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ABSTRACT 17 

Bivalve shellfish have the capacity to accumulate norovirus (NoV) from waters contaminated with 18 

human sewage. Consequently, shellfish represent a major vector for NoV entry into the human food 19 

chain, leading to gastrointestinal illness. Identification of areas suitable for the safe cultivation of 20 

shellfish requires an understanding of NoV behaviour upon discharge of municipal-derived sewage 21 

into coastal waters. This study exploited the potential of edible mussels (Mytilus edulis) to accumulate 22 

NoV and employed the ISO method for quantification of NoV within mussel digestive tissues. To 23 

evaluate the spatial spread of NoV from an offshore sewage discharge pipe, mesh cages of mussels 24 

were suspended from moorings deployed in a 9 km2 grid array around the outfall. Caged mussels 25 

were retrieved after 30 days and NoV (GI and GII), total coliforms and E. coli enumerated. The 26 

experimentally-derived levels of NoV GI and GII in mussels were similar with total NoV levels 27 

ranging from 7 × 101 to 1.6 × 104 genome copies g-1 shellfish digestive gland (ΣGI + GII). NoV spread 28 

from the outfall showed a distinct plume which matched very closely to predictions from the tidally-29 

driven effluent dispersal model MIKE21. A contrasting spatial pattern was observed for coliforms 30 

(range 1.7 × 102 to 2.1 × 104 CFU 100 g-1 shellfish tissue) and E. coli (range 0 to 1.2 × 103 CFU 100 31 

g-1 shellfish tissue). These data demonstrate that hydrodynamic models may help inform effective 32 

exclusion zones for bivalve harvesting, whilst coliform / E. coli concentrations do not accurately 33 

reflect viral dispersal in marine waters and contamination of shellfish by sewage-derived viral 34 

pathogens. 35 

 36 

Keywords: Food safety; Marine pollution; Risk assessment; Viral contamination; Wastewater 37 

treatment plant.   38 
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1. Introduction 39 

The overall global burden of human disease caused by sewage pollution of coastal waters has 40 

been estimated at 4 million lost person-years annually (Moore et al., 2013). Within this, consumption 41 

of bivalve molluscan shellfish contaminated with norovirus (NoV) derived from human faeces 42 

represents a well-established human health risk (Lees, 2000; Malham et al., 2014). According to the 43 

European Food Safety Authority (EFSA), production of shellfish in areas which are not faecally 44 

contaminated represents the most effective control measure for NoV (EFSA Panel on Biological 45 

Hazards, 2012). However, achieving this goal represents a major challenge to the shellfish industry 46 

due to the vast number of wastewater discharges along the European coastline and the traditional co-47 

location of shellfish harvesting areas around estuaries and coastal communities where sewage 48 

contamination is most apparent (Fleming et al., 2006; Paraskevas et al., 2002). Although significant 49 

improvements have been made in the microbiological quality of coastal waters in Europe (Campos et 50 

al., 2013), in some regions this is being hampered by the increased pressure on the wastewater 51 

infrastructure (due to a rise in human population and extreme weather events which are increasing 52 

the volumes of untreated sewage being released into coastal waters; Matthiessen and Law, 2002; 53 

Stapleton et al., 2008). The introduction of exclusion zones around sewage discharges preventing 54 

shellfish harvesting is being considered in Europe and elsewhere, however, their delineation and 55 

social acceptability remains difficult, particularly if a quasi-zero risk of contamination is required 56 

(Dunn et al., 2014; Fitzgerald, 2014).  57 

Traditionally, bacteria including coliforms and enterococci have been used to estimate the 58 

level of faecal contamination of water and / or shellfish (Oliveira et al., 2011; Pancorbo and Barnhart, 59 

1992), and may be referred to collectively as Faecal Indicator Bacteria (FIB). In Europe, Escherichia 60 

coli is adopted as the traditional indicator of faecal (sewage) contamination in shellfish and is used 61 

for risk assessment and management purposes (Anon, 2004). However, studies have indicated that E. 62 

coli or total coliforms provides a relatively poor indicator of the potential risk of contracting illness 63 

from a wide range of human pathogenic organisms (Ferguson et al., 1996; Griffin et al., 2001; Majori 64 
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et al., 1984). Reasons for this poor correlation include the different environmental persistence of 65 

coliforms relative to viruses, protozoa and other bacteria in marine water, and differences in their 66 

spatial and temporal discharge patterns (Fong and Lipp, 2005). In addition, E. coli may be introduced 67 

to the environment from agricultural livestock making it a poor indicator of point-source, human-68 

derived wastewater discharges (Campos et al., 2013). Therefore, E. coli and NoV may originate from 69 

different sources, be conveyed into the marine environment via alternate routes, may be susceptible 70 

to different stresses, and may be differentially accumulated by shellfish. The current faecal indicator 71 

approach may underestimate the risk from human viruses which are introduced from inadequately- 72 

or un-treated wastewater (De Donno et al., 2012; Fong and Lipp, 2005; Griffin et al., 1999).  73 

