and McDonald (2000) used GIS and spatially referenced data on pastoral farming intensity to 90 

model and display sources of cryptosporidium risk in drinking water catchments. Lake et al. (2003) 91 

developed a nitrate leaching model using GIS and information on a number of physical catchment 92 

characteristics. This was used to identify areas of groundwater vulnerable to nitrate pollution. 93 

Recently, Grayson et al. (2012) used a GIS approach, and ITE land cover data (similar to Phase 1 94 

Habitat data) to identify correlations between drinking water reservoir colour and the spatial extent 95 

of different land cover classes. A multicriteria evaluation approach was then used to develop a 96 

predictive model for water colour production potential in the catchments and create a colorimetric, 97 
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risk-based map from the data. However, as yet, the use of Phase 1 Habitat data for predicting 98 

catchment water quality has not been explored.    99 

This study investigates potential relationships between Phase 1 Habitat classes and reservoir water 100 

quality (DOC concentration, colour, nitrate concentration and pH). GIS mapping was used to 101 

measure the spatial extent of Phase 1 Habitat types in 16 drinking water reservoir catchments in 102 

north Wales. Correlation analysis was then used to identify statistically significant relationships 103 

between these land cover classes and reservoir water quality in spring and autumn. Analyses were 104 

carried out both at a whole-catchment scale, and in a 250 m buffer zone surrounding the reservoirs 105 

in order to assess the importance of proximity in the occurrence and strength of the correlations. 106 

Such research is important for informing future catchment management practices. Identifying 107 

problematic land cover will also help water treatment companies target monitoring programmes 108 

and mitigation strategies, and improved understanding of seasonality in raw water quality will also 109 

enable better optimization of treatment processes.  110 

2. Methods 111 

2.1. Study sites and sampling regime 112 

Water samples were collected on 2 occasions (in September 2007 and March 2008) from the raw 113 

water (i.e. pre-treatment) supply of 16 WTWs in north Wales. Where the raw water supply was 114 

derived from more than 1 reservoir, composite samples were collected, and Phase 1 Habitat data 115 

was also combined. The timing of sampling was chosen to correspond with the seasonal maximum 116 

(autumn) and minimum (spring) in reservoir DOC concentration. 14 of the WTWs included in this 117 

study are located in upland catchments, with the remaining 2 situated in lowland, agricultural areas. 118 

Uplands are defined as areas more than 250 m above sea level (Mitchell, 1991). These areas are 119 

typically characterised by high rainfall, low mean temperatures and acidic soils (Foster and 120 

McDonald, 2000). 121 
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2.2. Hydrochemical analysis 122 

pH was measured on un-filtered samples using a Mettler Toledo S20 pH meter (Mettler Toledo, 123 

Leicester, UK), calibrated daily with pH 4 and pH 7 reference standards (Sigma-Aldrich, Dorset, UK).  124 

Colour measurements (Hazen) were obtained from WTW data at the time of sample collection. One 125 

degree Hazen (1 mg L-1 Pt/Co) is defined as the colour produced by 1 mg L-1 Pt (as K2PtCl6) in the 126 

presence of 2 mg L-1 cobalt (II) chloride hexahydrate (Mitchell and McDonald, 1992). 127 

Before DOC measurement, samples were passed through a 0.45 µm cellulose acetate filter to 128 

remove particulate organic carbon, as per the operational definition of DOC (Thurman, 1985). DOC 129 

concentrations were determined using a Shimadzu Total Organic Carbon 5000 analyser (Shimadzu, 130 

Milton Keynes, UK), with a carrier gas of high purity air at a flow rate of 150 mL min-1 and a 33 µL 131 

injection volume. Calibration was performed with a one point calibration, using a 100 mg L-1 KO4H5C8 132 

solution (total organic carbon – TOC) and a 100 mg L-1 Na2CO3/100 mg L-1 NaHCO3 solution (inorganic 133 

carbon – IC). DOC concentrations were calculated by subtracting IC values from TOC values. Analysis 134 

of TOC and IC standard solutions at 10 mg L-1
 

intervals demonstrated that the analyser performed 135 

linearly from 0 to 200 mg L-1, with r2 values > 0.9. All reagents were supplied by Sigma-Aldrich, 136 

Dorset, UK.  137 

Nitrate concentration was determined using a Dionex DX-120 ion chromatograph equipped with an 138 

IonPac AS14A anion analytical column (both Thermo Scientific, Hertfordshire, UK). The eluent was a 139 

