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Abstract 27 

 Grass species may acquire different forms of nitrogen (N) to reduce competition for the same 28 

resources. Climate change influences the availability of soil N and is therefore likely to cause 29 

shifts in N forms acquired by plants, thereby affecting their competitive interactions.  30 

 We investigated the effects of warming on the uptake of different N forms and competitive 31 

interactions of Festuca ovina and Anthoxanthum odoratum in a pot experiment. The plants were 32 

grown either in monocultures or mixture, and at ambient or elevated temperature (+10 °C), and 33 

supplied with 13C and 15N isotopes to test for treatment effects on the relative uptake of 34 

ammonium, alanine or tri-alanine.  35 

 Both grass species took up relatively more N derived from ammonium than from alanine or tri-36 

alanine when grown under ambient conditions in monoculture. In contrast, when grown in 37 

mixtures, A. odoratum took up N derived from the three N forms in equal amounts, whereas F. 38 

ovina switched to tri-alanine as an alternative N form. Under warmed conditions, both species 39 

took up the N forms equally, irrespective of competition treatments.  40 

 We have shown that grass species grown in mixture and under ambient conditions reduce 41 

competition by acquiring different N forms. Warming increased the availability of inorganic N 42 

in the soil and therefore deregulated the need for differential uptake of N forms.  43 

Keywords: 44 

amino acid, peptide, nutrient, coexistence, niche differentiation 45 

  46 

Commented [Office1]: Iprefered?  

Commented [Office2]: Main?  



3 

 

Introduction 47 

Soil nitrogen (N) availability is one of the most important growth-limiting factors in natural or semi-48 

natural grasslands (Vitousek and Howarth 1991). There is growing evidence that increasing 49 

temperatures due to global warming will accelerate rates of soil N turnover in these and other 50 

temperature-limited ecosystems (Bai et al. 2013; IPCC 2013; Prescott 2010; Zhang et al. 2008), leading 51 

to increased soil N availability and a shift in the dominant N form from dissolved organic N (DON) to 52 

soluble inorganic N (DIN) (Bai et al. 2013; Rennenberg et al. 2009; Saxe et al. 2001). In addition to 53 

changing climate, changes in grassland land use, such as shifts in management intensity or grazing 54 

density, also modify microbial communities and rates of soil N turnover, causing shifts in the availability 55 

of different N forms (de Vries et al. 2012; Medina-Roldan et al. 2012), with the amount of DON relative 56 

to DIN being greater in low than in high productivity, intensively managed grasslands (Bardgett et al. 57 

2003; Christou et al. 2005; Schimel and Bennett 2004).  58 

It is well established that plant species are able to take up soil N in a range of forms, either as inorganic 59 

N, in the form of ammonium (NH4
+) and nitrate (NO3

-), or as organic N, in the form of urea, amino acids 60 

and peptides (Näsholm et al. 2009; Näsholm and Persson 2001; Sauheitl et al. 2009b; Soper et al. 2011). 61 

Although grasses are relatively plastic with regard to their use of different N forms (Falkengren-Grerup 62 

et al. 2000; Sauheitl et al. 2009b), it has been suggested that under N limiting conditions grass species 63 

acquire contrasting forms of N, which appear to be linked to their growth strategies (Kahmen et al. 2006; 64 

Weigelt et al. 2005). This plasticity in acquiring different N forms has been proposed to be a strategy 65 

for co-existing plant species to reduce niche overlap, and therefore to avoid competition for the same 66 

limiting resource (Ashton et al. 2010; McKane et al. 2002). Results from studies testing for niche 67 

partitioning based on chemical forms of N in grasslands, however, are mixed: some report differences 68 

in N forms taken up by co-existing grassland plant species (Ashton et al. 2010; Kahmen et al. 2006), 69 

whereas others do not (Ashton et al. 2008; Harrison et al. 2007). 70 

Given that climatic conditions are known to regulate the availability of different N forms, it is likely that 71 

modified N availability due to warming will also lead to a shift in N forms taken up by plants. Indeed, 72 