Methods for direct recovery and concentration of enteric viruses from coastal waters include 74 

adsorption to and elution from charged membranes or particles, and ultrafiltration and flocculation 75 

approaches (Katayama et al., 2002; Cormier et al., 2014; Calgua et al., 2008). Complications include 76 

the need for large sample volumes and difficulties in removing PCR-inhibitory substances originating 77 

from the marine environment. Of the methods available, the best choice may depend upon specific 78 

PCR-inhibitory compounds present in samples from different locations, and the target virus 79 

(Rodriguez et al., 2012). Recently, streamlined processes giving high recoveries of Hepatitis A Virus 80 

from seawater using zeolite have been described and other studies have been able to report on the 81 

presence and levels of enteric viruses recovered directly from coastal waters using flocculation 82 

(Cormier et al., 2016; Kaas et al., 2016). However, direct recovery of viruses from environmental 83 

waters can only provide a snapshot in time. This may limit our understanding of viral pollutant flow 84 

in areas subject to intermittent discharges and/or complex tidal regimes. 85 

Bivalve shellfish have been shown to efficiently accumulate viral particles (Asahina et al., 86 

2009; De Donno et al., 2012; Nenonen et al., 2008) and sensitive quantitative methods which detect 87 

NoV genomes in molluscan shellfish using molecular techniques (PCR) exist (Anon, 2013; Lees and 88 

CEN WG6 TAG4, 2010). This offers the potential to use shellfish as an integrator of NoV pollution 89 

within both marine and estuarine environments. NoV levels bioaccumulated in oysters experimentally 90 
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placed at several locations within an estuary impacted by sewage discharges have recently been 91 

presented (Campos et al., 2015).  Due to their fixed location, shellfish can be employed to provide a 92 

spatial map of viral pollutant flow from point source wastewater discharges. Further, due to their 93 

fixed location, they can be employed to provide a spatial map of viral pollutant flow from point source 94 

wastewater discharges.  95 

The position and dilution of wastewater effluent plumes has been determined using 96 

approaches such as bacterial, bacteriophage or dye tracing (Hammerstein et al., 2015). More recently, 97 

hydrodynamic models have been used to predict the spatial and temporal patterns of contamination 98 

originating from coastal discharges (Dunn et al., 2014). Such models have been parameterized to 99 

predict microbial concentrations and the potential for shellfish exposure (Gourmelon et al., 2010; 100 

Muhammetoglu et al., 2012; Riou et al., 2007). Validation of these models, however, remains critical 101 

if they are to be adopted for risk assessment purposes and coastal zone management (Gourmelon et 102 

al., 2010). 103 

The aim of this study was to improve our understanding of NoV behaviour upon discharge of 104 

sewage into coastal waters. Our first objective was to derive and compare the spatial contamination 105 

patterns for NoV genogroups one and two (GI and GII), E. coli and total coliforms about a long sea 106 

wastewater outfall. Our second objective was to compare these field-derived spatial contamination 107 

patterns with those predicted from a tidally-driven effluent dispersal model. In lieu of EFSA advice 108 

to produce shellfish in waters which are not faecally contaminated and considering that FIB may be 109 

a poor indicator of sewage-derived viral contamination, the specific intentions were a) to detect any 110 

differences in the spatial contamination pattern for NoV, which might not be captured by the FIB 111 

approach, and b) to determine whether hydrodynamic models may offer greater potential for 112 

prediction of NoV contamination and designation of shellfish harvesting exclusion zones.  113 

 114 

2. Materials and methods 115 

2.1. Site selection 116 
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The offshore submarine sewage outfall pipe at Kinmel Bay, North Wales (53.336901N, 117 

3.569200W; Fig. 1), which serves a total population equivalent of 77,953 people, was selected for 118 

this study. The discharge is consented for up to 38,860 m3 d-1 with a dry weather flow not exceeding 119 

