Short-term biotic removal of dissolved organic nitrogen (DON) compounds from soil solution and subsequent mineralisation in contrasting grassland soils

Carswell, A. M.; Hill, P. W.; Jones, David; Blackwell, M. S. A.; Johnes, P.; Chadwick, D. R.

Soil Biology and Biochemistry

DOI: 10.1016/j.soilbio.2016.01.017

Published: 01/05/2016

Peer reviewed version

Cyswllt i'r cyhoeddiad / Link to publication

Dyfniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA):

Hawliau Cyffredinol / General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights:

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Short-term biotic removal of dissolved organic nitrogen (DON) compounds from soil solution and subsequent mineralisation in contrasting grassland soils

A.M. Carswella, P.W. Hillb, D.L. Jonesb, M.S.A. Blackwellc, P. Johnesa, D.R. Chadwickb

a School of Geographical Sciences, University of Bristol, University Road, Bristol BS8 1SS, UK
b School of the Environment, Natural Resources & Geography, Bangor University, Gwynedd, LL57 2UW, UK
c Rothamsted Research, Okehampton EX20 2SB, Devon, UK

Corresponding author: Tel +44 117 928 8808; fax: +44 117 928 7878

e-mail address: alison.carswell@bristol.ac.uk (A.M. Carswell)
ABSTRACT

Cycling of low molecular weight dissolved organic nitrogen compounds constitutes an important component of soil organic matter turnover in soils. Here we determined how rapidly grassland soils can cycle urea, compared to the amino acid L-alanine, and the peptide L-trialanine. Using naturally occurring concentrations of 14C-labelled compounds the rates of removal from soil solution and subsequent mineralisation were measured. Biotic removal of all three compounds and subsequent mineralisation to CO$_2$ occurred within minutes. This research has demonstrated, for the first time, the potential for rapid removal of urea at low concentrations by the soil microbial biomass.

Keywords: Dissolved organic matter, Nutrient cycling, Urine patch, Urea
Adverse ecosystem effects of excess nitrogen (N) have been observed globally (Vitousek et al., 2009). Excess N in grasslands, prone to leaching and N emissions, is typically derived from N amendments including organic manures, urine patches and excessive use of synthetic fertilisers. Of these, urea has frequently been examined due to its importance as a fertiliser (IFA, 2014), and its presence in manures and urine (Ball and Ryden, 1984).

Urea is a low molecular weight dissolved organic N (LMW-DON) compound with a C:N molar ratio of 1:2.33, and similar to nitrate and ammonium, is capable of being taken up directly by both plants and microorganisms (Berman and Bronk, 2003; Wang et al., 2008). The extent to which plants can acquire LMW-DON and the degree to which it leaches down the soil profile, is critically dependent on the activity of the soil microbial biomass (SMB; Jones et al., 2013). Recent studies indicate that uptake of LMW-DON by the SMB is frequently driven by carbon (C) demand rather than N (Farrell et al., 2014). Therefore, the presence of C within urea may drive its rate of removal from grassland soil solutions. Although urease activity in soil (Nielsen et al., 1998; Bolado-Rodríguez et al., 2005), and to a lesser extent urea assimilation by the SMB (Smith et al., 2007) have been investigated, urea removal from the soil solution by the SMB over short time-scales has not.

Here SMB removal of \(^{14}\text{C}\)-urea from the soil solution and its subsequent catabolic and anabolic partitioning was examined in three grassland soils. Microbial cycling of urea was directly compared to that of other typical LMW-DON compounds found in soils: the amino acid \(^{14}\text{C}\)-L-alanine and the oligopeptide \(^{14}\text{C}\)-L-trialanine, whose turnover have been extensively characterised and have also been implicated in direct plant LMW-DON acquisition (Hill et al., 2011; Wilkinson et al., 2014).

Soil was collected from three separate grazed grassland sites in the UK (Table 1). All soils were collected towards the end of the growing season (October), with three independent
replicates collected for each type. Soil cores (10 × 8.5 cm; h × i.d.) were kept intact, at field-moisture, in gas-permeable bags, in the dark at 4°C prior to use.

