
 

 

 

P
R

IF
Y

S
G

O
L

 B
A

N
G

O
R

 /
 B

A
N

G
O

R
 U

N
IV

E
R

S
IT

Y
 

 

Modelling the optimal phosphate fertiliser and soil management strategy
for crops
Heppell, J.; Payvandi, S.; Talboys, P.; Zygalakis, K. C.; Fliege, J.; Langton, D.;
Sylvester-Bradley, R.; Walker, R.; Jones, David; Roose, T.

Plant and Soil

DOI:
10.1007/s11104-015-2543-0

Published: 01/04/2016

Peer reviewed version

Cyswllt i'r cyhoeddiad / Link to publication

Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA):
Heppell, J., Payvandi, S., Talboys, P., Zygalakis, K. C., Fliege, J., Langton, D., Sylvester-
Bradley, R., Walker, R., Jones, D., & Roose, T. (2016). Modelling the optimal phosphate fertiliser
and soil management strategy for crops. Plant and Soil, 401(1-2), 135-149.
https://doi.org/10.1007/s11104-015-2543-0

Hawliau Cyffredinol / General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or
other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal
requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private
study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to
the work immediately and investigate your claim.

 17. Apr. 2024

https://doi.org/10.1007/s11104-015-2543-0
https://research.bangor.ac.uk/portal/en/researchoutputs/modelling-the-optimal-phosphate-fertiliser-and-soil-management-strategy-for-crops(1b645406-8693-4a7c-868c-268a695df79b).html
https://research.bangor.ac.uk/portal/en/researchers/davey-jones(247f4973-4af0-4656-9ec0-e008f86111cb).html
https://research.bangor.ac.uk/portal/en/researchoutputs/modelling-the-optimal-phosphate-fertiliser-and-soil-management-strategy-for-crops(1b645406-8693-4a7c-868c-268a695df79b).html
https://research.bangor.ac.uk/portal/en/researchoutputs/modelling-the-optimal-phosphate-fertiliser-and-soil-management-strategy-for-crops(1b645406-8693-4a7c-868c-268a695df79b).html
https://doi.org/10.1007/s11104-015-2543-0


Use of a coupled soil-root-leaf model to optimise phosphate fertiliser use efficiency in barley 1 

J. Heppell1, 2,*, S. Payvandi3, P.Talboys5, K. C. Zygalakis2, 4, D. Langton6, R.Sylvester-Bradley7, T. 2 

Edwards8, R. Walker8, P. Withers5, D.L.Jones5 and T. Roose1, 2  3 

1Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ, 4 

UK. 2IFLS Crop Systems Engineering, University of Southampton, Southampton, SO17 1BJ, UK. 5 

3Syngenta, Cambridge, CB21 5XE, UK. 4School of Mathematics, University of Southampton, 6 

Southampton, SO17 1BJ, UK. 5School of Environment, Natural Resources and Geography, University 7 

of Bangor, Bangor 57 2UW, UK. 6Agrii, GL54 4LZ, UK. 7ADAS Boxworth, Cambridge CB23 4NN, UK. 8 

8Crop & Soil systems, Scotland’s Rural College, Aberdeen, AB21 9YA. 9 

*Corresponding Author: jph106@soton.ac.uk (J. Heppell) 10 

Abstract: (200192/200) 11 

Aims Phosphorus (P) is an essential nutrient necessary for maintaining crop growth, however, it’s 12 

often used inefficiently within agroecosystems, driving industry to find new ways to deliver P to 13 

crops sustainably. We consider a precision agriculture approach whichaim to combines traditional 14 

soil and crop measurements with climate-driven mathematical models, that canto optimise the 15 

timing and placement of fertiliser applications.  16 

Methods The whole plant crop model combines an above-ground leaf model with an existing 17 

spatially explicit below-ground root-soil model to estimate plant P uptake and leaf mass. We let P-18 

dependent photosynthesis estimate carbon (C) mass, which in conjunction with temperature sets 19 

the root-growth-rate.  20 

Results The addition of the leaf model achieved a better estimate of two sets of barley field trial data 21 

for leaf mass and plant P uptake, compared with just the root-soil model alone. Furthermore, 22 
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discrete fertiliser placement increases plant P uptake by up to 10% in comparison to incorporating 23 

fertiliser.    24 

Conclusions By capturing essential plant processes we are able to accurately simulate P and C use 25 

and water and P movement during a cropping season. The powerful combination of mechanistic 26 

modelling and experimental data allows physiological processes to be quantified accurately and 27 

useful agricultural predictions for site specific locations.  28 

Keywords Mathematical modelling, phosphate, phosphorus, fertiliser strategy, barley field study, 29 

above and below ground 30 

Introduction 31 

The world-wide production of food has increased due to the demands of an ever expanding global 32 

human population (Brown, 2012). Due to the lack of land available for agricultural expansion, there 33 

is a need to increase yields sustainably by manipulating the existing environment in which crops are 34 

grown, and breeding more resource efficient crops. Resource management for arable farming 35 

systems is critical to the survival of the human population and large amounts of money and time are 36 

needed to elicit the appropriate improvements (Conway and Barbier, 1990).  37 

Phosphorus (P) is one of the essential nutrients required for plant growth and plays an important 38 

role in photosynthesis, respiration, and seed and fruit production.  39 

We are interested in how crops grow and survive in low P environments and how fertiliser and soil 40 

cultivation methods are influencing crop performance. A number of studies have considered the 41 

response of adding different amounts and rates of fertiliser P; in some soils large effects are seen 42 

whereas no effect is seen in others (Bolland and Baker, 1998; Kuchenbuch and Buczko, 2011; 43 

Valkama et al., 2011). There are many ways one could apply P to soils; for example incorporating 44 

(also known as broadcasting, involves an even spreading of P on top of the soil), placing (also known 45 

as banding, involves injecting P into the soil nearer the rooting zone either in row or between rows) 46 



or as a coating on seeds. Studies have shown that injecting fertiliser into the soil nearer to the root 47 

zone (placing) increases plant P uptake compared to incorporated P (Randall and Hoeft, 1988; Lohry, 48 

1998; Owusu-Gyimah et al., 2013). In addition, studies have been conducted to estimate the 49 

differences in soil cultivation methods on plant P uptake; for example, conventional plough versus 50 

minimum tillage (also considering gene variation, George et al., 2011).  The idea behind ploughing is 51 

to turn over or mix the top 25 cm of soil to loosen the soil for seeding, bury any existing crop 52 

residues or weeds, and to provide a good distribution of nutrients for the coming crop. This is in 53 

contrast to minimum tillage which enhances topsoil stability against erosion, retains moisture and 54 

reduces crop establishment costs, but segregates P content with depth and can leave 30% of crop 55 

residue on the soil surface.   56 

Due to the rising cost of fertilisers and agricultural machinery, crop production has become a multi-57 

objective optimisation problem to minimise multiple costs while trying to maximise the crop yield 58 

and environmental impact of fertilisers. This is a complex problem due to varying climatic conditions, 59 

an abundance of technological machines, and availability of more data concerning the states of 60 

fields than ever before. Precision agriculture is an emerging field involved with combining the 61 

newest technologies to the farming industry, ranging from unmanned drone maps of fields to 62 

computer-assisted tractors (Blackmore, 2014). This new technology is enabling automated real time 63 

decision making, applying the most effective treatment to crops at the best time for the best price. 64 

Mathematical models, supported by experimental data, are needed to help predict best decisions in 65 

the short term, and also strategically, to optimise between possible future options. Whilst such 66 

models are seldom not always commercially usedemployed at present, their potential capabilities 67 

are attractive, given that field-scale experiments are both costly and time-consuming, and 68 

integration and dissemination of their empirical results is challenging (Selmants and Hart, 2010; 69 