15,941 m3 d-1. Sewage released from the outfall receives only primary and secondary treatment 120 

(activated sludge) prior to discharge. Previous studies have indicated that similar activated sludge 121 

wastewater treatment plants (WWTP) may achieve reductions for NoV GI and GII concentrations of 122 

less than one log10 genome copy (Flannery et al., 2012; Nordgren et al., 2009). In addition to treated 123 

effluent, under high flow conditions (i.e. stormflow) there are periods when storm water is discharged 124 

untreated into marine waters via this outfall, however, no such events were recorded during the 125 

duration of this trial. In compliance with EU bathing water quality standards at proximate beaches, 126 

the outfall discharges into coastal waters of Liverpool Bay at 4 km offshore, in 6.9 m of water at 127 

Lowest Astronomical Tide. The conditions reported here are typical of many other discharge points 128 

around the European coastline. We hypothesized that these conditions could result in a significant 129 

release and persistence of potential human pathogens in marine waters. This site was also chosen as 130 

shellfish are commercially farmed on a large scale near the study area with the harvested product 131 

exported to a range of European countries.  132 

 133 

2.2. Sampling regime and shellfish biosentinels  134 

This study exploited the potential of the common (or blue) edible mussel Mytilus edulis (L.) 135 

to accumulate virions and bacterial cells from shellfish growing waters. Mytilus edulis were collected 136 

50 km away from the study site. To minimize variability associated with growing conditions, animals 137 

were collected via a single short trawl (<5 m) of broadcast-cultivated animals from a commercial bed 138 

with a long term EU designation of Class B (i.e. 230-4600 E. coli CFU per 100 g of flesh) and which 139 

has a history of low level NoV contamination. The animals were washed, size graded (>45 mm) and 140 

200 animals randomly selected for baseline enumeration of NoV and E. coli at time zero (T0). Ten 141 

replicate samples of 10 animals were analyzed for NoV and 10 replicate samples of 50 g shellfish 142 
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flesh for total coliforms and E. coli. Seventy eight batches containing 35 live animals were then placed 143 

in individual net bags (300 × 300 mm). Six net bags were then placed in each of 13 plastic cages to 144 

allow collection of one net bag from each cage at six time points of ~30 d interval. Cages were placed 145 

in triplicate at 13 independent points in a diamond-shaped array around the wastewater outfall (Fig. 146 

1). The cages were suspended at a sea depth of 1 m by attaching them to a plough anchored Polyform 147 

A3 buoy. The individual sample points were separated by 1 km in x and y dimensions. The cages 148 

were deployed in March when NoV community outbreaks were close to maximal (PHE, 2016) and 149 

the first samples were recovered 30 d later in April, 2012. 150 

 151 

2.3. Quantification of norovirus in mussels 152 

NoV quantification in mussel digestive tissue was determined by quantitative reverse-153 

transcription PCR (qRT-PCR) in accordance with the approved method of the European Committee 154 

for Standardization (CEN) (Lees and CEN WG6 TAG4, 2010; Lowther et al., 2012a). Briefly, tissue 155 

homogenates were prepared by Proteinase K digestion of a 2 g aliquot of pooled digestive glands 156 

dissected from 10 animals and after the addition of Mengovirus vMC0 as an extraction control. RNA 157 

extraction was performed with a Nuclisens miniMAG® and magnetic extraction reagents 158 

(bioMérieux Inc., Durham, NC) following the manufacturer’s protocol. The positive controls were 159 

derived from homogenates prepared as per the samples but after addition of 1 Lenticule® disc of 160 

Norovirus Reference Material for each genogroup (Public Health England, London, UK) to ten 161 

digestive glands. The animals used for the positive controls originated from extra mesh bags placed 162 

within the experimental cages. One-step qRT-PCR for Mengovirus (extraction control) and for both 163 

NoV genogroups, including plate layout, and reaction mixes, were performed exactly as described by 164 

Lowther et al. (2012a) except for the genogroup II assay where TAMRA was used as the quencher. 165 

The thermocycler used was an Applied Biosystems 7900HT (Life Technologies Ltd, Paisley, UK). 166 

The use and treatment of a suite of qRT-PCR controls and all quantification steps also followed the 167 

same methods of Lowther et al. (2012a). Three aliquots of extracted RNA per sample were tested in 168 
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each NoV genogroup-specific qRT-PCR assay, average quantities from three replicates giving overall 169 

quantity in detectable genome copies g-1 digestive gland (gc g-1). Extraction efficiency and RT-PCR 170 

efficiency/inhibition were assessed using Mengovirus vMC0 and RNA external controls, respectively. 171 

