Assessing biochar ecotoxicology for soil amendment by root phytotoxicity bioassays
Visioli, Giovanna; Conti, Federica D.; Menta, Cristina; Bandiera, Marianna; Malcevschi, Alessio; Jones, David; Vamerali, Teofilo
Environmental Monitoring and Assessment

DOI: 10.1007/s10661-016-5173-y

Published: 01/03/2016

Peer reviewed version

Cyswllt i'r cyhoeddiad / Link to publication

Dyfyniad o’r fersiwn a gyhoeddwyd / Citation for published version (APA):

Hawliau Cyffredinol / General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Ecotoxicological assessment of biochar quality by using phytotoxicity bioassays

Giovanna Visioli¹*, Federica D. Conti¹, Cristina Menta¹, Gerardo Palla³, Marianna Bandiera², Alessio Malcevschi¹, Teofilo Vamerali²

¹ Department of Life Sciences, University of Parma, Italy
² Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padova, Italy
³ Department of Food Science, University of Parma, Italy

* Corresponding author:

Giovanna Visioli
Department of Life Sciences
University of Parma
Parco Area delle Scienze 11/A
43124 Parma, Italy
Tel: +39-0521-905692
E-mail: giovanna.visioli@unipr.it

Abstract

Soil amendment with biochar has been proposed as effective in improving agricultural land fertility and carbon sequestration, although the characterisation and certification of biochar quality are still crucial for agronomic acceptance. Described here are the effects of four biochars (conifer and poplar wood, grape marc, wheat straw) at increasing application rates (0.5, 1, 2, 5, 10, 20, 50% w/w) on both germination and root elongation of Cucumis sativus L., Lepidium sativum L. and
Sorghum saccharatum Moench. Biochars varied in chemical properties, depending on the type and quality of the initial feedstock batch; PAHs were high in conifer and wheat straw, while Cd and Cu exceeded maximum permitted values for amendments in poplar and grape marc, respectively. With our chars, electrical conductivity and Cu altered both germination and root elongation at ≥5% rate, together with Zn at ≥10% and elevated pH at ≥20%. Germination decreased only at very high rates of grape marc and wheat straw chars, whereas root length was affected already at 0.5% of conifer and poplar in cucumber and sorghum, with marked impairment in all chars at >5%. As a general interpretation, it is proposed here a robust root phytotoxicity logarithmic model in sorghum, based on biochar Zn content, which explains 66% of variability over the whole dosage range tested. We conclude that metal contamination is a crucial quality parameter for biochar safety, and that root elongation represents a stable test for assessing phytotoxicity at recommended amendment rates (<1-2%).

Key-words: Biochar, Feedstock quality, Germination bioassay, Metal contamination, Root phytotoxicity

1. Introduction

Biochar is a carbon-rich by-product resulting from waste plant material burned with little or no oxygen at very high temperatures, usually between 300 and 1,000 °C (Jeffery et al., 2011; Verheijen et al, 2010). In recent years, the importance of biochar for soil amendment has substantially increased, mainly as a response to increased global carbon emissions and deterioration of agricultural soil quality (Laird 2008; Lehmann, 2007). Due to its high porosity, specific surface area and carbon content, biochar can decrease nutrient losses and water leaching, and enhance soil cation exchange and water-retaining capacities (Chan et al., 2007; Lehman 2007). It can also adsorb and immobilise persistent organic and inorganic pollutants (Beesley et al., 2010; Hale at al., 2011; Oleszczuk et al., 2012; Fellet et al. 2014) and pesticides (Cao et al., 2011; Zheng et al., 2010) in
sediments and soils, decreasing the potentially noxious effects associated with their bioaccumulation through the food chain.

Despite these benefits, knowledge of soil-biochar interactions is still incomplete. Hazardous effects may derive from phytotoxic compounds, particularly heavy metals and polycyclic aromatic hydrocarbons (PAHs). Highly dangerous PAHs originate from degradation of lignin and cellulose during production (Freddo et al., 2012; Kuśmierz and Oleszczuk, 2014; Oleszczuk et al., 2013) and are adsorbed onto biochar surfaces (Sharma and Hajaligol, 2003). PAHs are of great environmental concern, due to their toxic, mutagenic and carcinogenic properties, and their presence may introduce unacceptable environmental, agronomic and human health risks when biochar is spread for soil amendment (Kuśmierz and Oleszczuk, 2014). Working parameters during burning of biomass (temperature, oxygen rate, supply feedstock rate, composition) can affect its chemical and physical properties (Spokas, 2010). Hence, it is essential to develop rapid and reliable procedures for biochar screening, to highlight the potentially negative effects on plant growth and human health before large-scale applications.