1.0 mM Na2HCO3/8.0 mM NaCO3 solution (reagents supplied by Sigma-Aldrich, Dorset, UK) made 140 

with Milli Q water and the flow rate, 1 mL min-1. Concentrations were determined using a five point 141 

calibration with standard Dionex solutions.  142 

2.3. Geographical information systems (GIS) analysis 143 

Version 9.2 of the ArcGIS package (ESRI, Buckinghamshire, UK) was used to display and quantify the 144 

spatial extent of habitat types within each reservoir catchment. First, the watersheds associated 145 
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with each reservoir were mapped. This was achieved using the Hydrology functions in the Spatial 146 

Analyst extension and a digital elevation model downloaded from Digimap (EDINA, 2014) (10 m 147 

resolution). Defined watersheds were then clipped to other GIS layers displaying habitat type. 148 

Habitat information was displayed using digitised version of the Phase 1 Habitat Survey of Wales 149 

(Howe et al., 2005). In addition to this whole-catchment analysis, habitat coverage was also 150 

measured in a 250 m-wide zone around the perimeter of each reservoir.  151 

2.4. Statistical analysis 152 

For statistical analysis, Phase 1 Habitat categories were organized into more generalised groupings 153 

(Table 1). Statistical analysis was performed using version 20 of the SPSS statistical package (IBM, 154 

New York, USA). Depending on the conditions satisfied by the data, Pearson’s correlation and 155 

Spearman’s correlation analyses was employed to test for significant correlations between Phase 1 156 

habitat type coverage and reservoir water quality. This analysis was also performed using the subset 157 

of Phase 1 Habitat data covering a zone of 250 m directly adjacent to the reservoir. 158 

3. Results and discussion 159 

3.1. DOC and colour 160 

The absence of any statistically significant correlations between catchment woodland and scrub 161 

coverage and reservoir DOC concentration and colour (Table 2 and 3) is surprising given that 162 

previous research indicates a strong positive relationship between forest coverage and DOC 163 

concentration (Grayson et al., 2012; Hope et al., 1994). High DOC flux from forested catchments is 164 

partly due to high DOC loading as rainwater passes through above ground biomass (Kawasaki et al., 165 

2005; Stevens et al., 1989) as well as the large source of leachable carbon in the litter layer (Hongve, 166 

1999). However, DOC concentrations are also reported to vary significantly between different tree 167 

species (Gough et al., 2012). Our habitat categories did not account for this potential variation, 168 

which may explain the absence of any statistically significant correlations in this study.  169 
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A moderate negative correlation was observed between unimproved grassland and spring DOC 170 

concentration at the whole catchment scale (p < 0.05; Table 2) and no correlations between 171 

unimproved grassland and DOC or colour in the 250 m buffer zone analysis (Table 3). The negative 172 

correlation corroborates the findings of previous studies. For example, Grayson et al. (2012) report a 173 

significant negative correlation between water colour and moorland grass coverage across 18 174 

drinking water catchments in Yorkshire. In a UK-wide study, Armstrong et al. (2007) found that 175 

heather dominated, drained catchments produced the highest water colour followed by mixed 176 

vegetation and grass dominated catchments. Van den Berg et al. (2012) also reported lowest mean 177 

pore water DOC concentration in grassland sites compared with other vegetation categories 178 

(woodlands, heathlands and moorlands) in their survey of 41 UK sites. This association may relate to 179 

solubility controls since colour release in temperate grasslands is reported to be suppressed by 180 

acidic conditions (Hopkins et al., 1990; Miller, 2008). However, our unimproved grassland category 181 

included neutral and calcareous grassland and no correlations were identified in the present study 182 

between pH and unimproved grassland coverage.  183 

Negative correlations were identified between tall herb and fern habitat coverage and autumn DOC 184 

concentration and colour at the whole catchment scale (both p < 0.05; Table 2) and between tall 185 

herb and fern coverage and autumn colour in the 250 m buffer zone analysis (p < 0.05; Table 3). At 186 

first this result seems unexpected since bracken coverage, which was dominant in this habitat class, 187 

has been associated with high primary productivity and the accumulation of large amounts of litter, 188 

forming a large pool of organic matter (Marrs et al., 2000). However, Potthast et al. (2012) observed 189 

that, compared with pasture land (Setaria grass) the litter present in bracken habitat showed a 190 

significantly lower rate of decay. In addition, they found a significant decrease in microbial biomass 191 

and activity when pasture land was invaded by bracken. Therefore, if bracken coverage tends to 192 

replace improved grassland habitats in drinking water catchments, its presence may reduce DOC 193 

production. The occurrence of these correlations in autumn may relate to this being the litter fall 194 
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period, when the leaching of DOC from decomposing litter would normally contribute significantly to 195 