Retesting was undertaken according to action thresholds for extraction and RT-PCR efficiencies of 172 

1% and 25% respectively or due to failed positive/negative PCR controls. No adjustment for losses 173 

during processing or RT-PCR inhibition was made (uncorrected). This system was in agreement with 174 

the principles outlined in the draft Technical Specification developed by the joint CEN/ISO working 175 

group for standardization of methods for detection of viruses in foodstuffs (Lees and CEN WG6 176 

TAG4, 2010).  177 

 178 

2.4. Quantification of E. coli and coliforms in mussels 179 

Culture methods were used for determination of bacterial Colony Forming Units (CFU) in 180 

line with the European Union Shellfish Water Directive (EU, 2006). Bacterial colony forming units 181 

were enumerated from shellfish flesh by direct plating onto selective agar as described in Clements 182 

et al. (2013). Briefly, mussel samples were washed with sterile seawater to remove any residual 183 

sediment, debris and encrusting organisms before swabbing with 100% methanol to remove the shell 184 

surface biofilm. Samples were left for approximately 15 min to allow the methanol to fully evaporate. 185 

Mussels were opened aseptically and 50 g of flesh and intra-valvular fluid was obtained. Samples 186 

were homogenized for 60 s at 10,000 rev min-1 using a Bamix® blender (Seal Rock Enterprises Ltd., 187 

Bishops Stortford, UK). From the resulting homogenate, 200 µl was plated onto Brilliance® selective 188 

agar (#CM0956; Oxoid Ltd, Basingstoke, UK) to determine E. coli and coliform counts. All plates 189 

were inverted and incubated at 37°C and bacterial CFU enumerated after 24 h.  190 

 191 

2.5. Statistical analysis 192 

To ensure our data are comparable with survey data generated by the UK government National 193 

Reference Laboratory (Lowther et al., 2012a), samples returning “not detected” results for a particular 194 



9 
 

NoV genogroup were assigned a score of 20 gc g-1 for that genogroup (half the limit of detection;  195 

LOD). Samples giving positive results below the limit of quantification (LOQ; 100 gc g-1) were 196 

assigned a score of 50 gc g-1. Statistical analysis was carried out using SPSS Statistics v20 (IBM 197 

Corp., Armonk, NY) while geostatistical analysis was carried out in ArcGIS v9.3.1 (ESRI Inc., 198 

Redlands, CA) using the spline method in the Spatial Analyst toolbox.  199 

 200 

2.6. Hydrodynamic modelling 201 

The Danish Hydraulic Institute (DHI) MIKE21 AD/HD hydrodynamic and water quality 202 

model was used to describe the dispersion of the effluent plume from the offshore outfall (DHI, 2003; 203 

DHI, 2011; Ekebjærg and Justesenu, 1991; Siegle et al., 2007). We chose this model due to its 204 

extensive use for simulating hydrodynamics, water quality, wave dynamics and related processes in 205 

UK coastal areas (Babu et al., 2005; Davies et al., 2009; Williams et al., 2014). The model is also 206 

used as part of the Bathing Water Compliance Assessment undertaken by Intertek Energy and Water 207 

Consultancy Services for this stretch of coastline on behalf of Welsh Water. The model had a 208 

resolution of 45 × 45 m and encompassed 600 × 400 such cells. The model simulation was undertaken 209 

for a 3 day period, run under a calm wind scenario, with a model time step of 60 s and an output 210 

timestep of 10 min. The model predicted the effluent plume dispersal of a 1 m3 s-1 discharge released 211 

continuously over 12 h at a concentration typical of crude sewage (1 × 106 pathogen units l-1). No 212 

microbiological decay rate was used in the model to describe loss of cell viability, instead it was run 213 

as a conservative microbiological pollutant. We considered this appropriate for our purposes as NoV 214 

exhibits moderate persistence in UK coastal waters (Dancer et al., 2010). The sum concentration of 215 

pathogen in each grid cell over the model run was recorded and graphically presented (i.e. total 216 

number of pathogen units predicted to pass through a cell over a model run). Therefore the measure 217 

is an amalgamation of all the modelled timesteps and does not denote a moment in time. The summed 218 

concentration for specific model cells (i.e. where our experimental moorings were located) was 219 

extracted and used as a predictor of relative exposure to contaminants originating from the plume.   220 
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 221 