Warren (2009) reported that Eucalyptus pauciflora Sieber ex Spreng. took up more glycine than nitrate 73 
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at low temperatures, whereas the opposite was true when temperatures were higher due to changed N 74 

pool turnover rates. Similarly, in arctic tundra, glycine uptake by herbs was reduced by long-term 75 

warming (Sorensen et al. 2008), whereas glycine acquisition by the grass Deschampsia flexuosa (L.) 76 

was found to increase with warming (Andresen et al. 2009). Given this, our goal was to test how 77 

warming impacts the uptake of different N forms by grass species with contrasting life history strategies, 78 

and whether this influences their competitive interactions. We focused on two grass species that co-exist 79 

in low productivity, semi-natural temperate grassland: the slower-growing species Festuca ovina L. and 80 

the faster-growing species Anthoxanthum odoratum L. (Elberse and Berendse 1993; Ryser and Wahl 81 

2001; Schippers and Olff 2000; Schippers et al. 1999). These species have previously been shown to 82 

differ in their acquisition of organic and inorganic N forms in monoculture. Festuca rubra L., as a close 83 

relative to F. ovina, displays a selective placement in nutrient-rich patches with shorter roots and has 84 

been reported to take up relatively more inorganic than organic N, whereas A. odoratum, with its longer 85 

roots spread more evenly in the soil, relies equally on both forms (Elberse and Berendse 1993; Harrison 86 

et al. 2007; 2008; Mommer et al. 2011; Schippers and Olff 2000; Weigelt et al. 2005).  87 

We hypothesised that: (i) when grown in monoculture, the two grass species would preferentially take 88 

up N derived from different N forms reflecting their differing life history strategies; (ii) when grown in 89 

mixture, this difference is amplified to avoid competition for soil N; and (iii) at warmer temperatures 90 

preferences for N derived from different forms becomes less important for F. ovina and A. odoratum 91 

due to increased availability of DIN compared to ambient temperatures. To test these hypotheses, we 92 

conducted a factorial pot experiment, in which F. ovina and A. odoratum were grown either in 93 

monocultures or mixtures at both ambient or elevated temperature, and were supplied with 13C and 15N 94 

labelled compounds to test the relative uptake of ammonium (as a representative form of inorganic N), 95 

alanine (amino acid) or tri-alanine (peptide). 96 

 97 

Materials and Methods 98 

Experimental Setup 99 
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We established a pot experiment using field soil collected from a grassland site at Abergwyngregyn, 100 

Gwynedd, North Wales, UK (53° 13' 27'' N, 4° 00' 50'' W, 320 m a.s.l.), as described by Farrell et al. 101 

(2011a). Briefly, the selected site is classified as a semi-natural Agrostis-Festuca grassland, based on 102 

the UK National Vegetation Classification (Rodwell 1992), and is dominated by the grasses Agrostis 103 

canina L., Agrostis capillaris L., A. odoratum and F. ovina, and the herbs Potentilla erecta (L.) Raeusch. 104 

and Galium saxatile L.. The soil is an organic matter rich Cambic Podzol with an acidic pH (4.8) and is 105 

representative of a typical semi-natural, sheep-grazed upland grassland in the western United Kingdom 106 

(Bardgett et al. 2001). The dissolved N pool is rich in organic N (301 ± 74 mg m-2), whereas 107 

concentrations of NH4
+-N (73.4 ± 36.8 mg m-2) and NO3

--N (0.6 ± 0.5 mg m-2) are lower (data refer to 108 

a depth of 15 cm, published in Wilkinson et al. (2015)). The climate, measured at sea level at a distance 109 

of ca. 1 km from the sampling site, is cool and wet with a mean annual air temperature of 10.7 °C, soil 110 

temperature of 11 °C (at 10 cm depth) and rainfall of 1250 mm. In spring 2013, soil from the field site 111 

was excavated from the rooting zone down to 15 cm depth. Soil was transported back to the laboratory 112 

where stones and roots were removed. After passing through a 4 mm sieve, the soil was thoroughly 113 

mixed and stored afterwards at 4 °C until the start of the experiment.  114 

We selected two grass species: A. odoratum and F. ovina. Both species co-exist at the site, although A. 115 

odoratum is generally more abundant in more productive grasslands, and F. ovina is more abundant in 116 

lower productivity grasslands (Grime et al. 2007). In April 2013, seeds (Emorsgate Seeds, King's Lynn, 117 