To characterise LWM-DON in each soil, porewater was obtained from intact soil cores, with the root mat removed, by centrifugation-drainage (Giesler and Lundstöm, 1993). Soluble N was determined as described by Farrell et al. (2013) and Sullivan and Havlin (1991). All experimentation with 14C-labelled compounds was performed on < 2 mm sieved soil from separately taken soil samples, which had equilibrated to 20°C overnight. The rate of LMW-DON depletion from soil solution was measured according to Hill et al. (2008). Briefly, 1 g soil (dry weight equivalent; DW) was placed in a microcentrifuge tube with a hole pierced in the bottom. This was placed inside another microcentrifuge tube. 300 µl of either 14C-labelled urea, L-alanine or L-trialanine (10 µM, 0.9 kBq mL⁻¹) was then applied to the soil surface and allowed to infiltrate the soil (< 2.5 sec, 20°C; associated soil water content increase to 45-52%). This concentration was chosen to reflect the urea and free amino acid concentrations naturally occurring within soil solution (Table 1). At 1, 5, 10, 30 and 60 min after substrate addition, the soil was centrifuged (4000 g, 1 min, 4°C; data presented for 0 min in Figures 1 and 2 are assumed) allowing the soil solution to pass to the lower microcentrifuge tube. The 14C content of the recovered soil solution was determined after addition of ScintiSafe3 scintillation cocktail (Fisher Scientific, Loughborough, UK) using a Wallac 1404 liquid scintillation counter (Perkin Elmer Life Sciences, Boston, MA). To assess the mineralisation rate of LMW-DON compounds, 1 g soil was placed in a glass tube through which air was passed before being transferred through 2 successive 0.1 M NaOH traps to capture evolved 14CO2. At 1, 5, 10, 30 and 60 min after 14C-labelled substrate addition (as above), NaOH was replaced and its 14C content determined as above. To separate biotic (e.g. microbial, enzymatic) and abiotic (e.g. sorption) LMW-DON removal processes, the soil solution recovery experiment was also performed on sterilised soil (autoclaved at 121°C, 20 min). Recovery of 14C-labelled
compounds from the sterilised soil solutions was used to calculate the theoretical maximum
\(^{14}\)C-activity (Hill et al., 2008) that could be recovered following complete mixing of amended
\(^{14}\)C-labelled treatments with native soil solution. A two-way ANOVA was used to test for
differences and interactions between soils and LMW-DON treatments.

Complete mixing with native soil solution was not achieved, and after 60 min deviated
between 101-153%. Greater than 100% recovery was achieved at all incubation periods, thus
demonstrating that no retention of \(^{14}\)C-compounds occurred in the sterile soils (Wilkinson et
al., 2014; see supplementary information for equations), consequently no evidence of abiotic
loss pathways was observed. However autoclaving soils can increase the solubilisation of soil
organic matter (SOM; Powlson and Jenkinson, 1976), which may block adsorption sites that
would be available in the living soils. Although soil sterilisation via autoclaving has been found
to be more effective that CHCl\(_3\) fumigation or gamma irradiation at reducing viable cell
numbers (Blankinship et al., 2014).

All \(^{14}\)C-labelled LMW-DON compounds were rapidly removed from the soil solution
(Fig. 1). After 60 min, removal of \(^{14}\)C-L-alanine and \(^{14}\)C-L-trialanine was almost complete, at
98.7 and 99.5% respectively. However, removal of \(^{14}\)C-urea was consistently lower at all
incubation periods, and after 60 min was 88.7%. Removal from soil solution followed the
series: alanine > trialanine > urea (\(p < 0.001\)). Across all soils, the half-life of urea, alanine and
trialanine in solution was 4.15 ± 0.69, 0.30 ± 0.04, 0.94 ± 0.13 min (mean ± SEM; based on
fitting first order single exponential decay to the data), respectively. In contrast, no effect of
soils was observed on substrate depletion. This is perhaps unsurprising as cycling of key LMW-
DON compounds can be remarkably similar across diverse soils and systems (Jones et al.,
2009). Slower uptake of urea relative to the other compounds could be linked to lower
transporter expression and affinity within the SMB. It has also been proposed that soil
microorganisms exist in a C-starved state (Hobbie and Hobbie, 2013). Accordingly, in the soils
examined here the SMB may have exhibited a preference for compounds with a greater C
content and which are commonly present in soil solution (amino acids and peptides are present
in rhizodeposits and via protease action on SOM).

In contrast to removal from soil solution, soil affected ($p < 0.001$) mineralisation of
different compounds at 1, 5, 10 and 30 min, but not after 60 min (Fig. 2). The differences
between soils may, in part, be due to differences in initial soil water content, which can impact
net mineralisation rates (Paul et al., 2003). However, the experiment was performed on field
moist soils to represent the same preceding climatic conditions rather than target a specific soil
water content (Table 1). 14C-urea had the highest mineralisation rates of the three LMW-DON
compounds. This may be attributed to the alternative mineralisation pathway urea can take via
the enzyme urease, which is encountered both intra- and extracellularly. Extracellular urease
has been shown to account for an average of 46% of total urease activity in a range of soils
(Klose and Tabatabai, 1999). This may account for the more rapid mineralisation of urea
relative to alanine and trialanine. Although 14C-urea was most rapidly mineralised of the three
compounds, only 40-45% of 14C-urea removed from the soil solution was subsequently respired
as 14CO$_2$ over 60 min, suggesting that the remaining 14C-urea was assimilated by the SMB
(Nielsen et al., 2008). Another intracellular urea pathway is via ATP:urea amidolyase (Cheng
et al., 2005; Strope et al., 2011), which produces NH$_3$ and HCO$_3^-$ via two enzyme (urea
carboxylase and allophanate hydrolase) reactions, making it a likely path for urea assimilation
in soils.