3. Results 222 

3.1. Baseline microbiological contaminant levels 223 

Baseline levels for NoV GI and GII, E. coli and coliforms in mussels used to stock the 224 

experimental cages at T0 are shown in Table 1. Overall, the levels of NoV GII were very similar 225 

between the replicate batches (CV = 15.9%) with the levels being approximately 60 times higher than 226 

those of NoV GI. In 8 out of 10 replicates, NoV GI could only be detected at levels which were below 227 

the LOQ while NoV GI was not detected in one out of the ten replicates. The concentration of E. coli 228 

in the shellfish flesh was low, represented 12% of the total coliforms and had a high variability 229 

between the replicate batches (CV = 128%).    230 

 231 

3.2. Norovirus and bacterial levels in mussels after 30 days 232 

After 30 d (April) all moorings remained in-situ and the mussels (51.5 ± 0.2 mm, 98.0% 233 

survival) from 11 of 13 sites contained quantifiable levels of NoV GI and GII, both showing a distinct 234 

spatial pattern. After 60 d (May) only 2 and 3 of 12 remaining moorings provided samples with NoV 235 

levels above the method limit of quantification for GI and GII, respectively. As the summer 236 

progressed, NoV remained mostly below quantifiable levels. We therefore present the spatial pattern 237 

derived for the initial 30 d deployment period. 238 

After being deployed around the wastewater outfall for 30 d, NoV GI levels significantly 239 

increased from the T0 baseline value of 52 ± 6 gc g-1 to 1990 ± 619 gc g-1 when averaged across all 240 

sites (P < 0.05). In contrast, across the sampling array, mean NoV GII levels decreased slightly from 241 

the T0 baseline value of 3311 ± 167 gc g-1 to 1990 ± 851 gc g-1 after 30 d, although this was not 242 

statistically significant due to the variability across samples. If the point directly above the outfall is 243 

omitted, the levels of GI and GII in the mussels were highly correlated across all the samples (r2 = 244 

0.98; P < 0.001). Within the sampling array, significant spatial variation in NoV GI and GII levels in 245 

the mussels was apparent (Fig. 2); mussels either accumulated or eliminated NoV depending on their 246 
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situation. Overall, both NoV GI and GII showed much greater dispersion to the East and West and 247 

symmetry about the outfall. NoV GI decreased with distance in all directions from the outfall (7825 248 

gc g-1), however, for NoV GII, the highest contamination levels (9958 gc g-1) were observed at the 249 

most Easterly sample point, 2 km to the East of the outfall (7954 gc g-1). For both NoV genogroups, 250 

levels in the shellfish declined more rapidly to the North and South of the outfall than to the East and 251 

West. However, significantly higher NoV contamination was observed South of the outfall (onshore) 252 

than to the North. The mean concentration for three adjacent sites South of the outfall (ΣGI + GII 253 

2255 ± 154 gc g-1) was significantly higher than for three adjacent sites to the North (ΣGI + GII 329 254 

± 84 gc g-1) for both GI and GII (t-test P = 0.005 and P = 0.019 respectively).  255 

E. coli contamination of shellfish flesh increased in the samples collected directly over the 256 

outfall (approximately 3-fold from the T0 value of 400 ± 163 to 1167 ± 166 CFU 100 g-1) and 257 

decreased to undetectable levels at 5 sites (Fig. 2). The total coliform content of the mussels increased 258 

approximately 6-fold when placed directly over the outfall (3400 ± 670 at T0 to 20,833 ± 1764 CFU 259 

100 g-1 at 30 d) and decreased at all but four sites where there was no significant change. Total 260 

coliforms and E. coli concentrations were also highly correlated across all sites (r2 = 0.82; P < 0.001).  261 

For E. coli and coliforms the spatial contamination pattern around the outfall were slightly different. 262 

E. coli was detected at highest levels directly over the outfall, but was not detected within the transect 263 

to the West nor the North of the outfall, being skewed East and towards the shore. Total coliforms 264 

were also detected at highest levels over the outfall, and also showed a skewed distribution East and 265 

slightly towards shore, but were detected at all sites. Correlation between total coliform and total NoV 266 