UK) of A. odoratum and F. ovina were germinated in a 1:1 mixture (v:v) of a low fertility compost (No 118 

1; John Innes Manufacturers Association, Reading, UK) and horticulture sand (Keith Singleton 119 

Horticulture, Egremont, UK) at ambient temperatures in a greenhouse at The University of Manchester. 120 

Due to differences in germination and establishment rates, A. odoratum was sown two weeks later than 121 

F. ovina in order to produce uniformly sized seedlings. Trays were watered every second day with tap 122 

water without using any additional fertiliser. After 32 (A. odoratum) and 46 (F. ovina) days, seedlings 123 

with an average height of 9 cm were allocated to 3 intra- and interspecific planting treatments, each with 124 

two individual plants: i) F. ovina monoculture; ii) A. odoratum monoculture; and iii) F. ovina and A. 125 

odoratum mixture. Care was taken to ensure that the height of individuals in each of the 192 pots (side 126 

length = 9 cm, used height = 7 cm, average soil volume = 0.567 l) was similar. Immediately after 127 
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planting, pots of each treatment were randomly assigned to two temperatures in controlled growth 128 

cabinets (day length 16 h), namely: 12 °C, representing ambient growing season temperature, and 22 129 

°C, representing warming. The ambient temperature refers to an average temperature during growing 130 

seasons at the field site (13.7 °C at sea level, implying approximately 12 °C at the field site). Warming 131 

of 10 °C was used as an approach to extrapolate the climate sensitivity of N availability and uptake in a 132 

model ecosystem. Pots were randomly relocated within cabinets twice per week.  133 

Pots were irrigated with tap water bi-weekly (ambient: 50 ml pot-1 week-1; warming: 100 ml pot-1 week-134 

1, total dissolved N in tap water < 0.4 mg l-1), with differences in irrigation between the two treatments 135 

accounting for estimated greater evapotranspiration due to increased temperature and plant biomass in 136 

the warmed compared to ambient treatment. The difference in N input through irrigation between the 137 

treatments due to the different amount of water (ambient: < 0.16 mg pot-1; warming: < 0.32 mg pot-1) 138 

was negligible compared to total N per pot (approximately 2 g N pot-1). The height of each seedling 139 

(longest shoot) was measured weekly. 140 

Isotope labelling and harvest of plant biomass 141 

Labelling of soils to measure uptake of different N forms was performed after 71 days, at a period when 142 

shoot height had remained stable for several weeks. Twelve replicate pots of each planting × temperature 143 

treatment were randomly allocated to the following three labelling treatments (72 out of 192 pots): i) 144 

15NH4Cl (98% 15N, Cambridge Isotope Laboratories, Andover, MA, USA); ii) alanine (97-99% U-13C, 145 

97-99% 15N, Cambridge Isotope Laboratories); and iii) tri-alanine, (97-99% U-13C, 97-99% 15N, CK 146 

Gas Products, Ibstock, UK). Nitrate concentration in the original field soil was negligible compared to 147 

DON and ammonium (Wilkinson et al. 2015), and therefore, nitrate was not used for labelling. There 148 

were 4 replicates for each treatment-labelling combination. The other 120 pots were treated with an 149 

unlabelled N solution (18 µmol N pot-1), from which 8 pots were analysed for natural abundance 150 

assessments. Each labelling solution (18 µmol N pot-1) was made up of equal concentrations (6 µmol N 151 

pot-1 for each N form) of ammonium, alanine and tri-alanine, in which one of the three N forms was 152 

isotopically labelled. This enabled us to test for preferential uptake by individual plant species and soil 153 

microbes (Harrison et al. 2007; Weigelt et al. 2005). The use of dual-labelled 13C15N compounds is 154 
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generally, but not unequivocally, considered to be a good indication whether amino acids and peptides 155 

such as alanine and tri-alanine are taken up by plants directly as organic N, or as inorganic N after 156 

microbial mineralisation, as confirmed by enrichment of plant tissue with both 13C and 15N (Näsholm et 157 

al. 1998). The amount of N added to each pot was considered to be sufficient to allow for detection of 158 