DOC export (Kalbitz et al., 2000). 196 

Negative correlations between heathland coverage and DOC concentration and colour occurred at 197 

both spatial scales. In the whole catchment analysis, heathland coverage displayed a moderate 198 

negative correlation with autumn DOC concentration and colour (both p < 0.05) and a strong 199 

negative correlation with spring colour (p < 0.01; Table 2). In the 250 m buffer analysis a moderate 200 

negative correlation was identified with autumn DOC concentration and colour (both p < 0.05), a 201 

moderate negative correlation with spring DOC concentration (p < 0.05) and a strong negative 202 

correlation with spring colour (p < 0.01; Table 3). These negative relationships were surprising given 203 

that Calluna, a common species in heath habitats, has been reported to produce highly-coloured 204 

drainage water (Grayson et al., 2012). This has been attributed to their relatively dry soil conditions 205 

which confer high rates of aerobic microbial decomposition (Clutterbuck and Yallop, 2010). Many 206 

heath habitats were also formed as a result of peatland drainage. This former status is likely to 207 

further enhance DOC and colour release due to the large carbon stocks associated with peat 208 

substrate (Fenner et al., 2009). Conversely however, moisture constraints in heath habitats are 209 

reported to inhibit phenol oxidase activity (Toberman et al., 2008). According to the enzymic latch 210 

theory, this can suppress DOC production by causing an accumulation of phenolic compounds which 211 

inhibit the activity of hydrolase enzymes (Freeman et al., 2001). This may explain the negative 212 

correlations between heathland coverage and reservoir DOC concentration and colour observed in 213 

the present study. Overall, the relationship appeared stronger at the 250 m buffer scale, suggesting 214 

that proximity to the reservoir affected the degree to which this habitat influenced reservoir water 215 

quality. 216 

At the whole catchment scale a moderate positive correlation was identified between fen/ mire 217 

habitat and autumn DOC concentration (p < 0.05; Table 2). This habitat also correlated positively 218 

with autumn and spring DOC concentration in the 250 m buffer analysis (both p < 0.05; Table 3). 219 
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Positive correlations between swamp coverage and reservoir DOC concentration and colour were 220 

also identified and were striking in terms of the strength of the correlations observed and their 221 

occurrence at both spatial scales and both sampling times (Table 2 and 3); all were strong positive 222 

correlations (p < 0.01) except for the swamp/ autumn DOC concentration correlation at the whole 223 

catchment scale which was a moderate positive trend (p < 0.05). These positive relationships are 224 

likely to be linked to the wetland status of these habitats. Percentage wetland coverage has been 225 

identified as an important predictor of stream water DOC concentration (Eckhardt and Moore, 1990; 226 

Gergel et al., 1999; Hope et al., 1994). A combination of high primary productivity and low 227 

decomposition rates causes the accumulation of deep layers of peat in wetland environments 228 

(Mitsch and Gosselink, 2000). The considerable depth of organic material in such environments 229 

provides a large pool of available carbon (Thurman, 1985) and the inhibitory effect of anaerobic 230 

conditions on microbial metabolism promotes the formation of DOC end products (Fenner et al., 231 

2009). In addition, in wetland systems, the depth of the organic horizon limits contact between 232 

drainage waters and the adsorption sites within the mineral soil horizon, which also contributes to 233 

high DOC loading (Tipping et al., 1999). However, our data also show an absence of statistically 234 

significant correlations between DOC concentration/ colour and other habitat categories which are, 235 

or include, wetlands (marsh/ marshy grassland, bog, flush and spring). This suggests that the type of 236 

wetland present may be an important determinant of drainage water DOC concentration. It may be 237 

significant that, of these wetland habitat types, swamp and fen/ mire habitats tend to be more 238 

nutrient-rich than the other wetland habitats (Mitsch and Gosselink, 2000) which may support 239 

higher rates of primary productivity and thus a larger pool of organic carbon.  240 

Strong positive correlations between arable coverage and DOC concentration were observed at the 241 

whole catchment scale in autumn and spring (both p < 0.01; Table 2). Moderate positive correlations 242 

were also identified with colour at both sampling times (both p < 0.05). The 250 m buffer zone could 243 

not be included in this analysis since there was only 1 catchment where arable land was present in 244 

this zone (Figure 1). The interpretation of these positive correlations is not straightforward since in 245 
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previous studies arable land use has been associated with lower carbon content than other land use 246 

types. For example, soil solution carbon concentrations for soils in northern Saskatchewan, Canada, 247 

decreased in the following order: aspen forest > recently cleared forest > wheat/ fallow field (McFee 248 

and Kelly, 1995). Similarly, in their review article, Chantigny (2003) reports that dissolved organic 249 

matter concentrations vary as follows: forest soils > grassland soils > arable soils. This variation, it is 250 

suggested, is partly due to differences in vegetation type (e.g. tree vs. herbaceous plant) (Chantigny, 251 