Although it is widely acknowledged that urea is rapidly mineralised in soils, this is the
first time that such rapid removal of urea from the soil solution by the SMB has been reported.
This suggests that there will be strong microbial competition for urea in soil which may limit
its capture by plant roots when present in low concentrations. The fate of urea-derived NH$_4^+$
requires further investigation. Assimilation of urea by the SMB at higher concentrations of urea
and following application of solid urea as fertiliser requires further work.

Acknowledgements

This work was funded by the UK Natural Environment Research Council (NE/K01093X/1), and the Lawes Trust/University of Reading Studentship scheme.

References

Table 1 Characteristics of the three grassland soils (upper 10 cm) used in the study. Values represent mean ± SEM (n = 3).

<table>
<thead>
<tr>
<th>Sample location</th>
<th>Dystric Cambisol*</th>
<th>Stagni-vertic Cambisol*</th>
<th>Eutric Cambisol**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil texture</td>
<td>Loam*</td>
<td>Heavy clay*</td>
<td>Sandy clay loam**</td>
</tr>
<tr>
<td>Soil pH</td>
<td>5.2 ± 0.07</td>
<td>5.3 ± 0.07</td>
<td>4.8 ± 0.03</td>
</tr>
<tr>
<td>Total soil C (g kg⁻¹ DW)</td>
<td>21.1 ± 0.04</td>
<td>29.1 ± 0.29</td>
<td>27.1 ± 0.19</td>
</tr>
<tr>
<td>Total soil N (g kg⁻¹ DW)</td>
<td>3.6 ± 0.02</td>
<td>4.0 ± 0.02</td>
<td>4.1 ± 0.04</td>
</tr>
<tr>
<td>Soil water (kg kg⁻¹ DW)</td>
<td>0.19 ± 0.01</td>
<td>0.35 ± 0.02</td>
<td>0.29 ± 0.00</td>
</tr>
<tr>
<td>Soil solution free amino acids (µM)</td>
<td>11.3 ± 1.08</td>
<td>6.50 ± 1.18</td>
<td>8.00 ± 1.48</td>
</tr>
<tr>
<td>Soil solution short peptides (<1 kDa; µM)</td>
<td>153 ± 47.3</td>
<td>145 ± 24.7</td>
<td>164 ± 52.0</td>
</tr>
<tr>
<td>Soil solution NO₃-N (mg N l⁻¹)</td>
<td>10.6 ± 0.92</td>
<td>0.74 ± 0.23</td>
<td>2.22 ± 1.21</td>
</tr>
<tr>
<td>Soil solution urea (µM)</td>
<td>6.22 ± 0.20</td>
<td>7.24 ± 0.62</td>
<td>15.33 ± 8.12</td>
</tr>
<tr>
<td>Soil solution NH₄-N (mg N l⁻¹)</td>
<td>0.14 ± 0.02</td>
<td>0.30 ± 0.07</td>
<td>0.23 ± 0.05</td>
</tr>
<tr>
<td>Soil solution DOC (mg C l⁻¹)</td>
<td>29.38 ± 3.25</td>
<td>31.80 ± 5.51</td>
<td>19.98 ± 2.77</td>
</tr>
<tr>
<td>Soil solution DON (mg N L⁻¹)</td>
<td>1.94 ± 0.38</td>
<td>2.17 ± 0.38</td>
<td>1.54 ± 1.26</td>
</tr>
<tr>
<td>Soil respiration (mg C kg⁻¹ dry soil h⁻¹)</td>
<td>0.37 ± 0.05</td>
<td>0.86 ± 0.32</td>
<td>0.60 ± 0.14</td>
</tr>
</tbody>
</table>

Data gained from the literature are marked with either a * (described by Harrod and Hogan, 2008) or a ** (described by Hill et al., 2012).
Figure legends

Fig. 1. Microbially-mediated depletion of \(^{14}\)C-labelled alanine, trialanine or urea from soil solution in three grassland soils. Data points represent means ± SEM (n = 3).

Fig. 2. Time-dependent cumulative mineralisation of \(^{14}\)C-labelled alanine, trialanine or urea in three grassland soils. Data points represent means ± SEM (n = 3).