13C and 15N within plant and microbial biomass, but keeping the possible N fertilisation effect on plant 159 

growth to a minimum (18 µmol N pot-1 (0.3 kg N ha-1) < NH20 = 490 µmol N pot-1). Within each pot, the 160 

labelling solution (20 ml) was injected at 5 different locations, equally distributed over the soil depth, 161 

using a glass syringe (S Murray & Co, Surrey, UK). Pots were randomly labelled over a period of four 162 

days.  163 

Three hours after labelling, pots were destructively harvested and plants were separated from the soil. 164 

A chase period of 3 hours was chosen to reduce plant uptake of recycled mineralised organic N, but to 165 

provide sufficient time to detect 13C15N in roots and shoots (Warren 2012). Roots were first washed with 166 

deionised water and then rinsed with 0.5 M CaCl2 to remove 13C and 15N in the apoplast and sorbed to 167 

the cell wall. Roots of the two species in the mixed treatment were distinguished from each other by 168 

their colour. Root, shoot and soil samples were dried at 65 °C for two days prior to grinding (MM 400, 169 

Retsch, Haan, Germany). Root and shoot samples of the two individuals grown in monocultures were 170 

pooled prior to grinding, whereas for mixed treatments both individuals were analysed separately. In 171 

order to determine 13C15N uptake by the soil microbial biomass, 0.5 M K2SO4 extractions were carried 172 

out on fumigated (amylene-stabilised CHCl3, Fisher Scientific, Waltham, MA, USA) and non-fumigated 173 

soil (Brookes et al. 1985). The extracts were freeze-dried prior to further processing (ScanVac CoolSafe 174 

55-4 Pro, Lynge, Denmark). Microbial 13C15N uptake was calculated as the respective differences 175 

between fumigated and non-fumigated samples. The differences were divided by the corrections factors 176 

kEN = 0.50 and kEC = 0.35 to estimate microbial biomass C and N values (Carter 2008). However, we 177 

acknowledge the uncertainty in the values when used for isotopic labelling experiments (Glanville et 178 

al., 2016). For unknown reasons, we did not detect any uptake of 13C or 15N by the microbial biomass 179 

under warming, so data are not presented for this treatment.  180 
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Root, shoot, soil and microbial extract samples were analysed for 12/13C and 14/15N concentrations at the 181 

NERC Life Sciences Mass Spectrometer Facility, Centre for Ecology and Hydrology, Lancaster, UK, 182 

(precision for working standards better than 0.46 ‰ (13C) and 6.92 ‰ (15N)). Samples were combusted 183 

in a Carlo Erba NA1500 elemental analyser (Thermo Scientific, Waltham, MA, USA). The resultant 184 

CO2/N2 from combustion and reduction was analysed for δ13C/15N using an isotope ratio mass 185 

spectrometer (IRMS; Dennis Leigh Technologies, Sandbach, UK). 13C15N excess values were calculated 186 

by using formulas (1) and (2).  187 

Rsample = [(δ13C/1000) + 1] * RPDB           (1) 188 

where R is the ratio of 13C/of 15N to 12C/to 14N and RPDB is the natural abundance standard for C and N. 189 

Atom% = (R/R+1) * 100            (2) 190 

Atom % excess values were calculated by subtracting control atom % values from treatment atom % 191 

values. Natural abundance levels of 13C in our samples were highly variable. We therefore used the 192 

lowest natural abundance atom % value to calculate 13C excess values. 193 

Soil nutrients, microbial biomass and root length 194 

Immediately after plants were harvested, fresh soil samples were extracted with deionised water (1:7.1 195 

w/v soil:extractant; extraction time = 10 min) to measure total dissolved N and inorganic N as either 196 

nitrate (NO3
-) or ammonium (NH4

+). Extracts were measured with an AutoAnalyzer 3 (SEAL 197 

Analytical, Fareham, UK). DON was calculated after subtracting water-soluble inorganic N from total 198 

water-soluble N. Dissolved organic carbon (DOC) was measured in water extracts using a TOC-L 199 

analyser (Shimadzu, Kyoto, Japan). For determining microbial C (Cmic) and N (Nmic), chloroform-200 

fumigated (fumigation time = 24 h) and non-fumigated soil samples were extracted with 0.5 M K2SO4 201 