Within this framework, we compared the effects of four biochars obtained from a standardised gasification process and various feedstock batches, i.e., conifer and poplar wood, grape marc and wheat straw, on the germination and root elongation of three plant species routinely used in bioassay tests, i.e., Cucumis sativus L., Lepidium sativum L. and Sorghum saccharatum (L.) Moench. We aimed at: i) assessing the quality of different feedstocks, ii) identifying the best species as indicators of potential biochar toxicity, and iii) finding a relationship between biochar characteristics and phytotoxicity.

2. Materials and methods
2.1 Biochar production and characterisation

Biochars were obtained by gasification in a fixed-bed, down-draft, open-core, compact gasifier (AGT Company, Italy) at 1,200 °C constant temperature. Four feedstock batches were used: mixed conifer wood (CO), poplar wood (PO), grape marc (GM) and wheat straw (WS). The effects of biochars were compared with a reference commercial green-waste composted amendment (CA) obtained after 6-8-month maturation. pH was measured with a glass electrode on 10 g of pulverised biochar diluted in 25 mL deionised water, after 1 h shaking and subsequent stabilisation. Concentrations of trace elements were revealed in ~0.1-0.15 g DW homogenised samples after microwave-acid digestion (Milestone ETHOS 900, Bergamo, Italy). Samples were analysed by ICP-OES (SPECTRO CirOS Vision EOP, SPECTRO Analytical Instruments KG, Kleve, Germany). DTPA extraction was also performed following the Lindsay and Norwell protocol (1978). PAHs were quantified in 3-g samples treated with 50 mL of toluene (Sigma Aldrich, St. Louis, MO) for 3 h through Soxhlet equipment; the solvent was then evaporated and weighed. The residue was recovered with 1-2 mL toluene, adsorbed on a silica gel column and recovered by washing with 5 mL of toluene, concentrated to 0.1-0.5 mL, spiked with 200 µg of diphenyl (Sigma Aldrich) as internal standard, and injected (1 µL split mode 1/20 ratio) in a GC-MS analyser (Agilent Technologies, Inc., Wilmington, DE) equipped with a 30-m capillary column (0.25-mm i.d., 0.25 mcm f.t) connected with a 5-m silica pre-column (i.d. 0.53 mm). MS data were recorded at 70 eV scan mode (41-440 m/z).

2.2 Phytotoxicity bioassays

Three plant species were used for biochar tests, i.e., *Cucumis sativus* L. (cucumber), *Lepidium sativum* L. (watercress) and *Sorghum saccharatum* (L.) Moench (sorghum). Seeds from each species were obtained from plants not previously treated with fungicides. Seed vitality was
preliminarily assessed at 25±1 °C in deionised water, germination rates being generally >90% for all species. Seed germination and root elongation tests were performed according to OECD regulations (1984). The four biochars and CA were pulverised and mixed with a standard soil (SS) (70% quartz sand, 20% kaolinite, 10% finely-ground Sphagnum peat, pH 8.0±0.2) at 7 increasing w/w rates: 0.5, 1, 2, 5, 10, 20 and 50%, in comparison with SS alone, as untreated control. Tests were performed directly on soil matrices because the elutriates could not always reflect the true toxicity (Visioli et al., 2013; 2014). Four replicates per treatment were arranged by setting 15 g of substrate in 9-cm diameter disposable Petri dishes, covered with Whatman #1 filter paper and wetted with 5 mL of deionised water. Ten undamaged plump seeds were placed on the filter and the dishes were incubated at 25±2 °C in the dark for 72 h. Germination rate was evaluated as number of complete sprouts (≥ 1 mm long) of total number of seeds; shoot (sorghum only) and root lengths were also measured with a digital gauge.

2.3 Statistical analysis

To ascertain differences between biochars, CA and SS, “many-to-one” multiple comparisons were performed with Dunnett’s test (Dunnett, 1955) as a follow-up to the one-way ANOVA procedure. Both endpoints of the phytotoxicity tests (germination and root elongation) were compared. When ANOVA revealed differences between CA and biochars, a multiple-comparison Tukey’s HSD test was carried out. A log-logistic model from the Ritz and Streibig ‘drc’ R package (2005) was applied to fit the dose response of biochars and CA and to estimate the effective concentrations (Ec) responsible for reductions of 10, 30 or 50% in root length. In CO and PO biochars, the log-logistic model failed, and a linear interpolation was applied within the range 0-0.5% (which accounted for almost all variability). A multiple linear regression (stepwise), considering additive effects, was also used to verify the effects of different chemicals in biochars on the reduction in root length. To facilitate interpretation of the large dataset regarding biochar quality
and plant response, multivariate statistical analysis was applied at each tested biochar rate, to reduce
the number of variables by PCA (principal component analysis) and to identify common data
distribution patterns by cluster analysis. Before applying these, data were standardised by
subtracting the mean and dividing by standard deviation within each variable.