Jeuffroy et al., 2012; Sylvester-Bradley, 1991). 70 



A plethora of models exist that describe the processes involved in plant growth and the behaviour of 71 

nutrients and water in the soil. Each model has its own unique assumptions and is generally targeted 72 

at specific scientific problems within the area of agriculture. For example, Greenwood et al. (2001) 73 

developed a dynamic model (PHOSMOD) for the effects of soil P and fertiliser P on crop growth, P 74 

uptake and soil P in arable cropping;. Jones et al. (2003) describe a decision support system for 75 

agrotechnology transfer (DSSAT) which focuses on average plant-environment interactions; and 76 

Keating et al. (2003) review an agricultural production systems simulation (APSIM) developed in 77 

CISRO, Australia which deals with water, N, P, pH, erosion and management issues. At the beginning 78 

of the 21st century, modelling 3D architectures of plant roots (RootBox, ROOTMAP, SimRoot, 79 

RootTyp, SPACSYS, R-SWMS) has become popular (Dunbabin et al., 2013). In addition, two research 80 

groups that model above ground 3D plant structures, Prunsinkiewicz Algorithmic Botany group at 81 

the University of Calgary and the Andrieu group (ADEL-wheat model), both use L systems to simulate 82 

the above ground structure of wheat plants. L systems, introduced by Lindenmayer in 1968, 83 

represent a string of production rules that are used to create geometric structures, ideal for plant 84 

development. However all these models do not describe the root-soil interaction explicitly and do 85 

not fully integrate functions that occur above ground with ones that occur below ground. Therefore 86 

plants of the same genotype are represented alike and phenotypic differences cannot be observed. 87 

We hope to address some of these problems by creating a model that links the above and below 88 

ground processes in such a way that they rely on one another. Our whole crop model is based on a 89 

below ground plant-soil interaction model (Roose and Fowler, 2004b; Heppell et al., 2015) coupled 90 

with an above ground leaf growth model based on the seminal work of Thornley (1995).  91 

Here we describe a whole crop model that includes a below-ground root model and an above-92 

ground leaf model and which is validated against experimental data on barley with a varying P 93 

fertiliser scenario analysis. The development of the model is seen as a step-change in our 94 

computational capability to help predict soil P supply, crop P uptake patterns and fertilizer 95 

requirements. 96 
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Materials and Methods 97 

Experimental data 98 

Two barley field trial data sets are used, consisting of leaf mass and plant P uptake values at 99 

different growth stages (GS31, GS45 and GS91 for spring barley; GS39 and GS92 for winter barley). 100 

The experimental data includes different rates of P application (0, 5, 10, 20, 30, 60, 90 kg P ha-1 for 101 

spring barley; 0 15, 30, 60, 90, 120 kg P ha-1 for winter barley) and both sites were classified with an 102 

Olsen P index 1 soil.  The protocol for this is described in Heppell et al. (2015). In addition, we use 103 

the climate data, from the UK Met office Integrated Data Archive System (MIDAS), to accompany the 104 

spring barley (Inverurie, Scotland) and winter barley (Cambridge, England) data sets for the specific 105 

fields in the trial. The climate data consists of daily values for mean temperature (oC), rainfall (mm), 106 

wind speed (m s-1) and humidity (%).  107 

Modelling the whole crop 108 

In this paper we extend a root-soil model (Roose and Fowler, 2004b; Heppell et al., 2015) which 109 

estimates plant P uptake, with an above ground model which estimates leaf mass (based on 110 

Thornley, 1995), to produce a whole crop model. We first describe the root-soil model (hereafter 111 

called the root model), followed by the leaf model and then our coupling process to create a whole 112 

crop model.  113 

Root and soil model  114 

To model the root system we follow the same approach as described in Roose et al. (2004b) and 115 

Heppell et al. (2015) by modelling two orders of root branches only (main and first order branches). 116 

First order roots branch off the main order roots at a given density (𝜓1), branching angle (𝜃), and 117 

each order of roots has a given maximum length and radius (𝐿0, 𝐿1 and 𝑎, 𝑎1 for main and first order 118 

roots, respectively). As in Roose et al. (2004b) and Heppell et al. (2015) we let the root growth slow 119 
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down as the root becomes longer. Following Heppell et al. (2015) we also let the root growth rate (𝑟) 120 

be dependent upon temperature T, 121 

Eqn. 1    
𝜕𝑙𝑖

𝜕𝑡
= 𝑟(𝑇(𝑡)) (1 −

𝑙𝑖

𝐿𝑖
), 122 

where 𝑙𝑖 is the current length of an order 𝑖 root and 𝐿𝑖  is the maximum length of an order 𝑖 root.  123 

The root-soil model is described by the following two equations for water saturation (Eqn. 2) and P 124 

(Eqn. 3) concentration respectively,  125 

Eqn. 2    𝜙
𝜕𝑆

𝜕𝑡
= ∇ ⋅ [𝐷0𝐷(𝑆)∇𝑆 − 𝐾𝑆𝑘(𝑆)�̂�] − 𝐹𝑤(𝑆, 𝑧, 𝑡) , 126 

Eqn. 3    
𝜕

𝜕𝑡
[(𝑏 + 𝜙𝑆)𝑐] + ∇ ⋅ [𝑐𝒖] = ∇ ⋅ [𝐷𝑓𝜙

𝑑𝑆𝑑∇𝑐]] − 𝐹(𝑐, 𝑧, 𝑡) , 127 

where the water flux in the soil, 𝒖, is given by Darcy’s law, 128 

Eqn. 4    𝒖 = −𝐷0𝐷(𝑆)∇𝑆 + 𝐾𝑆𝑘(𝑆)�̂�. 129 

In the above equations 𝑆 is the relative water saturation given by 𝑆 = 𝜙1/𝜙, 𝜙1 is the volumetric 130 

water content, and 𝜙 is the porosity of the soil. 𝐷0 (cm2 day-1) and 𝐾𝑆 (cm day-1) are the parameters 131 

for water ‘diffusivity’ and hydraulic conductivity, respectively (Van Genuchten, 1980). 𝐷(𝑆) and 132 

𝐾(𝑆) characterize reduction in water ‘diffusivity’ and hydraulic conductivity in response to the 133 

relative water saturation decrease, where the functional forms for partially saturated soil are given 134 

by Van Genuchten (1980). �̂� is the vector pointing vertically downwards from the soil surface and 𝐹𝑊 135 

is the water uptake by the plant root system per unit volume of soil as given by Roose and Fowler 136 

(2004a).  137 

For the total P conservation (Eqn. 3), 𝑐 is the P concentration in soil pore water, 𝑏 is the soil buffer 138 

power characterising the amount of P bound to the soil particle surfaces, 𝐷𝑓 is the P diffusivity in 139 

free water and 𝑑 is an impedance factor; 1 ≤ 𝑑 ≤ 3 (Barber, 1984; Nye and Tinker, 1977). 𝐹(𝑐, 𝑆, 𝑡) 140 

describes the rate of plant P uptake by a root branching structure (Roose et al., 2001). Both 𝐹𝑤 and 𝐹 141 



are affected by the spatially and temporally evolving root structure. Water is only taken up by the 142 

main order roots while P is taken up by all roots; see Roose and Fowler (2004b) for details of the 143 

derivation. The equation for 𝐹𝑤 is given by, 144 

Eqn. 5    𝐹𝑊 =
2𝜋𝑎1𝑘𝑟+(2𝜋𝑎1𝑘𝑟𝑘𝑧)