2003) as well as the lower carbon content associated with arable soils (Zsolnay, 1996). In addition, 252 

aerobic conditions, which tend to occur in arable soils encourage the complete mineralisation of 253 

organic matter to CO2, as opposed to DOC and CO2 end products in anaerobic decomposition (Boddy 254 

et al., 2008; Fenner et al., 2009). However, water soluble carbon content in arable soils is also 255 

reported to vary depending on crop plants used (Zsolnay, 1996) and temporally, during crop cycles 256 

(Campbell et al., 1999) and with successive cultivations (Delprat et al., 1997). In addition, application 257 

of organic fertilisers on agricultural soils is reported to substantially increase the concentration of 258 

soluble organic carbon (Gregorich et al., 1998). Although it is not possible to isolate the cause of the 259 

positive correlations observed here between arable land use and DOC concentration/ colour, it is 260 

notable that the correlations occurred despite this land use being virtually absent in the reservoir 261 

250 m buffer zone.  262 

At the whole catchment scale moderate positive correlations were identified between buildings 263 

coverage and autumn DOC concentration (p < 0.05) and between the “other” category and autumn 264 

DOC concentration (p < 0.05) and spring colour (p < 0.05; Table 2). A moderate positive correlation 265 

was also found between buildings coverage and autumn DOC concentration in the 250 m buffer 266 

zone analysis (p < 0.05; Table 3). Given the rural location of the catchments in the present study it is 267 

likely that farm buildings will account for a significant proportion of the buildings category. Indeed, a 268 

strong positive correlation between buildings and arable coverage was identified in the whole 269 

catchment data (rs = 0.803, p < 0.01). This correlation may therefore explain the relationship 270 

between buildings and DOC concentration, though the reason for this being confined to the autumn 271 
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analysis is unclear. The correlations between the “other” category and DOC concentration and 272 

colour at the whole catchment scale are also difficult to interpret since this category includes 273 

unknown habitat classes (“not accessed” land and “illegible” data inputs). It may be significant 274 

however, that bare ground (J.4; Table 1) is included in this category, which may provide a source of 275 

readily-leachable organic matter.  276 

3.2. Nitrate and pH 277 

Strong positive correlations were observed between arable coverage and nitrate concentration in 278 

the whole catchment analysis in autumn and spring (both p < 0.01; Table 2). This is likely to be 279 

caused by the leaching of organic or inorganic fertiliser (Neill, 1989). The stronger correlation in the 280 

spring analysis may be due to the timing of fertiliser application, which for arable crops tends to 281 

occur in late winter/spring (MAFF, 2000; Trudgill et al., 1991). As mentioned earlier, the 250 m 282 

buffer zone could not be included in the analysis due to there being only 1 catchment where arable 283 

was present in this zone. It is interesting therefore that strong correlations exist at the whole 284 

catchment scale despite arable coverage being virtually absent in the 250 m buffer zone. The 285 

application of fertiliser may also explain the strong positive correlations between improved 286 

grassland coverage and nitrate concentration in both the whole catchment analysis (p < 0.01 in 287 

autumn and spring; Table 2), and the 250 m buffer zone analysis (p < 0.05 and p < 0.01 in autumn 288 

and spring, respectively; Table 3). Again, stronger correlations in the spring analysis at both spatial 289 

scales are likely to be due to the timing of fertiliser application. The strong positive correlations 290 

between woodland and scrub coverage and spring nitrate concentrations at both spatial scales (both 291 

p < 0.01; Table 2 and 3) may be explained by the application of fertiliser prior to tree planting in 292 

commercial forestry plantations (Drinan et al., 2013). 293 

Moderate positive correlations were identified between fen/ mire coverage and reservoir nitrate 294 

concentration in spring sampling at the whole catchment scale (p < 0.05; Table 2) and in both 295 

autumn and spring in the 250 m buffer analysis (both p < 0.05; Table 3). These correlations are likely 296 
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to relate to the nutrient status of this habitat; fen systems are typically associated with relatively 297 

high nutrient concentrations due to their being supplied by drainage water from surrounding 298 

mineral soil (Mitsch and Gosselink, 2000). 299 

The positive correlation between buildings and nitrate concentration at the whole catchment scale 300 

in spring (p < 0.05; Table 2) may be due to the positive correlation mentioned earlier between 301 