Factorial discriminant analysis (MDA, Multigroup Discriminant Analysis, with Wilks’ lambda and
Pillai’s trace tests) and PCA were applied to describe phytotoxicity and biochar quality based on
germination rate and root length, and chemical features of biochars (i.e., pH, EC, total PAHs and
metal rates: Cd, Co, Cr, Cu, Hg, Ni, Pb, Zn). Multivariate data normality was preliminarily verified
by the Shapiro test. Multivariate cluster analysis was used to describe the characteristics of
similarity among biochars and plant species. The data clustering algorithm was agglomerative
(bottom-up) with distance optimisation and similarity (Pearson’s correlation coefficient) as
proximity method. The squared Euclidean distance and average link (UPGMA, Unweighted Pair
Group Method using Arithmetic Average) were used as cluster distance and linkage method,
respectively. In dendrograms, the maximum level of homogeneity within groups was calculated
with the method of Calinski and Harabasz (1974). All statistical analyses were performed with R
software (2013) and within MS Excel XLSTAT (Addinsoft, Paris, France).

3. Results

3.1 Chemical characteristics of biochars

Chemical characterisation of the four biochars revealed some differences in pH, metals and
PAH contents (Table 1a,b). All biochars were alkaline, pH varying from 8.6 in poplar to 10.4 in
grape marc. Only PO had a pH similar to that of SS and CA; the others were characterised by strong
alkalinity, with pH generally >10 (Table 1a). GM also showed the highest electrical conductivity
(EC >12 mS cm⁻¹), ~70× higher than that of PO and CA.
Metal concentrations were generally below the maximum admitted threshold recommended by Italian legislation for amendments (Italian Legislative Decree 217/2006, in application of Reg. CE n. 2003 13 October 2003). Metals above threshold were Cd in PO (+4%) and, in particular, Cu in GM (+60%) (Table 1a).

Sixteen PAH species were revealed as the main pollutants, according to their potential mutagenic properties (EPA, 2008). CO had the highest total PAH rate (>30 mg kg\(^{-1}\)), with considerably higher concentrations of phenanthrene, anthracene and the carcinogenic benzo(b)fluoranthene compared with the other feedstocks (Table 1b). GM had the lowest value (~5 mg kg\(^{-1}\)), the order being CO>WS>PO>GM.

3.2 Effects of biochars on seed germination and root elongation

Seed germination of plant species was revealed at each tested biochar and CA rate (Fig. 1). *Cucumis sativus* was not influenced at low rates, germination being significantly reduced with respect to controls (P<0.001) at only >10% of GM and >50% of WS. *Lepidium sativum* showed an increase in germination rate at all tested dilutions of CO and PO whereas, after initial enhancement, GM again became severely phytotoxic at ≥5% and WS at ≥50% (~40% in germination). Similarly, in *S. saccharatum* CO and PO did not inhibit germination, but was seriously affected above 10% of GM and 50% of WS (P<0.001). GM was the most phytotoxic char, leading to complete inhibition of germination at ≥10% in watercress and ≥20% in cucumber and sorghum. CA did not negatively influence germination at any rate.

Root growth was severely affected by biochar amendment (Fig. 2). Root length in *C. sativus* was significantly reduced at all biochar and tested rates (P<0.001). For this species, a marked fall in root elongation (~80%) was already observed at 0.5% of CO and PO, followed by a stable response, whereas phytotoxicity increased progressively with amendment rate in GM and WS. CA also caused significant root inhibition compared with the untreated control (P<0.001) at any application
rate. Matching the complete inhibition of germination at ≥20% of GM, root elongation was also impeded. *L. sativum* showed no inhibition in root length in CO and PO biochars, nor in CA, roots even being stimulated at all tested rates (P<0.001); conversely, GM and WS, after initial stimulation up to 1% and 2% of application, respectively, inhibited the root growth of this species; at 5% GM and 10% WS, root lengths drastically fell, with significant differences with respect to controls (P<0.001) (Fig. 2). Root and shoot lengths in *S. saccharatum* decreased gradually with increasing application rates of CA, GM and WS (P<0.001), whereas marked impairment was immediately observed at the lowest amendment rate (0.5%) for CO and PO (P<0.001) (Fig. 2).