1
2𝜓1(𝑧)

𝜋(𝑎+𝐿1𝑐𝑜𝑠𝜃)
2 [−𝑝𝑐𝑓(𝑆) − 𝑝𝑟], 145 

where 𝜓1 is the density of first order roots on the main order roots,  𝑎1 is the first order root radius, 146 

𝑎 is the main order root radius, 𝐿1 is the maximum length of the first order branches, 𝜃 is the angle 147 

between the main root and the first order branches, 𝑘𝑟 is the root radial water conductivity 148 

parameter (m s-1 Pa-1), 𝑘𝑧 is the root axial hydraulic conductivity calculated using Poiseuille law (m4 149 

Pa-1 s-1), 𝑝𝑐 (Pa) is a characteristic suction pressure determined from experimental data for different 150 

types of soil, 𝑓(𝑆) = (𝑠−1 𝑚⁄ − 1)
1−𝑚

, where 𝑚 is the Van Genuchten soil suction parameter (where 151 

0 < 𝑚 < 1), and 𝑝𝑟  is the root internal xylem pressure (Pa). 152 

Root internal xylem pressure (𝑝𝑟) is calculated by balancing radial and axial fluid fluxes inside the 153 

root, i.e. after Roose and Fowler (2004a) we have, 154 

Eqn. 6    2𝜋𝑎𝑘𝑟(−𝑝𝑐𝑓(𝑆) − 𝑝𝑟) = −𝑘𝑧
𝜕2𝑝𝑟

𝜕𝑥2
, 155 

with two boundary conditions; an impermeable root tip (Eqn. 7) and a root internal pressure (𝑃) at 156 

the base of the zero order root (Eqn. 8), 157 

Eqn. 7     
𝜕𝑝𝑟

𝜕𝑥
= 0 at 𝑥 = 𝐿, 158 

Eqn. 8     𝑝𝑟 = 𝑃 at 𝑥 = 0, 159 

where 𝑃 is a function of temperature (𝑇), humidity (𝐻) and a base line pressure (𝑝𝑟
0) for fitting 160 

parameters 𝜆1, 𝜆2 and 𝜆3 (see Heppell et al., 2014 for the procedure to estimate them), i.e. 161 

Eqn. 9    𝑃 = (𝑝𝑟
0 + 𝜆3) + 𝜆1𝑇 + 𝜆2𝐻. 162 



The rate of plant P uptake is given by, 163 

Eqn. 10    𝐹(𝑐, 𝑧, 𝑡) =
𝐹0+𝐹1

𝜋(𝑎+𝐿1𝑐𝑜𝑠𝜃)
2, 164 

where 𝐹0 and 𝐹1 are the uptake rates for zero and first order roots derived in Roose et al. (2004b). 165 

The boundary conditions to accompany Equations 1 and 2 include a soil surface boundary condition 166 

for water, 167 

Eqn. 11    −𝐷𝑜𝐷(𝑆)
𝜕𝑆

𝜕𝑧
+ 𝐾𝑆𝑘(𝑆) = 𝑊𝑑𝑖𝑚 at 𝑧 = 0. 168 

𝑊𝑑𝑖𝑚 (the flux of water into the soil) is dependent upon rainfall (𝑅), humidity (𝐻), temperature (𝑇), 169 

wind speed (𝑊𝑆) and a constant (𝐸) which sets a base line flux i.e. 170 

Eqn. 12    𝑊𝑑𝑖𝑚 = 𝛿𝑅 + 𝛼𝐻 + 𝛽𝑇 + 𝛾𝑊𝑆 + 𝐸, 171 

for fitting parameters 𝛿, 𝛼, 𝛽 and 𝛾 (see Heppell et al., 2014 for how these values were estimated). 172 

In addition, we have a boundary condition for the concentration of P (𝑐) at the soil surface,  173 

Eqn. 13    −𝐷𝑓𝜙
𝑑𝑆𝑑

𝜕𝑐

𝜕𝑧
+𝑊𝑑𝑖𝑚𝑐 = 0 at 𝑧 = 0, for 𝑡 > 0. 174 

We set a zero flux at the bottom of the soil (𝑙𝑊) for both P and water, 175 

Eqn. 14    −𝐷𝑜𝐷(𝑆)
𝜕𝑆

𝜕𝑧
+ 𝐾𝑆𝑘(𝑆) = 0 at 𝑧 = 𝑙𝑊, 176 

Eqn. 15    −𝐷𝑓𝜙
𝑑𝑆𝑑

𝜕𝑐

𝜕𝑧
= 0 at 𝑧 = 𝑙𝑊. 177 

The initial state of P concentration and water saturation in the soil is given where possible by the 178 

initial soil data for the spring and winter barley experimental sites. A uniform water saturation 179 

profile is initially set at 𝑆 = 0.3  for the two experimental sites; however for the initial P 180 

concentration (𝑐0(𝑧)) we consider two different cases; (1) a uniform concentration and (2) an 181 

exponentially decaying concentration: 182 



Eqn. 16    
(1) 𝑐0(𝑧) = 𝑐𝐴 at 𝑡 = 0, ∀𝑧

(2) 𝑐0(𝑧) = 𝐴1𝑒
−𝐵1𝑧 at 𝑡 = 0, ∀𝑧

, 183 

where 𝑐𝐴 is set to 16 mg P l-1, 𝐴1is the P concentration at the top of the soil (23 mg P L-1) and 𝐵1 is 184 

the strength of the decay in the concentration of P (0.345). The initial P concentration values (𝐶𝐴, 185 

𝐴1and 𝐵1) come from a best fit to the data sets in Heppell et al., (2015) and are both classified as an 186 

Olsen P index 1 soil (Defra, 2010). To reflect the different fertiliser scenarios being used at each field 187 

site a set amount of P (𝑃1) (0-120 kg P ha-1) was either applied at the surface (𝑧 = 0) (P broadcast) or 188 

at a set depth below the soil (𝐷1) (P placement).  189 

Eqn. 17   

𝑐 = 𝑐0(𝑧) + 𝐻(𝑧),
(broadcast) 𝐻(𝑧) = 𝑃1 at 𝑡 = 0, 𝑧 = 0
(placement) 𝐻(𝑧) = 𝑃1 at 𝑡 = 0,  𝑧 = 𝐷1
(else) 𝐻(𝑧) = 0 at 𝑡 = 0 ∀𝑧

. 190 

Leaf growth model 191 

We have altered a compartmental model developed by Thornley (1995) to describe leaf mass 𝑀𝐿 192 

(kgL), leaf C 𝑀𝐶  (kgC) and leaf P 𝑀𝑃 (kgP) as well as the concentration of free C [𝐶] = 𝑀𝐶 𝑀𝐿⁄  (kgC 193 

kgL-1) and free P [𝑃] = 𝑀𝑃 𝑀𝐿⁄  (kgP kgL-1) dynamics within the leaves. The leaf model takes into 194 

account non-linear dynamics of formation of leaf litter and leaf self-shading. Additionally we have 195 

made photosynthesis dependent upon P content in the plant (Foyer and Spencer, 1986, Wissuwa et 196 

al., 2005) and we have altered the leaf growth term, 𝐺𝑠ℎ, which was dependent on [C] and [P], to 197 

also depend upon the air temperature (𝐴𝑇), for the winter barley but not spring barley), as well as [C] 198 

and [P]. We don’t let air temperature affect spring barley as the growing season is much shorter 199 

compared to winter barley and it is not needed for a good fit to the experimental data. The 200 

governing equations are given below and are represented in a flow diagram on Figure 1, i.e., we 201 