buildings and arable coverage. In addition, the urine and droppings of mammals and birds has been 302 

identified as an important non-agricultural source of ammonia (DEFRA, 2002). Nitrifying bacteria in 303 

the soil may then convert ammonia to nitrate. Therefore, assuming that a significant proportion of 304 

the buildings in this category are farms, then the leaching of ammonia from domestic animals may 305 

also account for this correlation. The leaching of nitrates from septic tanks and fertiliser stores may 306 

also explain this association. 307 

A moderate positive correlation was observed between marsh/ marshy grassland coverage and 308 

reservoir nitrate concentration but only in the 250 m buffer analysis in spring (p < 0.05; Table 3). The 309 

reason for this is not clear but may be an artefact of the positive association between marsh/ 310 

marshy grassland and other habitat types displaying a positive correlation with nitrate. For example, 311 

in the 250 m buffer zone analysis, marsh/ marshy grassland coverage correlates positively with 312 

woodland and scrub (rs = 0.646, p < 0.01), improved grassland (rs = 0.771, p < 0.01) and fen/ mire 313 

habitat (rs = 0.560, p < 0.05), all of which show a positive correlation with spring nitrate 314 

concentration at this spatial scale.  315 

The supply of nitrate and phosphate is critical in determining the growth rates of phytoplankton in 316 

freshwater systems with elevated concentrations resulting in eutrophication in some cases (Hecky 317 

and Kilham, 1988). In drinking water sources algal blooms can lead to a number of treatment issues 318 

including taste and odour problems, elevated TOC levels, increased coagulant and chlorine demand, 319 

membrane fouling and an increase in DBPs (Bernhardt et al., 1991; Li et al., 2012; Nguyen et al., 320 

2005). Elevated reservoir nitrate concentrations may also increase the formation of nitrogenous 321 
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DBPs (NDBPs), produced during the disinfection stage of water treatment either directly, or 322 

indirectly via increased algal biomass and consequently increased concentrations of dissolved 323 

organic nitrogen in the raw water (Ritson et al., 2014).  324 

The negative correlation between heathland coverage and reservoir pH in the 250 m buffer analysis 325 

(p < 0.05; Table 3) is likely to be related to the preference of heath vegetation for acidic soils (Holden 326 

et al., 2007) which has a corresponding effect on drainage water pH (Cresser and Edwards, 1987). A 327 

positive relationship has been reported between DOC solubility and pH (Lumsdon et al., 2005). Thus 328 

solubility controls may also help to explain the negative correlations between heathland coverage 329 

and reservoir DOC concentration and colour.  330 

The absence of correlations between pH and some of the other habitat types which tend to be 331 

associated with peat substrates (bare peat, bog, fen/ mire, flush and spring and swamp) is surprising 332 

given that peatlands tend to produce acidic drainage waters. This is reported to result from the 333 

accumulation of organic acids, the enhanced activity of sulphur-metabolising bacteria under 334 

waterlogged conditions and high cation exchange capacity (Clymo, 1964; Urban et al., 1995). 335 

Coniferous forest stands, which represent a large proportion of forest coverage in north Wales, are 336 

also associated with acidic drainage waters (Eisalou et al., 2013; Gough et al., 2012). A significant 337 

decrease in pH has been reported as rainwater passes through coniferous canopies and litter 338 

(Eisalou et al., 2013), due to the high exchangeable acidity of coniferous foliage and litter and the 339 

fact that coniferous litter is readily leached of organic acids (Alfredsson et al., 1998; Nykvist, 1963). 340 

3.3. Temporal and spatial variations in correlations 341 

At the whole catchment scale, more associations between Phase 1 Habitat categories and DOC 342 

concentration were identified in autumn than in spring. A difference in hydrological regime due to 343 

higher rainfall in September than March may explain this contrast. Higher rainfall will result in a 344 

larger contribution of surface runoff to discharge water (Horton, 1933) which is likely to enhance the 345 
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influence of surface characteristics such as vegetation/ litter characteristics. The influence of habitat 346 

may also be enhanced by higher above ground biomass following the growing season. 347 

Overall there were fewer statistically significant correlations identified between habitat types and 348 

reservoir nitrate concentration in autumn compared with spring (Table 2 and 3). We have already 349 

suggested that fertiliser application may be significant in explaining a number of correlations 350 

between habitat type and reservoir nitrate concentration (Neill, 1989), and that its timing may 351 

explain the greater number and strength of correlations in spring (MAFF, 2000; Trudgill et al., 1991). 352 

However, the drivers of seasonal variations in surface water nitrate concentration are known to be 353 

complex, comprising numerous biogeochemical and hydrological processes (Martin et al., 2004). 354 