Biochar application rates causing 10%, 30% and 50% reductions in root length for each species were also estimated (Table SI1). Since estimates for PO and CO fell within the small application range of 0-0.5%, in which the greatest variations occurred, they also provided the lowest values at the three effective concentrations, i.e., ~0.06-0.09% (Ec_{10}), 0.12-0.18% (Ec_{30}) and 0.30-0.44% (Ec_{50}), depending on species. Low Ec values were also found in GM in combination with sorghum. The Ec_{50} of GM was quite stable across species (1.6-3.7%), but a larger variation was observed for WS (7.1-14.7%). Matching the enhancement effect of all biochars within a 2% application rate (Fig. 2), *L. sativum* generally had a higher Ec compared with those of the other species (Table SI1).

ANOVA detected significant differences in root elongation between CA and biochars as average of application rates. Pairwise comparisons confirmed great reductions in length with CO in *C. sativus* and with GM in *L. sativum*; generalised growth impairment was observed in *S. saccharatum* (Table SI2).

Stepwise forward linear multiple regression applied to the whole dataset identified only electrical conductivity as a significant char parameter negatively related to root length, but the model explained only slight variability (R^2 = 0.15). When analysis was broken down by species, the Zn biochar rate appeared as the most important variable in both cucumber and sorghum, the coefficients of determination being 0.36 and 0.39, respectively. A logarithm model in sorghum turned out to provide the most suitable and significant fit (R^2 = 0.66) to describe root length (RL, %
of unamended control) over Zn concentration (mg kg\(^{-1}\)) corrected by biochar rate (BC\%), as follows:

\[
RL = 64.162 - 11.81*\ln(Zn*BC\%)
\]

3.3 Principal component analysis and cluster analysis

PCA based on chemical characteristics of biochars and standardised seed germination rate and root length of plant species identified two dummy factors which explained 100% of variability. The first factor (F1) accounted for almost all variability, i.e., >89% in biochar classification and >77% in species classification, depending on amendment rate, so that only F1 is shown in Figs. 3 and 4.

At low amendment rates (0.5-1%) of biochar classification, F1 was supported (loadings > |0.5|) by electrical conductivity (EC), Ni and Cr, and seldom by PAH rate (Fig. 3). Although germination parameters only became significant at \(\geq 5\%\) amendment, germination was initially negatively correlated with EC and root length with Ni, Cr and PAHs (Fig. 3). Germination was negatively affected by EC and Cu at \(\geq 5\%\) amendment rate, together with Zn at \(\geq 10\%\) and elevated pH at \(\geq 20\%\), as highlighted by the opposite direction of their vectors compared with those of germination rate and root length. In discriminant analysis, ellipsis overlaps and centroid positions generally highlighted two different groups, GM with high EC and Cu+Zn with maximum phytotoxicity, distinguished from the other biochars or commercial amendment. Only at 50% rate could a third group, represented by WS, be clearly plotted separately, with high pH and relatively high EC and PAH, capable of markedly reducing germination and root length.

With regard to species classification, root length significantly supported Factor 1 at all amendment rates, together with germination rate up to 2% of application. Both sorghum and cucumber were classified together as more sensitive species than watercress in highlighting phytotoxicity, with substantial indifference in species choice at 50% biochar rate only (Fig. 4).
At all amendment rates, the hierarchical ascendant classification of biochar-species interaction was a good descriptor of biochar type, regardless of choice of species (Fig. 5). According to the maximum level of similarity, the first group included poplar as the safest biochar source, with low EC, pH and Cu contamination, together with the commercial amendment; the second group included conifer and wheat straw. Grape marc was classified by itself in the third group, with critical salinity, pH and metal contamination.

4. Discussion

4.1 Feedstock and biochar quality

Biochar quality largely depends on the chemical and physical characteristics of the initial batch waste and gasification/pyrolysis parameters. Feedstock quality includes the rate of ash, together with plant nutrients and heavy metals, lignin, cellulose and hemicellulose rates, all having a substantial effect on chemical reactions during the semi-anoxic conditions of combustion and thus potentially leading to accumulation of undesirable and directly toxic compounds. This implies large variability in biochar composition and its impact on soil and plants, making difficult its certification.