have 202 

Eqn. 18    
𝜕𝑀𝐿

𝜕𝑡
= 𝐺𝑠ℎ⏞
Leaf growth rate

−
𝐾𝑙𝑖𝑡𝑡

1+
𝐾𝑚𝑙𝑖𝑡𝑡
𝑀𝐿

𝑀𝐿
⏞      

Leaf metabolism/litter

, 203 



Eqn. 19  
𝜕𝑀𝐶

𝜕𝑡
= 휀𝑘1[𝑃]⏞    
Production of C from photosynthesis

− 𝑓𝑐𝐺𝑠ℎ⏞  
Use of C for L growth

− 𝛽𝑐[𝐶]⏞  
Output of C to phloem

, 204 

Eqn. 20 
𝜕𝑀𝑃

𝜕𝑡
= −𝑓𝑝𝐺𝑠ℎ⏞    
Use of P for L growth

+ 𝐹(𝑐, 𝑧, 𝑡)⏞    
Input of P from xylem

− 𝛽𝑝[𝑃]⏞  
𝑂𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑃 𝑡𝑜 𝑝ℎ𝑙𝑜𝑒𝑚

− 𝑘𝑝휀[𝑃]𝑘1⏞      
𝑈𝑠𝑒 𝑜𝑓 𝑃 𝑡𝑜 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 𝐶 

, 205 

where, 206 

Eqn. 21    𝐺𝑠ℎ = 𝑘𝐺𝑀𝐿[𝐶][𝑃]
𝐴𝑇
𝑠1

𝑠2
𝑠1+𝐴𝑇

𝑠1, 207 

Eqn. 22    휀 =
𝑘𝐶𝑀𝐿

(1+
𝑀𝐿
𝑘𝑀
)(1+

[𝐶]

𝐽𝐶
)
, 208 

where 𝑘𝑔 is the leaf growth rate, 𝐾𝑙𝑖𝑡𝑡 is the litter rate, 𝐾𝑚𝑙𝑖𝑡𝑡 is the litter Michaelis-Menten constant, 209 

𝐾𝐶  is the photosynthesis rate, 𝑘𝑀 is the constant accounting for the leaf self-shading, 𝐽𝐶  is the C 210 

product inhibition constant, 𝑓𝑐 is the fraction of total C used for leaf growth, 𝑓𝑝 is the fraction of total 211 

P used for leaf growth, 𝑘1 is the amount of P used for photosynthesis, 𝑘𝑝𝑘1 is the P loss due to 212 

photosynthesis, 𝛽𝑐 is the rate of C output from the xylem to the phloem, 𝛽𝑝 is the rate of P output to 213 

the phloem, 𝐹(𝑐, 𝑧, 𝑡) is the rate of P entry from the xylem (Eqn. 10) and 𝑠1 and 𝑠2 are fitting 214 

parameters. Initial values for the leaf (𝑀𝐿), C (𝑀𝐶) and P (𝑀𝑃) mass are 1x10-4, 0 and 1x10-7 kg 215 

respectively.  216 

Whole crop model 217 

In order to provide feedback between the root model and leaf model, we allow C mass to affect the 218 

root growth rate. Increasing C mass will increase root growth which in turn will increase plant P 219 

uptake. Through the process of photosynthesis, increasing plant P uptake will also increase C mass, 220 

thus creating a positive feedback loop.  221 

The order 𝑖 root growth rate is now dependent on C as well as temperature, therefore we replace 222 

Eqn. 1 with, 223 



Eqn. 23    
𝜕𝑙𝑖

𝜕𝑡
= 𝑟(𝑇, 𝐶) (1 −

𝑙𝑖

𝐿𝑖
), 224 

where the rate of growth 𝑟(𝑇, 𝐶) is given by a function of temperature multiplied by a function of C 225 

(𝑟(𝑇, 𝐶) = 𝑓(𝐶)𝑔(𝑇)), 226 

Eqn. 24    𝑓(𝐶) =
𝛼𝑐𝑀𝐶

𝛾𝐶+𝑀𝐶
, 227 

Eqn. 25    𝑔(𝑇) = {
0 𝑇 ≤ 5𝑜𝐶

𝐴(𝑇 − 5) 𝑇 > 5𝑜𝐶
, 228 

where 𝛾𝐶is the mass of C when the root system is at half its maximum size, 𝛼𝑐  is the strength of the 229 

C effect and 𝐴 is a fitting parameter determining the strength of temperature dependence on root 230 

growth rate. Below critical temperature (5oC) there is no root growth and this reflects cold periods 231 

over the winter (Sylvester-Bradley et al., 2008). 232 

Fitting processCalibration 233 

The parameter list for the models above is given in Table 1. A subset of these parameters are fitted 234 

to the experimental data and their values can be seen in Table 2. To begin the fitting 235 

procedurecalibration process, the leaf model is first fit against the experimental leaf mass data, by 236 

6 parameters (𝛽𝑐, 𝑘1, 𝑓𝑐, 𝑓𝑝 for spring barley and in addition 𝑠1 and 𝑠2 for winter barley). In the leaf 237 

model only, we set the rate of P entry from the xylem (𝐹(𝑐, 𝑧, 𝑡), Eqn. 10) proportional to the 238 

experimental plant P uptake to simulate a representative plant P root uptake.  We then combine the 239 

models, i.e. let the rate of P entry from the xylem be estimated from the root model, and fit for the 240 

remaining parameters (𝛾𝑐  and 𝛼𝑐).  241 

During the fitting processcalibration step we minimise the sum of squares value between the 242 

model’s output for plant P uptake and leaf mass values against the experimental data values for 243 

each the control and maximum applied P scenario (0 and 90/120 kg P ha-1 respectively). With the 244 

fitted parameters we then run the model for all applied P scenarios.  245 
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The differences between modelling spring barley and winter barley are the time they are grown for 246 

(151 and 313 days, respectively), the initial P profile in the soil (20 mg P l-1 decay profile and 16 mg P 247 

l-1 constant profile, respectively) and leaf growth dependence (also depending upon air temperature 248 

for winter barley). 249 

Results 250 

We compare two sets of barley field experimental data against the coupled model, the leaf model 251 

(where plant P uptake is given by experimental data) and the root model. The aim is to address the 252 

differences between the models and how well they fit the experimental field data for barley.  253 

First we compare the values for plant P uptake between the root and coupled model for spring 254 

barley at three different growth stages, GS31, GS45 and GS91 for seven applied P rates (0, 5, 10, 20, 255 

30, 60 and 90 kg P ha-1; Figure 2). The coupled model estimates higher plant P uptake compared to 256 

the root model, better fitting the experimental data; staying within one standard deviation except at 257 

high applied P rates (30, 60 and 90 kg P ha-1 at GS31, 20, 60 and 90 kg P ha-1 at GS45 and 30 and 60 258 

kg P ha-1 at GS91). The feedback effect within the coupled model enables the root structure to 259 

become larger than in the root model and therefore the roots explore more of the soil and hence 260 

achieve an increased plant P uptake (Figure 8). The final model estimate (GS91) is more accurate 261 

than the earliest (GS31) due to not capturing the effects of possible lateral root proliferation due to 262 

higher applied P rates (Drew, 1975). Early differences are averaged out as the root system grows. 263 

When considering plant P uptake in winter barley, the coupled model behaves similarly to the root 264 

model (Figure 3). At GS92, both models under-predict plant P uptake for the same reasons as stated 265 

in Heppell et al. (2015); the P profile is depleted which limits the amount of P available for uptake, 266 

and perhaps the total amount of P in the soil was different to that estimated by the one soil test for 267 

the whole site (Olsen P index 1). The effect of slow release P pools in the soil was not taken into 268 

consideration due to the fact experimental data for this phenomenon was not available.  269 