(ΣGI + GII) concentrations was weakly significant (r2 = 0.43; P < 0.01). E. coli did not correlate 267 

significantly with NoV levels (r2 = 0.28, P > 0.05).  268 

 269 

3.3. Comparison of experimental results with hydrodynamic model predictions 270 

Our data failed the assumptions for regression analysis, but Spearman’s rank-order correlation 271 

coefficients (rs) and their significance were calculated between the model prediction for water 272 
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concentrations and experimentally derived levels of NoV, E. coli and total coliforms in shellfish tissue 273 

(Table 2). Both NoV GI and GII showed strong correlations with model predictions, which were 274 

highly significant. However, neither E. coli nor total coliforms showed any significant correlation 275 

with the model predictions. Experimentally-derived levels found in the shellfish tissues were plotted 276 

and compared with predicted relative concentrations according to the model for North-South and 277 

West-East transects passing over the outfall (Fig. 3). The relative values predicted by the model were 278 

normalized to the values found directly above the outfall for each measure. Overall, NoV (GI and 279 

GII) results showed very good agreement with the model simulations. To the West of the outfall, and 280 

particularly for GII, predictions and experimentally-derived levels matched very closely while to the 281 

East there were some differences. Slightly higher levels than those predicted by the model were also 282 

found 1 km to the South of the outfall for both NoV GI and GII. The model overestimated the relative 283 

levels for E. coli and total coliforms both to the East and to the West of the outfall (Fig. 3). However, 284 

higher levels than the model would predict were found to the South (onshore) of the outfall.   285 

 286 

4. Discussion 287 

4.1. Spatial patterns of NoV accumulation in mussels 288 

This field-based study investigated the spatial accumulation of NoV and FIB around an 289 

offshore coastal discharge originating from a large municipal WWTP. The low levels of NoV GI in 290 

the biosentinel mussels used to stock the experiment allowed us to obtain clear spatial patterns of 291 

contamination around the outfall after a 30 d period. A period of 23 d has been considered sufficient 292 

for transplanted oysters to stabilize and represent in situ background levels (Campos et al., 2015). 293 

Higher initial levels of NoV GII in the mussels used to stock the experiment were observed to either 294 

increase at some sites, or decline at others, revealing a similar pattern. This suggests that the levels 295 

after 30 d are representative of contamination in situ, depending upon relative exposure to the effluent 296 

plume during a peak period of NoV community incidence (PHE 2016). Furthermore, spatial 297 

contamination patterns for GI and GII NoV were highly correlated. A peak NoV GII concentration 298 
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observed 2 km East of the outfall could indicate a secondary contamination source (e.g. River Clwyd) 299 

impacting this location. The most contaminated sites by either NoV genogroup all occupy the East-300 

West transect through the center point of the array, over the outfall, and concentrations declined 301 

steeply with distance both to the North and South. This finding was expected due to the reversing 302 

East- and Westerly currents during ebb and flow, and is in visual agreement with hydrodynamic 303 

model predictions for the same sewage discharge plume. It coincides with a strong correlation 304 

between model predictions and experimentally-derived levels for both NoV GI and GII. In the future, 305 

we expect that this type of correlation can be used to predict potential NoV levels using summed or 306 

average effluent dilutions as predicted by hydrodynamic models. This would greatly help the 307 

generation of tools for determining shellfish production exclusion zones around other outfalls for 308 

which a hydrodynamic model is available (e.g. a zone where mussels may be expected to accumulate 309 

>1000 NoV gc g-1). Such an approach would have clear benefits over arbitrary proximity-based 310 

zoning as detailed by Fitzgerald (2015) and Silva et al. (2011).  311 

 312 

4.2. NoV GI and GII accumulation ratios in mussels 313 

Baseline measurements made at the start of the experiment (T0) showed a much greater 314 

abundance of NoV GII relative to the amount of NoV GI present in the mussels (GI:GII ratio = 0.016 315 

± 0.001). This ratio is highly consistent with NoV outbreaks and presence within the wider 316 

community measured during the same time (monthly Mar-Apr mean GI:GII ratio = 0.016 ± 0.005; 317 

mainly associated with GII.4; PHE, 2016). Interestingly, however, after being deployed around the 318 

outfall for 30 d, levels of GI in mussels markedly increased becoming similar to NoV GII levels 319 

across all samples (GI:GII ratio = 0.98 ± 0.15). Due to access issues, effluent samples of wastewater 320 

were not available for analysis. However, factors known to affect the ratio of GI:GII ratio in 321 

wastewater and shellfish include: (i) prevalence of GI:GII infection in the community, (ii) their 322 

differential resistance to water treatment processes, (iii) differences in biotic and abiotic degradation 323 

in seawater, and (iv) differential accumulation and subsequent loss from shellfish tissues. The ratio 324 
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of NoV GI:GII ratio has remained relatively stable in the human population over a long time (PHE, 325 