Metal rates, together with EC and pH, are essential chemical characteristics for establishing biochar safety (Mukherjee and Lal, 2014; Lehmann and Joseph, 2009). In our experiment, biochar pH was rather variable but generally high, although we did establish its negative influence on plants at very high application rates (>50%) and in the literature the alkalinisation effect in the open is reported to be short-lasting (Lucchini et al., 2014). However, alkalinity is also related to high EC, which may be unsuitable for seed germination and initial root growth within wider ranges of application (5-50%). The characteristics of GM char, which was very rich in Cu as a result of common treatments
against fungal diseases in vineyards under both organic and conventional types of management, revealed the full effects of this metal. The illegal Cu rate is expected to have a direct phytotoxic effect on seedlings and to contribute to raising pH and EC. The good affinity of Cu to organic matter may mitigate its toxicity, but this probably did not occur in the crystalline structure of biochar, and the high Zn level also contributed towards GM phytotoxicity.

It is true that metal mobility is effectively reduced by high pH through stimulation of metal adsorption and precipitation (Beesley et al., 2011; Zhang et al., 2013), and we found moderate DTPA-extractable fractions of all metals in biochars, maximum bioavailability being for Cd in WS (~18% of total), followed by Cu in CO (~10%) and Zn in PO (~6%) (Table 1a). The considerable effects of heavy metals in germination occur at high biochar rates, and soluble metal fractions play a more important role in seedling growth than in completion of germination. Germination is certainly a delicate phase, but root elongation is more sensitive to adverse external conditions, a result already found in the case of high levels of soluble toxic metals in hydroponics (Vamerali et al., 2014).

Chemical characterisation of the four biochars revealed differences in PAH concentrations, conifer CO showing the highest rate (Table 1b). In soils, PAHs degrade slowly, and the high sorption capacity of biochars can extend their degree of environmental hazard over time (Kuśmierz and Oleszczuk, 2014; Quilliam et al., 2013), although our PCA results never indicated any important role of PAHs in seed germination and initial root elongation. Total PAHs includes several toxic compounds with generally low water solubility, and even the more soluble naphthalene and fluorene were very low or below detection limits. Root PAH concentrations are hardly altered by various types of biochars (Brennan et al., 2014), and in our case the absence of any direct root/substrate contact also excludes the possibility of demonstrating the influence of this compound class on seedling growth. The negative influence of wood-derived chars observed on root elongation is probably due to high Ni+Cr+Zn and Cd in CO and PO, respectively, some also exceeding maximum permissible levels for amendments. In markedly metal-contaminated
environments, biochar can also enhance root growth through metal immobilisation, indicating that metal bioavailability is one of the main limiting factors in plant growth (Brennan et al., 2014).

4.2 Species choice as indicator of biochar toxicity

The main problem in biochar management of agricultural land is to identify and standardise the chemical and physical indicators of quality (Lehmann and Joseph, 2009), in order to relate these characteristics to the potential ecological and toxicological effects on soil-living organisms and crop productivity (Lehmann et al., 2011).

Germination and root elongation are the most common tests in soil bioassays for checking compound toxicity (Calvelo Pereira et al., 2010; Chigbo and Batty, 2013; Lin and Xing, 2007). Several authors report that these tests are also effective in assessing biochar contamination (Rogovska et al., 2012; Solaiman et al., 2012). As plant species may substantially differ in their sensitivity to contaminants, our results show that seed germination was not greatly affected in all species, whereas root elongation suffered to an extent which depended on choice of species (Figs. 1, 2). Although germination was reduced only at high biochar rate (e.g., 5-10% for GM), an earlier response may be expected when metal contamination increases greatly, as in biochars derived from wood treated with Cu-based preservatives, the Cu rate of which may be up to 60 times higher than the rate we found (Lucchini et al., 2014). Instead, root length is considerably affected already at low rates, as cell division/elongation in root tips is very sensitive to soil contaminants (Halušková et al., 2010).

Feedstock quality plays an important role in biochar composition and phytotoxicity, but the contrasting response among plant species to the same biochar was unexpected, e.g., the root length of *C. sativus* and *S. saccharatum* was suddenly reduced by wood-based PO and CO biochars. Their low effective concentration values (Ecₜ₅) match recent finding on root elongation inhibition by
wood-based biochars (Jeffery et al., 2011). The behaviour of *L. sativum*, which shows root stimulation under wood-based biochars and CA, the latter also deriving from wood residues, and under low rates of GM and WS, is probably due to its higher tolerance to metal contamination. The *Brassicaceae* include several hyperaccumulator species, and cellular metal chelation is an accepted defence strategy (Anjum et al., 2012). This response suggests that bioassays should focus on the more stable behaviour of sorghum roots across the biochar types and CA, as evidenced by our Zn rate-based logarithm model. In *C. sativus*, Zn contamination was also the most suitable variable of this model ($R^2 = 0.47$), followed by pH ($R^2 = 0.47$), whereas the initial lag interval (up to 2-5% biochar rate) and the contrasting effects of chars in *L. sativum* caused the model to fail. For this species, electrical conductivity was the most constraining factor.