(1:2.5 w/v soil:extractant; extraction time = 60 min) (Brookes et al. 1985), and total soluble organic 202 

carbon and N in K2SO4-extracts were measured with a TOC-L (Shimadzu, Kyoto, Japan) and an 203 

AutoAnalyzer 3 (SEAL Analytical, Fareham, UK), respectively. In labelled soil samples, pH was 204 

measured in 0.01 M CaCl2 (FE20, Mettler-Toledo, Schwerzenbach, Switzerland). Root samples from 205 

pots that were not used for the labelling experiment were analysed for their diameter and length using 206 
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an Epson Expression 11000 XL, scanner (Nagano, Japan) and WinRHIZO Pro 2013a (Regent 207 

Instruments Inc., Quebec, CA).  208 

Statistical analysis 209 

Data were analysed after log-transformation by ANOVA using a linear model (significant at P < 0.05) 210 

in R 3.02 (R Development Core Team, Vienna, AT). The initial shoot height (analysis of root and shoot 211 

biomass) and final biomass (12/13C14/15N values) were included in the models to account for differences 212 

between pots. Selected differences between treatments and soils were pair-wise tested using contrasts 213 

based on t-tests (significant at P < 0.05).  214 

Results 215 

Soil N availability and microbial biomass 216 

Concentrations of inorganic N (NH4
+ and NO3

-) were influenced by planting and warming treatments 217 

(Table 1). Concentrations of NH4
+ (F(2,181) = 36.6, P < 0.001) and NO3

- (F(2,181) = 44.9, P < 0.001) were 218 

lowest in soil planted with A. odoratum, followed by mixtures and F. ovina monocultures. Soil 219 

concentrations of NH4
+ (F(1,181) = 88.0, P < 0.001) and NO3

- (F(1,181) = 59.9, P < 0.001) were greater in 220 

the warming than in the ambient treatment. Dissolved organic N (DON) was lower in the ambient 221 

treatment than the warming treatment (F(1,181) = 5.2, P = 0.023). Pair-wise comparisons for DON were, 222 

however, only significant in A. odoratum monocultures (P = 0.007) and not in the other planting 223 

treatments (F. ovina monocultures: P = 0.171; mixtures: P = 0.895). Dissolved organic carbon (DOC) 224 

was changed by the planting treatment (F(2,186) = 4.7, P = 0.010): DOC concentrations were, or tended 225 

to be greater in A. odoratum than in F. ovina monocultures (ambient: P = 0.054; warming: P = 0.028). 226 

There was, however, no warming effect on soil DOC, and neither total soil carbon (Ctot), nitrogen (Ntot) 227 

or pH were affected by the warming and planting treatments (Table 1). Soil water concentration at the 228 

end of the experiment was greatest in warmed F. ovina monoculture, whereas no differences between 229 

the other treatments were observed. 230 
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Both microbial biomass C (F(1,167) = 26.6, P < 0.001) and N (F(1,167) = 4.1, P = 0.045) were greater in the 231 

ambient than in the warming treatment (Table 1). However, effects of warming on microbial biomass C 232 

(temperature × planting: F(2,167) = 11.8, P < 0.001) and N (temperature × planting: F(1,167) = 5.5, P = 233 

0.005) varied with planting design: under ambient conditions, microbial biomass C was lowest in 234 

mixtures, whereas under warmed conditions it was smallest in F. ovina monocultures. Similarly, 235 

microbial biomass N under warming was lower in F. ovina monocultures than in mixtures, but not 236 

different from A. odoratum monocultures. We observed no differences in microbial N between the 237 

planting treatments under ambient conditions.  238 

Root and shoot biomass 239 

Elevated temperature on average doubled the shoot biomass of A. odoratum, whereas warming only 240 

marginally influenced shoot biomass of F. ovina (temperature × species: F(1,247) = 91.9, P < 0.001, Fig. 241 

1a). The planting treatment only affected shoot biomass of A. odoratum in the warming treatment 242 

(temperature × planting: F(1,247) = 4.5, P = 0.035): A. odoratum shoot biomass per plant was 50% higher 243 

in mixtures than in monocultures (competition ratio (CR) = 1.5 ± 0.1). However, total shoot biomass 244 

per pot (2 plants) in warmed A. odoratum monocultures did not differ from the total biomass of the two 245 

species in mixtures (P = 0.745). Planting treatment had no effect on the shoot biomass of A. odoratum 246 

under ambient temperature (CR = 0.9 ± 0.1), or on shoot biomass of F. ovina under ambient (CR = 1.0 247 