2016). Although there is a possibility of a high community prevalence of NoV GI infection during 326 

the study period, there is strong evidence to suggest that the other three factors contributed to the 327 

preferential accumulation of GI in our shellfish. Firstly, Da Silva et al. (2007) and Rajko-Nenow et 328 

al. (2013) both present data to suggest that NoV GI is more resistant to WWTP processes than NoV 329 

GII. Secondly, in terms of environmental persistence, NoV GI may be more stable in the water 330 

environment than GII (Lysén et al., 2009). Thirdly, it has been shown that NoV GI may accumulate 331 

more efficiently and strongly in oysters and mussels than NoV GII (Langlet et al., 2015; Ventrone et 332 

al., 2013). In addition, NoV GII accumulates at sites in shellfish where it might be more susceptible 333 

to being destroyed (Maalouf et al., 2010; Maalouf et al., 2011). Lastly, a depuration study by Polo et 334 

al. (2014) showed that GI showed greater retention in mussel tissue when exposed to clean seawater. 335 

Taken together, this also correlates with the finding that NoV GI is more frequently encountered in 336 

shellfish-related NoV outbreaks (LeGuyader et al., 2012). Low levels (below LOQ) of both GI and 337 

GII in most samples collected in and after May (data not presented) is not surprising given the widely 338 

recognized seasonality of NoV incidence in the community and detection in shellfish (Lowther et al., 339 

2012a). 340 

 341 

4.3. Spatial patterns of faecal indicator bacteria accumulation in mussels 342 

In contrast to NoV, no significant agreement was found between the measured concentrations 343 

of E. coli or coliforms in mussels and the modelled effluent plume exposure. Furthermore, whilst E. 344 

coli correlated with total coliforms and NoV GI correlated strongly with NoV GII, no significant 345 

correlation was found between E. coli and NoV. Indeed, NoV GI and GII were detected in mussels 346 

at very high concentrations at sites at which E. coli was not detected, notably to the West of the 347 

outfall. We are aware that the tidal current was flowing to the East at the time of sampling and 348 

therefore mussels to the West are likely to have been less recently exposed to the effluent plume. This 349 

is consistent with evidence that FIB are indicators of recent faecal contamination but NoV can persist 350 
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for weeks in shellfish tissue (Johne et al., 2011). The water is deeper to the West of the outfall and a 351 

differential effect of water depth upon NoV / FIB behavior is also plausible given potential association 352 

with particles and related sedimentation / resuspension phenomena. Importantly, all cages were 353 

suspended at 1 m below the surface rather than on the seabed. Conversely, FIB were detected at sites 354 

at which NoV was not detected, with the distribution of FIB being somewhat more skewed towards 355 

the shore. We hypothesize that secondary non-point sources, which may be of animal origin, affect 356 

this pattern. Therefore, this study suggests that FIB indicate the presence of faecal contamination but 357 

may not accurately reflect persistent contamination by viral pathogens associated with human-sewage 358 

effluent. 359 

 360 

4.4. Implications for human health 361 

The regulations for the commercial sale of shellfish in Europe are solely based on 362 

concentrations of E. coli in shellfish flesh. All the mussels in this study recovered from around the 363 

WWTP outfall after exposure for 30 d would be deemed Class B (<4600 E. coli 100 g-1). After 364 

depuration in an approved facility this would permit them to be sold on the open market. Based on 365 

current evidence it is clear that current depuration practices would have been inadequate at removing 366 

NoV from our shellfish (Polo et al., 2014; Sharp et al., 2016).  367 

 368 

5. Conclusions 369 

Our research has five key conclusions: 370 

1. Outfalls dispensing effluent of this type (secondary treated wastewater) are common and 371 

result in a significant environmental release of NoV during outbreaks in the human population. This 372 

can result in high levels of NoV accumulation in shellfish. Investment in wastewater treatment 373 

technology could reduce the level of risk in shellfisheries and recreational waters impacted by sewage 374 

discharges.  375 
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2. Mussels with intrinsically low NoV loads can be used as effective bio-sentinels for NoV 376 

pollution in marine waters. As viruses appear to be more persistent in shellfish tissue than some FIB, 377 

they may provide a more integrated pollution signal. It is also likely that they can be used to 378 

simultaneously evaluate the prevalence of a wide range of human pathogenic viruses in marine waters 379 