C. sativus is a sensitive and therefore key plant in phytotoxicity bioassays (Wang et al. 2001), although *S. saccharatum* seems a more informative species for biochar investigations. We were surprised to find that *L. sativum* was less sensitive, but this may partly depend on the relatively good quality of our chars and on the type of vegetal matrix, which affects contaminant mobility.

4. Conclusions

At present, there are no clear indicators for the agronomic acceptance of biochar, mainly due to uncertainty regarding its quality and difficulties in predicting interactions with plants and soil biota. Watercress, cucumber and sorghum can all reveal phytotoxicity by reducing their germination rate, albeit only at very high biochar rates. Higher sensitivity, compatible with recommended amendment rates (1-2%), can be easily retrieved from root elongation data. We demonstrate that metal contamination is the most critical constraint for plant growth, and increased metal loads in agricultural land can also exacerbate metal leaching and subsequent groundwater and food chain contamination. Although results on young seedlings must be confirmed in adult plants, these bioassays provide rapid information for char screening. Again, the lack of real long-term studies on
biochar effects in cultivated land, identifying contamination in the feedstock stream before
gasification/pyrolysis remains a crucial step before large-scale applications of biochar become
feasible.

References

Anjum NA, Ahmad I, Pereira ME, Duarte AC, Umar S, Khan NA. The Plant Family *Brassicaceae*:
Contribution Towards Phytoremediation. Springer: Dordrecht, Heidelberg, New York,

Beesley L, Moreno-Jiménez E, Gomez-Eyles JL. Effects of biochar and greenwaste compost
amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants

Beesley L, Moreno-Jiménez E, Gomez-Eyles JL, Harris E, Robinson B, Sizmur T. A review of
biochars’ potential role in the remediation, revegetation and restoration of contaminated

Brennan A, Moreno-Jiménez E, Puschenreiter M, Alburquerque JA, Switzer C. Effects of biochar
amendment on root traits and contaminant availability of maize plants in a copper and

Brennan A, Moreno-Jiménez E, Alburquerque JA, Knapp CW, Switzer C. Effects of biochar and
activated carbon amendment on maize growth and the uptake and measured availability of
polycyclic aromatic hydrocarbons (PAHs) and potentially toxic elements (PTEs). Environ.

Calinski RB, Harabasz J. A dendrite method for cluster analysis. Communications in Stat 1974;3:
1–27.

Calvelo Pereira R, Monterroso C, Macías F. Phytotoxicity of hexachlorocyclohexane: effect on

Quilliam RS, Rangecroft S, Emmett BA, Deluca TH, Jones DL. Is biochar a source or sink for polycyclic aromatic hydrocarbon (PAH) compounds in agricultural soils? GCB Bioenergy 2013; 5:96-103.

Figure 1: Percentage germination (mean value ± SE, n = 4) of tested species at different biochar rates, compared with commercial amendment (CA) and unamended control (horizontal bar). Asterisks: significant differences between amendments and control (** = $P<0.01$; *** = $P<0.001$).
Figure 2: Shoot (s) (only sorghum) and root (r) lengths (mean value ± SE, n = 4) after germination experiment in three species under increasing biochar rates, compared with commercial amendment (CA). Note different scale among graphs.
Figure 3: PCA with F1 loadings (highlighted values > |0.5|) and DA for biochar classification at 3 selected amendment rates, considering chemical characteristics of biochars, germination rate (Germ %) and root length (Root L).
Figure 4: PCA and F1 loadings (highlighted values > |0.5|) for species classification at 3 selected amendment rates, considering germination rate (Germ %) and root length (Root L). Loadings of chemical characteristics of biochars: always nil.
Figure 5: Cluster analysis of biochar/species combinations at 0.5% amendment rate, based on chemical characteristics of biochars and germination rate and root length of 3 species. Horizontal dashed line: maximum level of homogeneity within groups. Similar classification obtained at all amendment rates.
Table 1a: Main chemical proprieties of biochars in comparison with standard soil (SS) and commercial amendment (CA)