By coupling the root model with the leaf model we are able to compare measured leaf mass values 270 

against the coupled and leaf model only for both spring barley (Figure 4) and winter barley (Figure 5) 271 

for different applied P rates. The coupled model accurately predicts leaf mass at GS91 for spring 272 

barley, however it estimates a more average value for earlier growth stages; not distinguishing any 273 

differences between applied P rates. The large errors bars in the experimental leaf mass data are 274 

possibly due to field variation, making it hard to distinguish any differences between applied P rates, 275 

especially at later growth stages (the experimental differences are not statically significant). In 276 

addition, the variation in experimental plant P uptake values for GS31 is less than for GS91 (18% to 277 

24%), implying little correlation between early and late plant P uptake (adjusted r2=0.4). For winter 278 

barley, the coupled model is able to match leaf mass at GS39, but vastly underestimates leaf mass at 279 

GS92 due to underestimating plant P uptake as mentioned above. The leaf model fits well across all 280 

scenarios for spring and winter barley as it takes the known plant P uptake from the experimental 281 

data as an input.  282 

The leaf model component allows us to estimate P (Figure 6) and C mass (Figure 7) in the above 283 

ground tissue over the growing period of the crop. The estimated P mass is higher in the leaf model 284 

compared to the coupled model for both spring and winter barley. The estimated C mass is higher in 285 

the leaf model compared to the coupled model for winter barley, but the other way around for 286 

spring barley. In the winter barley case, the increased C and P masses in the leaf model are due to 287 

higher plant P uptake values (Figure 3 compared to Figure 2) resulting in a larger end leaf mass. For 288 

spring barley, C mass in the coupled model begins lower and ends higher compared to the leaf 289 

model because plant P uptake by the root system also begins lower and ends higher (P uptake 290 

remains constant in the leaf model). The sudden decrease in C and P mass, for winter barley, around 291 

the 250 day mark is due to the enforced halting of the root growth rate.   292 

The root growth rate is affected by C mass (spring barley) and also temperature (winter barley); 293 

therefore different final root lengths can be observed between model simulations (Figure 8). The 294 



leaf model created a longer root length compared to the coupled model in the winter barley 295 

scenario due to the early differences in C mass. For spring barley, the early C mass values for the 296 

coupled and leaf model were similar resulting in almost identical root growth rates and hence final 297 

root lengths. As C mass increases above a certain value any differences are masked when affecting 298 

the root growth rate. There was little difference in root length between the two different fertiliser 299 

applications (0 and 90/120 kg P ha-1), the largest being between the coupled model for winter barley 300 

GS92. Due to the small increase in plant P uptake between scenarios (0 and 120 kg P ha-1) there was 301 

little effect on increasing root length via the slow feedback loop created by the addition of the leaf 302 

model. Chemotropism effects from adding large amounts of P fertiliser could perhaps explain any 303 

differences between plant P uptake values at early growth stages. In the winter barley scenario, as 304 

root growth rate was dependent upon temperature, we see periods of no root growth matching 305 

periods of low temperature, as expected.  306 

Heppell et al. (2015) considered the effects of discrete placing of fertiliser within the root zone 307 

against incorporating fertiliser throughout the soil for a range of cultivation options (mix 25, 20 and 308 

10 cm, inverted plough, minimum tillage and no cultivation) for winter barley at GS92. We do the 309 

same in this paper for the new coupled model (Figure 9). We arrive at the same overall conclusion, 310 

placing fertiliser rather than incorporating achieves a higher plant P uptake estimate and under a 311 

wet climate (x5 flux of water at soil surface), such as in the UK, this difference decreases (9.9% to 0.3% 312 

and 9.8% to 4.5%) over no cultivation for a dry and wet climate respectively. Ploughing was also the 313 

best cultivation option moving top soil P to a lower depth, making it more accessible to a 314 

comparatively larger root system.  315 

Discussion 316 

In order to obtain a more accurate representation of the growth of barley throughout a crop life 317 

cycle we have combined a below ground root-soil model with an above ground leaf model. By 318 

combining the two models we are able to let an above ground process (photosynthesis) affect a 319 



below ground process (root growth) and vice versa. C is created via photosynthesis in the leaf model 320 

(dependent upon leaf mass and P) and stimulates root growth; increased root growth increases 321 

plant P uptake and hence leaf mass. This positive feedback effect could explain why crops with early 322 

plant P uptake levels grow more vigorously and can produce higher yields (Brenchley, 1929; 323 

Boatwright and Viets, 1966; Green et al., 1973; Grant et al., 2001). Due to possible unfavourable (e.g. 324 

dry) weather conditions, maximising early plant P uptake through greater root proliferation is also a 325 

good strategy to help ensure continuing capture of soil resources at later stages of growth. 326 

From the modelling work conducted we can postulate that the whole crop model accurately 327 

estimates leaf mass at all growth stages given it has accurate estimates of plant P uptake (an average 328 

difference of 4.6% for the whole crop model for leaf mass, compared to 15.8% when using values 329 

one standard deviation away from the experimental data). Using the calibrated whole crop model 330 

we found the optimal fertiliser and cultivation scenario is to use a plough and place the P fertiliser. 331 

The largest increase in plant P uptake when placing fertiliser over incorporating fertiliser was 9.6% 332 

(plough, dry climate). The difference between incorporating and placing has been long studied and 333 

depends upon a range of criteria such as soil P concentration, soil temperature, crop species and 334 

price (Devine et al., 1964; Mahler, 2001). Owusu-Gyimah et al. (2013) found that applying fertiliser 335 

at a depth of 10 cm and 20 cm away from the plant (placed P) gave the best outcome for maize 336 

growing under tropical conditions. By placing fertiliser instead of incorporating it throughout the soil 337 

the available P is being put where the root system is going to grow hoping to ensure early plant P 338 

uptake and a more successful crop. Hence Wager et al. (1986) found that P fertilizer application 339 

rates could be halved by placing fertiliser instead of incorporation because the applied P was more 340 

efficiently used. However, optimal fertiliser and cultivation methods depend on the initial soil P 341 

condition/distribution (Randall and Hoeft, 1988); this includes at the depth at which existing P is 342 

initially available within the soil (Heppell et al., 2015).  343 



For modelling across countries it will be important to measure soil available P levels consistently, by 344 

either using a common method or a set of common descriptors. Although, an international ‘standard’ 345 

soil extraction method is not necessarily needed; rather employing a basic soil property (e.g. 346 

sorption/buffer capacity) would be better to calibrate fertiliser recommendations. Modelling is the 347 

most appropriate way to overcome the problems of site specificity in soil P supply that confound 348 

current soil P test methods which do not apply to all soil types, i.e. across countries. Countries 349 

generally adopt a particular standard method for soil P tests; many different extractants are used. 350 

However, these do not necessarily give correlated results, for example across European laboratories 351 

(Neyroud and Lischer, 2002; Jordan-Meille et al., 2012). It is possible that a more robust soil test will 352 

be developed in the future, that more accurately reflects immediate P availability to roots across 353 

different soil types. For example, using Diffusive Gradient in Thin films (DGT) based on soil P 354 

diffusion rates (Van Rotterdam et al., 2009; Tandy et al., 2011) or a method that mimics root P 355 

acquisition traits (De Luca et al., 2015). The use of more mechanistic approaches to calculate soil 356 

available P levels via a more standardised test, or a combination of tests, enhances their applicability 357 

across a wider variety of soil types and may lead to more accurate assessment of fertiliser needs 358 