(Bagordo et al., 2013; Diez-Valcarce et al., 2012). It should be noted, however, that a reliance on 380 

NoV alone may provide a poor indicator of other viral pathogens and we recommend the introduction 381 

of multi-viral standards for evaluating the potential contamination of recreational waters and shellfish 382 

harvesting areas.  383 

3. It is clear that current shellfish hygiene regulations based on E. coli alone are inadequate to 384 

protect the human population from consuming shellfish contaminated with high loads of viral 385 

pathogens. The mussels recovered here contained NoV levels up to 1.6 × 104 gc g-1, while in 386 

comparison, the human infective dose for NoV is very low (≥18 viral particles; Hall, 2012). While 387 

we cannot confirm that all the NoV contained in our mussels remained infective to humans, from a 388 

risk assessment perspective it is safest to assume that there is some infection potential. Further, there 389 

is recent evidence to show that the amount of genome copies detected in shellfish is generally 390 

proportional to risk (Lowther et al., 2012b). While adequate cooking may eliminate the risk of 391 

contracting NoV, there are many instances where the product is eaten raw or partially cooked or 392 

where cross contamination can occur during food preparation (Flannery et al., 2014). We conclude 393 

therefore that viral standards are required for shellfish destined for human consumption. 394 

4. Methods for the quantitative recovery of viruses from marine waters have improved but 395 

water samples can still provide only snapshots of information from potentially complex tidal systems. 396 

Their low abundance and ephemeral nature also limits their ability to assess risk. This is limiting the 397 

introduction of viral surveillance measures for bathing waters. Mussel biosentinels therefore offer a 398 

cost-effective way of measuring microbiological pollution, integrated over a time period, particularly 399 

in recreational waters. In this scenario, mussels could be easily deployed on buoys at the perimeter 400 

of the bathing zone and sent for routine analysis. 401 



17 
 

5. Mathematical hydrodynamic models offer great potential in the delineation of shellfish 402 

harvesting exclusion zones, especially where contamination arises from point source discharges, as 403 

per this study. However, more work is needed to validate and improve these models from a viral risk 404 

assessment perspective. Part of this needs to include validation for a range of viruses including those 405 

which can be assessed for infectivity, and for a range of scenarios (e.g. estuarine/coast typologies) 406 

and receptors (beaches vs shellfisheries) and to encompass the full range of environmental conditions 407 

(e.g. storms, seasonal). In order to parameterize models, studies should make direct comparison 408 

between viral concentrations in shellfish biosentinels and in effluent released during the period. Based 409 

on this study, we conclude that mussel biosentinels offer a cost effective way of validating these 410 

models. 411 
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Figure legends 607 

Fig. 1. Map showing the location of the municipal wastewater treatment plant and its offshore 608 

discharge point around which an array of biosentinels cages containing mussels were placed in a 1 609 

km diamond grid.  610 

 611 

Fig 2. Experimentally measured and modelled concentrations of microbiological contaminants in 612 

water and biosentinel shellfish in response to an offshore discharge of wastewater. Panel A shows the 613 

predicted plume of a conservative microbiological pollutant released from the offshore discharge 614 

point into the coastal water. Model simulations were undertaken with MIKE21. Panels B-E show 615 

experimentally-derived spatial patterns of NoV GI (Panel B), NoV GII (Panel C), E. coli (Panel D) 616 

and total coliforms (Panel E). The maps for Panels B-E were derived from the amount of indictor 617 

organism accumulated in the mussel biosentinels. For NoV GI and GII, contours represent detectable 618 

genome copies g-1 of digestive gland. Total coliforms and E. coli contours represent CFU 100 g-1 619 

shellfish flesh and intravalvular fluid. The scale of all Panels is the same. 620 

 621 

Fig. 3. Direct comparison of experimentally measured and modelled concentrations of four 622 

microbiological indicators in shellfish in response to an offshore discharge of wastewater. The graphs 623 

represent either the West-East or North-South transects shown in Figure 1. Bars represent the 624 

experimental data and dotted lines show the predicted relative concentrations extracted from the 625 

hydrodynamic model and normalized to the experimentally-derived value for the sampling point 626 

located directly over the outfall.  627 