± 0.1) or warmed conditions (CR = 1.2 ± 0.1).  248 

Warming decreased root biomass of F. ovina in monoculture and mixtures, but it had no effect on root 249 

biomass of A. odoratum in monoculture, although it increased root biomass of this species in mixtures 250 

(temperature × species: F(1,247) = 49.7, P < 0.001, Fig. 1a). As a result, under elevated temperatures, root 251 

biomass of A. odoratum was more than four times greater than of F. ovina, whereas root biomass did 252 

not differ between the two species under ambient conditions (Fig. 1a). Warming decreased the root:shoot 253 

ratio of the test species (F(1,247) = 178.9, P < 0.001): the effect of temperature on the root:shoot ratio of 254 

F. ovina was greater than on that of A. odoratum (temperature × species: F(1,247) = 39.8, P < 0.001), 255 

leading to a significantly higher root:shoot ratio of A. odoratum than of F. ovina in the warming 256 

treatment. There was no significant planting effect on root biomass or root:shoot ratio of either species 257 
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(F(1,247) = 1.6, P = 0.201, F(1,247) = 0.8, P = 0.383). As with root biomass, root length of F. ovina was 258 

least in the warming than in the ambient treatment, whereas root length of A. odoratum grown in 259 

mixtures was greater under warming than ambient conditions (temperature × planting: F(1,143) = 55.4, P 260 

< 0.001, Fig. S1A). No warming effect on root length was observed in A. odoratum monocultures; hence, 261 

root length of A. odoratum was greater than of F. ovina, but only under warmed conditions. 262 

N concentrations in root and shoot 263 

Temperature effects on shoot N differed between the two grass species (temperature × species: F(1,87) = 264 

37.1, P < 0.001): shoot N in A. odoratum was greater under warming than under ambient temperature, 265 

whereas for F. ovina no effect of warming was detected (Fig. 1b). Planting design also influenced the 266 

two species differently (planting x species: F(1,87) = 19.4, P < 0.001). Although pair-wise comparisons 267 

were not significant, shoot N in A. odoratum tended to be greater in mixtures than in monocultures, 268 

whereas it was the other way around in F. ovina. Hence, shoot N concentrations under ambient and 269 

monoculture conditions were higher in F. ovina than in A. odoratum (P = 0.004), whereas N 270 

concentrations were lower in F. ovina than in A. odoratum in warmed mixture (P = 0.001). In general, 271 

root N concentrations were greater under elevated than under ambient temperature (F(1,87) = 9,1, P < 272 

0.001, Fig. 1b). However, pair-wise comparisons revealed that this response to warming was only 273 

significant in A. odoratum roots grown in mixtures (P = 0.015).  274 

13C15N excess values in root and shoot biomass 275 

Enrichment of plant material, measured as absolute 15N excess values, differed strongly between the two 276 

grass species (roots: F(1,71) = 21.1, P < 0.001; shoots: F(1,71) = 72.9, P < 0.001). On average, 15N excess 277 

values in roots and shoots of A. odoratum were higher than in those of F. ovina, which is indicative of 278 

greater uptake of all N forms (Fig. 2, Table 2). Differences in 13C excess values between the two species, 279 

however, were only weakly or not significant (roots: F(1,47) = 3.6, P = 0.064; shoots: F(1,71) = 5.8, P = 280 

0.020), although there was a trend towards higher 13C concentrations in A. odoratum than F. ovina (Table 281 

2).  282 
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Plant uptake of N was affected by chemical N form (roots: F(2,71) = 18.1, P < 0.001; shoots: F(2,71) = 22.2, 283 

P < 0.001), planting design (roots: F(1,71) = 10.0, P = 0.002; shoots: F(1,71) = 22.0, P < 0.001) and warming 284 

treatment (roots: F(2,71) = 6.5, P = 0.013; shoots: F(2,71) = 57.1, P < 0.001). Most interestingly, planting 285 

treatment influenced the uptake of N forms by A. odoratum under ambient conditions: in monoculture, 286 