<table>
<thead>
<tr>
<th></th>
<th>IGV</th>
<th>SS</th>
<th>CA</th>
<th>CO</th>
<th>PO</th>
<th>GM</th>
<th>WS</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td></td>
<td>8.0</td>
<td>8.2</td>
<td>10.2</td>
<td>8.6</td>
<td>10.4</td>
<td>10.1</td>
</tr>
<tr>
<td>EC (mS cm⁻¹)</td>
<td>-</td>
<td>ND</td>
<td>0.15</td>
<td>0.62</td>
<td>0.17</td>
<td>12.2</td>
<td>4.79</td>
</tr>
<tr>
<td>Cd (mg kg⁻¹ DW)</td>
<td>1.50</td>
<td><0.001</td>
<td>0.29</td>
<td>0.34 (12.7)</td>
<td>1.56 (14.3)</td>
<td>0.47 (8)</td>
<td>0.41 (17.8)</td>
</tr>
<tr>
<td>Co (mg kg⁻¹ DW)</td>
<td>-</td>
<td>6.13</td>
<td>2.71</td>
<td>2.05 (<3.1)</td>
<td>2.74 (<3.1)</td>
<td>1.29 (<3.1)</td>
<td>2.43 (<3.1)</td>
</tr>
<tr>
<td>Cr total (mg kg⁻¹ DW)</td>
<td>-</td>
<td>89.2</td>
<td>47.1</td>
<td>114 (1)</td>
<td>23.5 (<0.2)</td>
<td>30.3 (<0.2)</td>
<td>29.5 (<0.2)</td>
</tr>
<tr>
<td>Cu (mg kg⁻¹ DW)</td>
<td>230</td>
<td>3.56</td>
<td>53.8</td>
<td>111 (10.1)</td>
<td>34.9 (3.3)</td>
<td>369 (1.8)</td>
<td>26.5 (5.5)</td>
</tr>
<tr>
<td>Hg (mg kg⁻¹ DW)</td>
<td>1.50</td>
<td><0.002</td>
<td><0.002</td>
<td><0.001 (-)</td>
<td><0.001 (-)</td>
<td><0.001 (-)</td>
<td><0.001 (-)</td>
</tr>
<tr>
<td>Ni (mg kg⁻¹ DW)</td>
<td>100</td>
<td>53.0</td>
<td>22.0</td>
<td>85.4 (0.7)</td>
<td>18.9 (1.6)</td>
<td>16.2 (0.7)</td>
<td>19.4 (1.8)</td>
</tr>
<tr>
<td>Pb (mg kg⁻¹ DW)</td>
<td>140</td>
<td>7.32</td>
<td>27.7</td>
<td>6.34 (3.6)</td>
<td>10.7 (4.8)</td>
<td>5.23 (<2)</td>
<td>6.92 (2)</td>
</tr>
<tr>
<td>Zn (mg kg⁻¹ DW)</td>
<td>500</td>
<td>25.0</td>
<td>106</td>
<td>272 (4.7)</td>
<td>180 (6.2)</td>
<td>282 (2.2)</td>
<td>183 (4.1)</td>
</tr>
</tbody>
</table>

Highlighted values exceed Italian Guidelines Values (IGV) for total metal rate in amendments. In brackets: % of metal bioavailability (DTPA-extraction). The analysis was performed in duplicate. ND = not detected.
Table 1b: Polycyclic aromatic hydrocarbons (PAHs) rates (mg kg\(^{-1}\)) in biochars.

<table>
<thead>
<tr>
<th>PAHs</th>
<th>CO</th>
<th>PO</th>
<th>GM</th>
<th>WS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naphtalene</td>
<td>ND</td>
<td>0.1</td>
<td>0.19</td>
<td>ND</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>0.27</td>
<td>0.15</td>
<td>2.29</td>
<td>ND</td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>0.05</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Fluorene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>0.19</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>5.29</td>
<td>2.08</td>
<td>ND</td>
<td>1.41</td>
</tr>
<tr>
<td>Anthracene</td>
<td>0.93</td>
<td>0.44</td>
<td>ND</td>
<td>0.23</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>3.12</td>
<td>1.28</td>
<td>0.13</td>
<td>4.91</td>
</tr>
<tr>
<td>Pyrene</td>
<td>3.80</td>
<td>2.14</td>
<td>0.37</td>
<td>4.95</td>
</tr>
<tr>
<td>Benz(a)anthracene</td>
<td>1.40</td>
<td>1.50</td>
<td>0.07</td>
<td>1.22</td>
</tr>
<tr>
<td>Chrysene</td>
<td>1.33</td>
<td>0.87</td>
<td>0.09</td>
<td>1.14</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>2.16</td>
<td>1.74</td>
<td>0.06</td>
<td>0.97</td>
</tr>
<tr>
<td>Benzo(k)fluoranthene</td>
<td>0.00</td>
<td>1.41</td>
<td>0.10</td>
<td>ND</td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>1.20</td>
<td>1.62</td>
<td>0.10</td>
<td>0.45</td>
</tr>
<tr>
<td>Dibenz(a,h)anthracene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Benzo(ghi)perylene</td>
<td>0.88</td>
<td>1.72</td>
<td>0.14</td>
<td>0.27</td>
</tr>
<tr>
<td>Indeno(1,2,3-C,D)pyrene</td>
<td>0.63</td>
<td>0.61</td>
<td>0.26</td>
<td>0.09</td>
</tr>
<tr>
<td>Total of 16 PAH</td>
<td>21.06</td>
<td>15.66</td>
<td>3.81</td>
<td>15.84</td>
</tr>
<tr>
<td>Other PAHs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(calculated without response factors)</td>
<td>11.60</td>
<td>5.25</td>
<td>1.24</td>
<td>9.73</td>
</tr>
<tr>
<td>TOTAL PAH</td>
<td>32.66</td>
<td>20.91</td>
<td>5.05</td>
<td>25.57</td>
</tr>
</tbody>
</table>