Stream nitrate concentrations tend to exhibit a summer minima and a winter maxima (Neill, 1989; 355 

Reynolds et al., 1992). This is explained in part by variations in the supply of nitrogen. For example, 356 

in the summer, the availability of leachable nitrate in the soil is limited by lower atmospheric inputs 357 

and plant uptake and in streams by macrophyte uptake (Cooke and Cooper, 1988) and denitrification 358 

(Hill, 1979). In winter on the other hand, plant uptake decreases, atmospheric inputs increase and in-359 

stream losses decrease due to lower primary productivity (Reynolds et al., 1992). Surface water 360 

nitrate levels may also be transport-limited, with a strong association reported with precipitation 361 

and discharge (Neill, 1989; Trudgill et al., 1991). However, given that lower rainfall totals were 362 

recorded in March than in September, it is more likely that reservoir nitrate levels in spring (which 363 

were higher than in autumn), were supply-limited. 364 

It is difficult to interpret the overall effect of spatial scale on relationships between habitat classes 365 

and reservoir water quality since at the 250 m buffer scale, a number of habitat classes are present 366 

in only a few catchments, or are absent altogether. For example, there was only 1 catchment where 367 

arable land was identified in the 250 m buffer zone. However, there was an obvious similarity in the 368 

occurrence of significant correlations at the 2 spatial scales. Although there was no clear difference 369 

in the strength of the correlations between the 2 spatial scales, this similarity would suggest that 370 
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Phase 1 Habitat coverage in the 250 m buffer zone was more important than in the wider catchment 371 

in affecting reservoir water quality. Previous studies have reported improved regressions between 372 

land use and surface water quality parameters when the riparian area was included, or weighted 373 

more heavily than other areas (Levine and Jones, 1990; Osborne and Wiley, 1988).  374 

The relationship between reservoir water quality and catchment characteristics at different spatial 375 

scales may also vary temporally. For example, Gergel et al. (1999), in their study of wetland influence 376 

on DOC concentrations in Wisconsin lakes and rivers, found that in autumn, wetland coverage in the 377 

whole catchment was the best predictor of lake water DOC concentration whereas in summer, 378 

wetland coverage within 50 m of lakes was the best predictor. This could relate to seasonal 379 

hydrological changes since the timing of sampling in autumn and spring corresponded with base 380 

flow and peak flow conditions, respectively (Hurley et al., 1995).  381 

In this study we noted the absence of a number correlations between Phase 1 Habitat classes and 382 

surface water parameters that would typically be expected. For example the lack of positive 383 

correlations between woodland and scrub habitat and a number of wetland habitats and DOC 384 

concentration/ colour was unexpected. This may be due to the influence of various other catchment 385 

features not included in the present study, but which previous studies have reported to influence 386 

surface water chemistry. For example, slope will mediate the relationship between catchment 387 

characteristics and surface water quality due to its influence on surface runoff (Rochelle et al., 1989) 388 

as well as being a predictor of soil organic horizon depth (Rasmussen et al., 1989) and wetland 389 

abundance (Eckhardt and Moore, 1990). The development of a particular soil type reflects a number 390 

of factors including climate, parent material, topography and vegetation and is reported to be a 391 

crucial factor in determining surface water composition and quality (Aitkenhead et al., 1999; Billett 392 

and Cresser, 1992; Hope et al., 1997). Indeed information on soil chemical characteristics has formed 393 

the basis of a number of predictive models for stream water solute concentrations (Billett and 394 

Cresser, 1992; Christophersen and Wright, 1981; Cosby et al., 1985). Soil type influences spatial 395 
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patterns of water flow and storage (Grayson and Western, 2001; Weiler and Naef, 2003). In addition, 396 

adsorption processes in mineral soils regulate the transport of organic carbon and the soil organic 397 

pool is reported to be the main factor controlling DOC flux in streams (Aitkenhead et al., 1999). It 398 

should also be noted that the topographic watershed does not necessarily correspond with 399 

groundwater influence, which may also strongly impact on reservoir water quality (Garrison et al., 400 

1987). In addition, the Phase 1 Habitat Survey of Wales was conducted between 1987 and 1997 and 401 

it is likely that a number of land use changes have occurred in this time (Stevens et al., 2004). 402 