(Van Rotterdam et al., 2014). Also, given that patterns of P concentration with depth in soil profiles 359 

vary between sites (Jobbágy and Jackson, 2001), it may also be important to assess surface 360 

stratification in no-tilled soils or in subsoils. Over-fertilising soils due to inaccurate estimation of 361 

requirement, or mis-interpretation of soil P supply through inappropriate tests leads not only to 362 

waste of finite reserves of phosphate-rock but also increased risk of P loss to water causing 363 

eutrophication (Hooda et al., 2001). By using knowledge about the distribution of P within the soil 364 

and by modelling its implications, it should be possible to save on fertiliser costs by implementing 365 

better optimised treatments through targeting P use (Yang et al., 2013; Withers et al., 2014). 366 

Furthermore, since crop and fertiliser management have long-term effects on topsoil and subsoil P 367 

availability (Bolland and Baker, 1998), it will be important to validate the model over several years if 368 

it is to improve on current simpler approaches to decision making. Additional model features would 369 



be needed, such as effects between cropping seasons, but would make for a more overall 370 

accomplished model. We note that the model would have to be calibrated separately for different 371 

crops. 372 

Although there was little response to P application observed in the field trial in terms of plant P 373 

uptake at late growth stages (GS91 for spring barley and GS92 for winter barley), there was a 374 

response at early growth stages (GS31 for spring barley and GS39 for winter barley). This early 375 

response could imply that there were limiting environmental factors beyond nutritional inputs. Cold 376 

and dry conditions in spring are known to inhibit the transport of P from the soil to the root (Grant 377 

et al., 2001). However, if the measured ‘low’ P soil was an underestimation for the total amount of 378 

available P in the soil then this could explain the lack of response at harvest observed in the field. In 379 

addition, field variation could in part explain the early response to applied P; however as the root 380 

system became larger during the latter growth stages any difference in plant P uptake and resulting 381 

yield was evened out. Due to the complex nature of cereal physiology (Sylvester-Bradley et al., 2008), 382 

an early plant P uptake response does not necessarily indicate a higher final plant P uptake and yield; 383 

because the plant compensates by taking up more P later on as temperatures warm up. The slow 384 

feedback effect is a good explanation of the long term behaviour of the crop, and estimation of total 385 

plant P uptake.  386 

Potentially, new ways to improve efficiency use of P can now be developed by combining recent 387 

advances in application technology, sensing technology, geo-spatial information and modelling so as 388 

to apply P where it is needed and importantly not apply it where it is not needed. Precision farming 389 

equipment is being widely adopted; now, its effective deployment depends on whether the vast 390 

amount of data available about a given plot of land can be interpreted to improve the precision and 391 

decrease the risks compared to current decision making (Sylvester-Bradley et al., 1999). For example, 392 

soil nutrient maps, past yield maps, soil and canopy sensors and climate predictions may provide 393 

input data for integrated crop models to output quantitative predictions of fertiliser requirements so 394 



that application as sowing can be adjusted in real time. However, the more immediate and 395 

preliminary prospect is of using simulation models to compare scenarios of possible treatments, to 396 

help guide future soil and fertiliser management strategies, and to accompany continuing field 397 

testing.  398 

 Acknowledgements 399 

We would like to thank the BBSRC and DEFRA (BB/I024283/1) for funding S.P. and The Royal Society 400 

University Research Fellowship for funding T.R. K.C.Z. was partially funded by Award No. KUK-C1-13- 401 

04 of the King Abdullah University of Science and Technology (KAUST); J.H. by EPSRC Postdoctoral 402 

Prize Fellowship; and S.P., P.T., D.L., R.S-B., R.W., D.L.J. and T.R. by DEFRA, BBSRC,  Scottish 403 

Government, AHDB, and other industry partners through Sustainable Arable LINK Project LK09136. 404 

References 405 

Barber S (1984) Soil nutrient bioavailability: a mechanistic approach. Wiley-Interscience. 406 

Bhadoria P, Kaselowsky J, Claassen N, Jungk A (1991) Soil Phosphate Diffusion Coefficients: Their 407 

Dependence on Phosphorus Concentration and Buffer Power. Soil Science of America Journal 408 

55(1):56-60. 409 

Blackmore S (2014) Address to the Oxford Farming Conference. 8 January 2014. See 410 

http://www.ofc.org.uk/videos/2014/vision-farming-robots-2050 last accessed 07/09/2015. 411 

Boatwright G, Viets F (1966) Phosphorus absorption during various growth stages of spring wheat 412 

and intermediate wheatgrass. Agronomy Journal 58:185–188. 413 

Bolland M, Baker M (1998) Phosphate applied to soil increases the effectiveness of subsequent 414 

applications of phosphate for growing wheat shoots. Australian Journal of Experimental 415 

Agriculture 38(8):865-869. 416 

http://www.ofc.org.uk/videos/2014/vision-farming-robots-2050%20last%20accessed%2007/09/2015


Brenchley W (1929) The phosphate requirement of Barley at different periods of growth. Annals of 417 

Botany 43:89–112. 418 

Brown L (2012) Outgrowing the Earth: The Food Security Challenge in an Age of Falling Water Tables 419 

and Rising Temperatures. Taylor & Francis. ISBN 1-84407-185-5. 420 

Conway G, Barbier E (1990) After the Green Revolution: Sustainable Agriculture for Development. 421 

Earthscan, London, UK. ISBN: 978-1-84971-930-8. 422 

Cordell D, Drangert J, White S (2009) The story of phosphorus: Global food security and food for 423 

thought. Global Environmental Change 19:292-305. 424 

Defra (2010) Fertiliser Manual (RB209), 8th Edition. The Stationary Office, London. 425 

De Luca T, Glanville H, Harris M, Emmett B, Pingree M, De Sosa L, Morena C, Jones D (2015) A novel 426 

rhizosphere trait-based approach to evaluating soil phosphorus availability across cromplex 427 

landscapes. Soil Biology and Biochemistry 88:110-119. 428 

Déry P, Anderson B (2007) Peak phosphorus. In: Energy Bulletin, 08/13/2007. Post Carbon Institute. 429 

Available: energybulletin.net/node/33164. 430 

Devine JJ, Gilkes R, Holmes MRJ (1964) Field experiments on the phosphate requirements of Spring 431 

wheat and barley. Experimental Husbandy 11:88-97. 432 

Drew MC (1975) Comparison of the effects of a localised supply of phosphate, nitrate, ammonium 433 

and potassium on the growth of the seminal root system, and the shoot in Barley. New 434 

Phytologist 75:479-490.  435 

Dunbabin V, Postma J, Schnepf A, Pagès L, Javaux M, Wu L, Leitner D, Chen Y, Rengel Z, Diggle A 436 

(2013) Modelling root-soil interactions using three-dimensional models of root growth, 437 

architecture and function. Plant and soil 372:93-124. 438 



Foyer C, Spencer C (1986) The relationship between phosphate status and photosynthesis in leaves. 439 

Planta 167(3):369-375. 440 

George T, Brown L, Newton A, Hallett P, Sun B, Thomas W, White P (2011) Impact of soil tillage on 441 

the robustness of genetic component of variation in phosphorus (P) use efficiency in barley 442 

(Hordeum vulgare L.) Plant and Soil 339:113-123. 443 

Grant C, Flaten D, Tomasiewicz D, Sheppard S (2001) The importance of early season phosphorus 444 

nutrition. Canadian Journal of Plant Science 81:211–224. 445 

Green D, Ferguson W, Warder F (1973) Accumulation of toxic levels of phosphorus in the leaves of 446 

phosphorus-deficient barley. Canadian Journal of Plant Science 53:241–246. 447 

Greenwood D, Karpinets T, Stone D (2001) Dynamic Model for the Effects of Soil P and Fertilizer P 448 

on Crop Growth, P Uptake and Soil P in Arable Cropping: Model Description. Annals of Botany 449 