15N excess rates in A. odoratum roots and shoots were greater for ammonium than alanine (roots; shoots: 287 

P < 0.001; P < 0.001) or tri-alanine (P = 0.066; P = 0.023), whereas in mixture uptake of N derived 288 

from tri-alanine was greater than from ammonium (P = 0.049; P = 0.860) or alanine (P = 0.011; P = 289 

0.005). This shift in N forms taken up by A. odoratum can mainly be deduced from a smaller ammonium 290 

uptake in mixture than in monoculture (P < 0.001; P = 0.016), whereas we observed no difference in 291 

uptake of N derived from tri-alanine between the planting treatments. In F. ovina roots and shoots grown 292 

at ambient conditions, differences between N forms were less obvious than for A. odoratum. In 293 

monoculture, uptake of N derived from alanine was less than for ammonium (P < 0.001; P < 0.001) and 294 

tri-alanine (P = 0.020; P = 0.083). In mixture, we observed no difference in uptake of different N forms 295 

on the basis of 15N excess in F. ovina roots, but values in shoots were greater when plants were labelled 296 

with ammonium than with alanine (P = 0.001) or tri-alanine (P = 0.032). Root uptake of 13C was also 297 

affected by the chemical form (F(1,47) = 16.5, P < 0.001); under ambient conditions 13C excess values 298 

were higher when plants were labelled with tri-alanine than with alanine (Table 2).  299 

Warming changed the observed planting effects on 15N uptake under ambient conditions (temperature × 300 

form in roots: F(2,71) = 3.0, P = 0.056; shoots: F(2,71) = 6.6, P = 0.002); in general, we detected no 301 

differences in 15N and 13C excess values in both species between the applied N forms under warmed 302 

conditions (Table 2, Fig. 2). As an exception to this pattern, 15N excess values for F. ovina roots in 303 

monoculture were greater for tri-alanine than ammonium (P = 0.033) or alanine (P = 0.023), and for A. 304 

odoratum shoots, 15N excess values were greater for ammonium than alanine (P = 0.033).  305 

We found significant correlations between 13C and 15N excess values in A. odoratum roots for alanine 306 

(R2 = 0.287, P = 0.027) and tri-alanine (R2 = 0.401, P = 0.011, Fig. 3). The slope of the alanine correlation 307 

line (m = 0.9) was slightly steeper than that of tri-alanine (m = 0.5), indicating that direct uptake of 308 

alanine was greater than for tri-alanine, that the proportion 13C lost in plant respiration was greater when 309 
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acquired as tri-alanine than when acquired as alanine, or that the C and N from the compounds 310 

partitioned differently between roots and shoots. In F. ovina roots, we observed no correlations between 311 

13C and 15N excess values (alanine: R2 = 0.022, P = 0.557; tri-alanine: R2 < 0.001, P = 0.946). The slopes 312 

of the correlation lines separately calculated for each planting and warming treatment did not differ from 313 

the patterns described above. 314 

13C15N excess values in microbes and soil 315 

We observed significant differences under ambient conditions in microbial 15N excess values between 316 

the three N forms applied (F(2,54) = 5.1, P = 0.010); 15N excess values in microbes were greater when 317 

applied as tri-alanine than as ammonium (F. ovina monoculture: P = 0.011; A. odoratum monoculture: 318 

P = 0.054; mixture: P = 0.056, Fig. 4). In F. ovina monoculture only, microbial 15N excess values 319 

originating from tri-alanine were also higher than those from alanine (P = 0.042). 15N excess values in 320 

the case of ammonium solution application were close to zero, indicating that uptake of this N form by 321 

microbes was low. No data are presented for the warming treatment, as we did not detect any uptake of 322 

13C or 15N by the microbial biomass under warming, 323 

In bulk soil samples, greater 15N excess values were observed when applied as tri-alanine than as 324 

ammonium or alanine (F(2,54) = 42.9, P < 0.001). An exception to this pattern was that no difference in 325 

soil 15N excess values between the three labelling solutions was recorded for ambient A. odoratum 326 

monocultures (Fig. 4). Soil 13C data confirmed the pattern described above; when applied as tri-alanine, 327 

soil excess values were greater, or equal, than when applied as alanine (F(1,34) = 29.8, P < 0.001, Table 328 