Nonetheless, the present study has demonstrated that the data continues to be relevant to the 403 

study of surface water quality and the extent of its coverage represents a significant benefit for 404 

drinking water companies. 405 

Various processes occurring in the water body will also affect surface water chemistry. For example, 406 

as mentioned earlier, seasonal variations in the uptake of nitrate in surface waters influence nitrate 407 

concentrations (Cooke and Cooper, 1988). DOC loss from reservoirs is reported to occur as a result 408 

of sedimentation and mineralisation processes (Algesten et al., 2004), with precipitation also 409 

affecting DOC concentrations via a dilution effect (Engstrom, 1987). Conversely, DOC may be 410 

produced within the water body (autochthonous DOC), potentially supressing the relationship 411 

between DOC concentration and colour and terrestrial drivers. Nonetheless, a substantial number of 412 

correlations were identified between Phase 1 Habitat data and reservoir water characteristics in the 413 

present study. This, we suggest, relates both to the direct influence of vegetation/ land cover on 414 

runoff and drainage water quality and also to habitat classes being predictors of other physical 415 

characteristics such as peat soils or certain management practices. 416 

3.4. Implications for potable water treatment 417 

Though previous research has cited the relationship between catchment wetland coverage and 418 

surface water DOC and colour loading (Eckhardt and Moore, 1990; Gergel et al., 1999; Hope et al., 419 

1994), our data suggest that wetland type may significantly affect the magnitude of this relationship. 420 
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The identification of positive associations between swamp and, to a lesser extent, fen/ mire habitats 421 

and DOC concentration/ colour, possibly the result of their nutrient supply (Mitsch and Gosselink, 422 

2000), may justify monitoring the quality of drainage waters in these areas. Given that these habitat 423 

types also occupy very small proportions of the catchments included in this study (Figure 2), it may 424 

be that diverting drainage water from these areas would be a cost-effective strategy for improving 425 

reservoir water quality. Monitoring of drainage waters and diversion of water courses may also be 426 

appropriate for areas of arable land use which arguably exerted the strongest influence on surface 427 

water quality. This land use class correlated with DOC, colour and nitrate concentrations at both 428 

sampling times despite being virtually absent from the 250 m buffer zone of the reservoirs. The 429 

apparent impact of arable land on reservoir water quality highlights the importance of excluding this 430 

activity from areas close to the reservoir. In cases where the diversion of problematic drainage 431 

waters is not possible, it may be appropriate to blend reservoir water with water from another 432 

catchment, as has been employed previously as a strategy to reduce water discolouration from peat 433 

(Grayson et al., 2012). 434 

Allowing the expansion of habitat types whose coverage correlates negatively with DOC/ colour may 435 

be a suitable strategy in some cases. However, the potential benefits to surface water quality may 436 

be outweighed by other detrimental impacts. For example, tall herb and fern coverage, which in the 437 

present study was dominated by bracken, correlates negatively with DOC and colour but bracken 438 

habitat has no economic value and is associated with the leaching of carcinogenic compounds such 439 

as ptaquiloside (Rasmussen et al., 2003). Heathland coverage also correlated negatively with DOC 440 

concentration and colour in the present study, but this we argue, may relate to site-specific factors 441 

such as soil moisture constraints since Calluna vegetation is typically associated with highly-coloured 442 

waters (Grayson et al., 2012). 443 

Given the number of statistically significant correlations identified in the present study, and the 444 

national scale of Phase 1 Habitat data, we suggest that future research should explore integrating 445 
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Phase 1 Habitat data into predictive models for reservoir water quality. The present study has also 446 

highlights the fact that correlations between catchment characteristics and surface water quality 447 

may vary on a seasonal basis; an important consideration as researchers seek to develop more 448 

sophisticated predictive models. 449 

4. Conclusions 450 

This study has considered, for the first time, the use of catchment Phase 1 Habitat data for 451 

predicting reservoir water quality. Our analysis was conducted at two different spatial and temporal 452 

scales, to investigate the effect of season and the proximity of habitat types to the reservoir in 453 

affecting potential associations between habitat type and water quality parameters.  454 

Numerous statistically significant correlations were observed between Phase 1 Habitat classes and 455 

reservoir water quality. These could be explained either by the direct impact of vegetation on 456 

drainage water or its association with other physical catchment characteristics or land management 457 

practices. Arable land cover appeared to have the most substantial impact on reservoir water 458 

quality, correlating strongly with DOC concentration, colour and nitrate concentration at both 459 

sampling times. This was despite arable land being virtually absent from the 250 m buffer zone. 460 

The degree to which habitat classes affected reservoir water quality appeared to vary on a seasonal 461 

basis, with more correlations between habitat classes and DOC concentration in autumn, and 462 

between habitat classes and nitrate concentration in spring. However, a striking similarity was 463 

observed between correlations at the whole catchment scale and within the 250 m buffer zone. We 464 

therefore suggest that in general, the influence of habitat coverage on reservoir water quality 465 

parameters increases with proximity to the reservoir. 466 

Although previous research has identified a link between wetland abundance and surface water 467 