The analysis was performed in duplicate. ND = not detected
Table SI1: Effective concentration (%) for biochars at 10, 30 and 50% root length reduction, i.e., Ec\(_{10}\), Ec\(_{30}\), Ec\(_{50}\) in three plant species.

n.p. = non phytotoxic

<table>
<thead>
<tr>
<th>Biochar</th>
<th>Plant species</th>
<th>Ec(_{10})</th>
<th>Ec(_{30})</th>
<th>Ec(_{50})</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>C. sativus</td>
<td>0.06</td>
<td>0.12</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td>S. saccharatum</td>
<td>0.07</td>
<td>0.14</td>
<td>0.36</td>
</tr>
<tr>
<td>PO</td>
<td>C. sativus</td>
<td>0.07</td>
<td>0.15</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td>S. saccharatum</td>
<td>0.09</td>
<td>0.18</td>
<td>0.44</td>
</tr>
<tr>
<td>GM</td>
<td>C. sativus</td>
<td>0.3</td>
<td>1.4</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>L. sativum</td>
<td>2.4</td>
<td>3.1</td>
<td>3.7</td>
</tr>
<tr>
<td></td>
<td>S. saccharatum</td>
<td>0.1</td>
<td>0.6</td>
<td>1.6</td>
</tr>
<tr>
<td>WS</td>
<td>C. sativus</td>
<td>0.9</td>
<td>3.3</td>
<td>7.1</td>
</tr>
<tr>
<td></td>
<td>L. sativum</td>
<td>3.6</td>
<td>5.0</td>
<td>6.2</td>
</tr>
<tr>
<td></td>
<td>S. saccharatum</td>
<td>0.2</td>
<td>2.8</td>
<td>14.7</td>
</tr>
</tbody>
</table>
Table SI 2: Effects of biochar type on root elongation (main effect, i.e., mean of various amendment rates) of plant species at end experiment in comparison with the commercial amendment CA (Tukey’s HSD test; $P \leq 0.05$). Letters: statistical significant differences among chars within same species.

<table>
<thead>
<tr>
<th>Species</th>
<th>Biochar/Amendment</th>
<th>Root length (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. sativus</td>
<td>CA</td>
<td>46.4 a</td>
</tr>
<tr>
<td></td>
<td>CO</td>
<td>19.1 c</td>
</tr>
<tr>
<td></td>
<td>GM</td>
<td>33.7 b</td>
</tr>
<tr>
<td></td>
<td>PO</td>
<td>33.9 b</td>
</tr>
<tr>
<td></td>
<td>WS</td>
<td>49.7 a</td>
</tr>
<tr>
<td>S. saccharatum</td>
<td>CA</td>
<td>19.2 a</td>
</tr>
<tr>
<td></td>
<td>CO</td>
<td>12.5 b</td>
</tr>
<tr>
<td></td>
<td>GM</td>
<td>11.0 b</td>
</tr>
<tr>
<td></td>
<td>PO</td>
<td>13.5 b</td>
</tr>
<tr>
<td></td>
<td>WS</td>
<td>17.8 a</td>
</tr>
<tr>
<td>L. sativum</td>
<td>CA</td>
<td>56.1 a</td>
</tr>
<tr>
<td></td>
<td>CO</td>
<td>56.8 a</td>
</tr>
<tr>
<td></td>
<td>GM</td>
<td>24.9 c</td>
</tr>
<tr>
<td></td>
<td>PO</td>
<td>64.9 a</td>
</tr>
<tr>
<td></td>
<td>WS</td>
<td>40.9 b</td>
</tr>
</tbody>
</table>