88:279-291. 450 

Heppell J, Payvandi S, Zygalakis K, Smethurst J, Fliege J, Roose T (2014) Validation of a spatial-451 

temporal soil water movement and plant water uptake model. Geotechnique 64(7):526–539. 452 

Heppell J, Payvandi S, Talboys P, Zygalakis K, Fliege J, Langton D, Sylvester-Bradley R, Walker R, 453 

Jones DL, Roose T (2015) Modelling the optimal phosphate fertiliser and soil management 454 

strategy for crops. Plant and Soil special edition PSP5. DOI: 10.1007/s11104-015-2543-0. 455 

Hooda P, Truesdale V, Edwards A, Withers P, Aitken M, Miller A, Rendell A (2001) Manuring and 456 

fertilization effects on phosphorus accumulation in soils and potential environmental implications. 457 

Advances in Environmental Research 5(1):13-21. 458 

Jeuffroy M, Vocanson A, Roger-Estrade J, Meynard J (2012) The use of models at field and farm 459 

levels for the ex ante assessment of new pea genotypes. European Journal of Agronomy 42:68-78. 460 



Jobbágy E, Jackson R (2001) The distribution of soil nutrients with depth: Global patterns and the 461 

imprints of plants. Biogeochemistry 53(1):51-77. 462 

Jones J, Hoogenboom G, Porter C, Boote K, Batchelor W, Hunt L, Wilkens P, Singh U, Gijsman A, 463 

Ritchie J (2003) The DSSAT cropping system model. European Journal of Agronomy 18:235-265. 464 

Jordan-Meille L, RubӔk G, Ehlert P, Genot V, Hofman G, Goulding K, Recknagel J, Provolo G, 465 

Barraclough P (2012) An overview of fertilizer – P recommendations in Europe: soil testing, 466 

calibration and fertilizer recommendations. Soil Use and Management 28(4):419-435. 467 

Keating B, Carberry P, Hammer G, Probert M, Robertson M, Holzworth D, Huth N, Hargreaves J, 468 

Meinke H, Hochman Z, McLean G, Verburg K, Snow V, Dimes J, Silburn M, Wang E, Brown S, 469 

Bristow K, Asseng S, Chapman S, McCown R, Freebairn D, Smith C (2003) An overview of APSIM, 470 

a model designed for farming systems simulation. European Journal of Agronomy 18(3-4):267-471 

288. 472 

Kuchenbuch RO, Buczko U (2011) Re-visiting potassium- and phosphate-fertilizer responses in field 473 

experiments and soil-test interpretations by means of data mining. Journal of Plant Nutrition and 474 

Soil Science 174:171-185. 475 

Lohry R (1998) Surface Banding superior To Broadcasting on Reduced-Till. Fluid Journal 22:14-18. 476 

Lynch J (2007) Roots of the second green revolution. Australian Journal of Botany 55:493-512. 477 

Mahler R (2001) Fertilizer Placement. CIS. Soil Scientist, Department of plant, Soil, and 478 

Entomological Sciences, University of Idaho. 479 

Neyroud J, Lischer P (2002) Do different methods used to estimate soil phosphorus availability 480 

across Europe give comparable results? Journal of Plant Nutrition Soil Science 166(4):422-431. 481 

Nye P, Tinker P (1977) Solute movement in the soil-root system. Blackwell Science Publishers. 482 

Formatted: Font: Not Bold



Owusu-Gyimah V, Nyatuame M, Ampiaw F, Ampadu P (2013) Effect of depth and Placement 483 

Distance of Fertilizer NPK 15-15-15 on the Performance and Yield of Maize Plant. International 484 

Journal of Agronomy and Plant Production. 4(12):3197-3204. 485 

Randall G, Hoeft R (1988) Placement Methods for Improved Efficiency of P and K Fertilizers: A 486 

Review. Journal of Production Agriculture 1(1):70-79.  487 

Roose T, Fowler A, Darrah P (2001) A mathematical model of plant nutrient uptake. Mathematical 488 

Biology 42(4):347–360.  489 

Roose T, Flower A (2004a) A model for water uptake by plant roots. Journal of Theoretical Biology 490 

288:155-171. 491 

Roose T, Fowler A (2004b) A mathematical model for water and nutrient uptake by plant root 567 492 

systems. Journal of Theoretical Biology 288:173-184. 493 

Selmants P, Hart S (2010) Phosphorus and soil development: Does the Walker and Syers model 494 

apply to semiarid ecosystems? Ecology 91(2):474-484. 495 

Sylvester-Bradley R (1991) Modelling and mechanisms for the development of agriculture. Aspects 496 

of Applied Biology 26, The Art and Craft of Modelling in Applied Biology, 55-67. 497 

Sylvester-Bradley R, Lord El, Sparkes D, Scott RK, Wiltshire JJ, Orson JO (1999) An analysis of 498 

precision farming in Northern Europe. Soil Use and Management 15:1-9. 499 

Sylvester-Bradley R, Berry P, Blake J, Kindred D, Spink J, Bingham I, McVittie J, Foulkes J (2008) The 500 

wheat growth guide, Spring 2008, 2nd edition. HGCA, London 30pp 501 

http://www.hgca.com/media/185687/g39-the-wheat-growth-guide.pdf, last accessed 502 

12/09/2014. 503 

http://www.hgca.com/media/185687/g39-the-wheat-growth-guide.pdf


Tandy S, Mundus S, Yngvesson J, de Bang T, Lombi E, Schjoerring J, Husted S (2011) The use of DGT 504 

for prediction of plant available copper, zinc and phosphorus in agricultural soils. Plant and Soil 505 

346(1-2):167-180. 506 

Thornley JH (1995) Shoot: root allocation with respect to C, N and P: an investigation and 507 

comparison of resistance and teleonomic models. Annals of Botany 75(4):391-405. 508 

Vaccari D (2009) Phosphorus: a looming crisis. Scientific American 300:54-49. 509 

Valkama E, Uusitalo R, Turtola E (2011) Yield response models to phosphorus application: a 510 

research synthesis of Finnish field trials to optimize fertilizer P use of cereals. Nutrient Cycling in 511 

Agroecosystems 91:1–15. 512 

Van Genuchten M (1980) A closed-form equation for predicting the hydraulic conductivity of 513 

unsaturated soil. Soil Science Society of America Journal, 44(5):892-898. 514 

Van Rotterdam A, Temminghoff E, Schenkeveld W, Hiemstra T, Riemsdijk W (2009) Phosphorus 515 

removal from soil using Fe oxide-impregnated paper: Processes and applications. Geoderma 516 

151(3-4):282-289.  517 

Van Rotterdam A, Bussink D, Reijneveld J (2014) Improved Phosphorus Fertilisation Based on Better 518 

Prediction of Availability in Soil. International Fertiliser Society, Proceeding 755, ISBN 978-0-519 

85310-392-9. 520 

Vance C, Uhde-Stone C, Allan D (2003) Phosphorus acquisition and use: critical adaptations by 521 

plants for securing a non-renewable resource. New Phytologist 157:423-447. 522 

Wager BI, Stewart JWB, Henry JL (1986) Comparison of single large broadcast and small annual 523 

seed-placed phosphorus treatments on yield and phosphorus and zinc contents of wheat on 524 

Chernozemic soils. Canadian Journal of Soil Science 66:237−248. 525 



Wissuwa M, Gamat G, Ismail AM (2005) Is root growth under phosphorus deficiency affected by 526 

source or sink limitations? Journal of experimental botany 56(417):1943-1950. 527 