DOC/ colour loading, our findings suggest that the type of wetland habitat present is also important. 468 

We found that swamp and fen/ mire habitats were the only wetland types which correlated with 469 
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reservoir DOC or colour. This specificity, we suggest, may relate to the high nutrient levels in these 470 

habitats which may support higher rates of primary production than other wetland types.  471 

Based on the number and strength of correlations observed, we suggest that predictive models for 472 

surface water characteristics based on catchment characteristics could be improved by incorporating 473 

Phase 1 Habitat data. The findings of this study are important for drinking water companies 474 

concerned with maintaining finished water quality and may be of use in targeting monitoring of 475 

drainage water in catchments and selecting appropriate mitigation strategies such as diverting or 476 

blending water.  477 
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7. Tables and Figures 773 

Table 1. Categorisation of Phase 1 habitat types. 774 
Category used in  
present study 

Phase 1 Habitat  
classification 

Category used in  
present study 

Phase 1 Habitat  
classification 

Woodland and scrub A.1 
A.2 

Fen/ mire E.3 
 

Recently-felled woodland A.4 Bare peat E.4 

Unimproved grassland B.1.1 
B.3.1 

Swamp F.1 
F.2 

Improved grassland B.1.2 
B.2.2 
B.4 

Water G.1 
G.2 

Marsh/ marshy grassland  B.5 
 

Rock/ scree/ quarry I.1 
I.2 

Tall herb and fern C.1 
C.2 
C.3 

Arable J.1.1 

Heathland D.1 
D.2 
D.3 
D.5 
D.6 

Caravan site J.3.4 

Bog E.1 Buildings J.3.6 

Flush and spring E.2 
 

Other J.1.2 
J.4 
Not accessed 
Illegible 

 775 
Table 2. Correlation coefficients (r) for statistically significant correlations between percentage Phase 776 

1 Habitat coverage and reservoir water quality (whole-catchment analysis). 777 
 Autumn 

[DOC] 
Spring  
[DOC] 

Autumn 
Colour  
(Hazen) 

Spring 
Colour 
(Hazen) 

Autumn 
[NO3

-] 
Spring 
[NO3

-] 
Autumn 
pH 

Spring 
pH 

Woodland and scrub      0.743**   

Recently-felled woodland         

Improved grassland     0.636** 0.677**   

Unimproved grassland  -0.512*       

Marsh/ marshy grassland         

Tall herb and fern -0.499*  -0.588*      

Heathland -0.543*  -0.543* -0.649**     

Bog         

Flush and spring         

Fen/ mire 0.564*     0.577*   

Bare peat         

Swamp 0.612* 0.690** 0.624** 0.636**     

Water         

Rock/ scree/ quarry         

Arable 0.734** 0.651** 0.508* 0.549* 0.632** 0.721**   

Caravan site         

Buildings 0.596*     0.580*   

Other 0.548*   0.539*     

* indicates p < 0.05 and ** indicates p < 0.01. All results shown relate to Spearman’s correlation 778 
analysis. 779 

  780 
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Table 3. Correlation coefficients (r) for statistically significant correlations between percentage Phase 781 
1 Habitat coverage and reservoir water quality (250 m buffer zone analysis). 782 

 Autumn 
[DOC] 

Spring  
[DOC] 

Autumn 
Colour  
(Hazen) 

Spring 
Colour 
(Hazen) 

Autumn 
[NO3

-] 
Spring 
[NO3

-] 
Autumn 
pH 

Spring 
pH 

Woodland and scrub      0.774**   

Recently-felled woodland         

Improved grassland     0.617* 0.655**   

Unimproved grassland         

Marsh/ marshy grassland      0.502*   

Tall herb and fern   -0.559*      

Heathland -0.560* -0.517* -0.499* -0.652**   -0.558*  

Bog         

Flush and spring         

Fen/ mire 0.600* 0.513*   0.587* 0.578*   

Bare peat         

Swamp 0.647** 0.709** 0.624** 0.636**     

Water         

Rock/ scree/ quarry         

Arable         

Buildings 0.499*        

Other         

* indicates p < 0.05 and ** indicates p < 0.01. Underlined result relates to Pearson’s correlation 783 
analysis and the remainder to Spearman’s correlation analysis. 784 

 785 

 786 
Figure 1. Percentage Phase 1 Habitat coverage in 250 m reservoir buffer zone. 787 
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 788 
Figure 2. Percentage Phase 1 Habitat coverage in whole reservoir catchments. 789 
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