Withers PJA, Sylvester-Bradley R, Jones DL, Healey JR, Talboys PJ (2014) Feed the crop not the soil: 528 

rethinking phosphorus management in the food chain. Environmental Science and Technology 529 

48:6523-6530. 530 

Withers PJA, van Dijk KC, Neset T-SS, Nesme T, Oenema O, Rubæk GH, Schoumans OF, Smit B, 531 

Pellerin S (2015) Stewardship to tackle global phosphorus inefficiency: The case of Europe. 532 

AMBIO 44 (Suppl.):S193-S206. 533 

Yang X, Post W, Thornton P, Jain A (2013) The distribution of soil phosphorus for global 534 

biogeochemical modeling. Biogeosciences Discussions 9(11):16347-16380.  535 

 536 

 537 

 538 

 539 

 540 

 541 

 542 

 543 

List of Figures 544 

Figure 1: A flow diagram for the leaf model which estimates phosphate, leaf and carbon mass as 545 

mathematically described by Eqn. 18-22. 546 



Figure 2: Spring barley plant P uptake experimental data values for different applied P rates (0, 5, 10, 547 

20, 30, 60 and 90 kg P ha-1) with standard deviation, compared against estimates from the coupled 548 

model and root model at GS31, 45, 91. 549 

Figure 3: Winter barley plant P uptake experimental data values for different applied P rates (0, 15, 550 

30, 60, 90 and 120 kg P ha-1) with standard deviation, compared against estimates from the couple 551 

model and root model at GS39 and 92. 552 

Figure 4: Spring barley leaf mass experimental data values for different applied P rates (0, 5, 10, 20, 553 

30, 60 and 90 kg P ha-1) with standard deviation, compared against estimates from the coupled 554 

model and leaf model at GS31, 45, 91. 555 

Figure 5: Winter barley leaf mass experimental data values for different applied P rates (0, 15, 30, 60, 556 

90 and 120 kg P ha-1) with standard deviation, compared against estimates from the coupled model 557 

and leaf model at GS39 and 92.  558 

Figure 6: Estimated phosphate mass values from the coupled model and leaf model for a) spring 559 

barley and b) winter barley at GS91, 92 respectively for 0 kg P ha-1 and 90/120 kg P ha-1. 560 

Figure 7: Estimated carbon mass values from the coupled model and leaf model for a) spring barley 561 

and b) winter barley at GS91, 92 respectively for 0 kg P ha-1 and 90/120 kg P ha-1. 562 

Figure 8: Estimated plant root length values from the root model, coupled model and leaf model for 563 

a) spring barley and b) winter barley at GS91, 92 respectively for 0 kg P ha-1 and 90/120 kg P ha-1. 564 

Figure 9: Estimated plant P uptake values for winter barley at GS92 for a set of fertiliser and soil 565 

management strategies (mix 25, 20 and 10cm, inverted plough, minimum tillage and no cultivation, 566 

and either no fertiliser, 90 kg P ha-1 incorporated or 90 kg P ha-1 placed) for a normal climate and a 567 

wetter climate (x5 flux of water at soil surface). 568 

List of Tables 569 



Table 1: A list of the parameters used for the 3 models: leaf, root and coupled.  570 

Parameter Definition Value Units 

Leaf Model (Values from Thornley, J. H., 1995) 

𝑘𝐺  Leaf growth rate constant 1000 
(
kg C

kg Leaf
 
kg P

kg Leaf
day)

−1

 

𝑘𝑙𝑖𝑡𝑡 Leaf litter rate constant 0.05 day−1 

𝑘𝑚𝑙𝑖𝑡𝑡 Leaf litter Michealis-Menten 

constant 

0.5 kg Leaf 

𝑘𝐶  Photosynthesis constant 0.1 kg C

kg Leaf
day−1 

𝑘𝑀 Leaf self-shading constant 1 kg Leaf 

𝐽𝐶  Carbon product inhibition constant 0.1 kg C

kg Leaf
 

𝑓𝑐 Fraction of C used for leaf growth (fitted) kg C

kg Leaf
 

𝑓𝑝 Fraction of P used for leaf growth (fitted) kg P

kg Leaf
 

𝑘1 P used for photosynthesis (fitted) kg Leaf

kg P
 

𝑘𝑝 P:C ratio for photosynthesis 

production 

0.005-0.05 kg P

kg C
 

𝛽𝑝 Rate of P output to phloem 0 kg Leaf

day
 

𝐹 Rate of P entry from xylem Taken from barley 

experimental data 

or root model 

output 

kgP

day
 

𝐴𝑇 Air temperature Taken from Local °𝐶  



Met office MIDAS 

stations  

𝛽𝑐 Rate of C output to phloem (fitted) kgL

day
 

𝑠1 Air temperature slope constant (fitted) - 

𝑠2 Air temperature transition constant (fitted) °𝐶 

Root-Soil Model (values from Heppell et al., 2015) 

𝐷0 Water diffusivity 103 cm2day−1 

𝐾𝑠 Water hydraulic conductivity 5 cm2day−1 

𝐷𝑓 P diffusivity in free water 10-5 cm2day−1 

𝑑 Impedance factor 2 - 

𝑎 Main order root radius 0.085 cm 

𝑎1 first order root radius 0.060 cm 

𝑘𝑟 Root radial water conductivity 7.85*10-6 m2s−1MPa−1 

𝑘𝑧 Root axial hydraulic conductivity 1.198*10-2 m4Pa−1s−1 

𝜓1 Density of first order roots 2.33 cm−1 

𝑝𝑟  Root internal xylem pressure 1 Pa 

𝑝𝑐 Characteristic suction pressure 0.0232 MPa 

𝐿0 Max length of main order root 150 cm 

𝐿1 Max length of first order root 7.9 cm 

𝐿 Root tip position 0-𝐿0 cm 

𝑏 Buffer power 23.28 - 

𝜃 Angle between the main root and 

first order branches 

60 degrees 

𝜙 Porosity of soil 0.3 - 

𝑝𝑟
0 Initial root internal xylem pressure 1 Pa 



𝜆1 Root internal xylem pressure 

parameter 

2.7*10-3 Pa/ degC 

𝜆2 Root internal xylem pressure 

parameter 

8.46*10-4 Pa/% humidity 

𝜆3 Root internal xylem pressure 

parameter 

7.9*10-2 Pa 

𝛿 Flux of water parameter 2.69*10-2 - 

𝛼 Flux of water parameter 1.2*10-6 m s−1 of water 

𝛽 Flux of water parameter 2.22*10-6 m s−1 of water/degC 

𝛾 Flux of water parameter 5.35*10-4 m s−1 of water/ m s−1 of 

air 

𝐸 Flux of water parameter 5*10-4 m s−1 of water 

𝑙𝑤 Bottom of the soil 200 cm 

Coupled Model 

𝛾𝐶  Root carbon growth parameter (fitted) - 

𝛼𝑐 Strength of carbon effect on root 

growth 

(fitted) - 

𝐴 Strength of temperature 

dependence on root growth rate 

0.0780 - 

 571 

Table 2: The fitted parameter set for the leaf and coupled models, for spring barley and winter 572 

barley.  573 

Parameter Value for Spring barley Value for winter barley 

Leaf Model 𝛽𝑐 0.0001 0.0001 



k1  100 859 

fc  0.5 0.5 

fp 7*10-4 1.6*10-3 

𝑠1 n/a 20.78 

𝑠2 n/a -1.446 

Coupled model 
𝛾𝐶  1.30*10-5 1.31*10-4 

𝛼𝑐  1 1.982 
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