2).  329 

Discussion 330 

The aim of this study was to test for the effects of warming on the uptake of different N forms and 331 

competitive interactions of two grass species of temperate grasslands with contrasting functional traits. 332 

Our first hypothesis was that the two grass species take up N derived from different N forms when 333 

grown in monocultures, and this difference is greater in mixture to avoid competition for soil N. In 334 

contrast to this hypothesis, and to previous studies on inorganic and organic N uptake (Harrison et al. 335 
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2007; 2008; Weigelt et al. 2005), we found that both F. ovina and A. odoratum took up more N derived 336 

from ammonium from alanine when grown in monocultures. When grown in mixture, however, A. 337 

odoratum, but not F. ovina, switched from taking up more N from ammonium than alanine, to greater 338 

uptake of N derived from tri-alanine than from alanine or ammonium. The difference in N uptake 339 

between these species in mixture is reflected in their functional root traits: Festuca is known to place 340 

roots selectively in nutrient-rich hotspots, whereas Anthoxanthum spreads its roots more evenly in soil, 341 

allowing uptake of a greater variety of N forms (Mommer et al. 2011). This suggests that when grown 342 

in mixture, F. ovina was more competitive than A. odoratum in taking up the same N form as in 343 

monoculture, thereby reducing A. odoratum's ammonium uptake. Competition for N between plants and 344 

microbes was presumably strong in both monocultures and mixtures, as indicated by higher 15N excess 345 

values in microbes compared to plants, and, therefore, A. odoratum could not compensate the reduced 346 

ammonium uptake by acquiring more N derived from alanine or tri-alanine. Moreover, we exclude that 347 

competition between microbes and plants explains the decreased ammonium uptake by A. odoratum as 348 

this would likewise have affected ammonium uptake by F. ovina. Similarly, ammonium immobilisation 349 

by microbes did not differ between planting treatments under ambient conditions, as evidenced by the 350 

lack of change in microbial 15N excess values derived from added ammonium. Our data, therefore, 351 

suggest that this shift in N uptake by A. odoratum was mainly induced by a lower competitiveness for 352 

ammonium in comparison with F. ovina, which lends support to the idea that acquisition of different N 353 

forms contributes to coexistence of competing grass species (Ashton et al. 2010; Kahmen et al. 2006; 354 

McKane et al. 2002).  355 

As hypothesised, we found that warming changed N use by the two plant species, in that we detected no 356 

difference in uptake of the different N forms when they were grown in mixture compared to 357 

monocultures in this treatment. It is possible that increased soil inorganic N availability under warming 358 

compensated for the need for niche differentiation on the basis of N form, which was detected in 359 

mixtures under ambient conditions. Indeed, nitrate and ammonium concentrations were greater in the 360 

warming than ambient treatment, which is likely to be due to accelerated organic matter turnover in this 361 

organic-rich grassland soil (Bai et al. 2013; Prescott 2010; Rennenberg et al. 2009; Zhang et al. 2008). 362 

An alternative mechanism is that warming influenced the competitiveness of the two grass species, 363 
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which might have weakened in the requirement for niche differentiation; whereas under ambient 364 

conditions the biomass of the two species was similar, A. odoratum clearly outcompeted F. ovina in the 365 

warming treatment. In a study conducted by Schippers and Olff (2000), A. odoratum was still more 366 

vigorous than F. ovina at 15 °C, indicating that the optimum temperature of F. ovina is rather closer to 367 

12 °C than to 22 °C. The lower root:shoot ratio and plant N concentrations of F. ovina compared to A. 368 

odoratum indicate that the differences in competiveness between our test species can be related to a 369 

more effective nutrient uptake by A. odoratum compared to F. ovina in the warmed treatment (Mommer 370 

et al. 2011). Otherwise, the low root biomass of F. ovina under warming might have been a consequence 371 

of the high soil water availability in the F. ovina monoculture relative to A. odoratum and mixtures. This 372 

would mean that due to sufficient water availability in the topsoil there was no need for F. ovina to 373 

allocate resources to root growth and hence F. ovina was likely less competitive in taking up nutrients 374 

compared to A. odoratum. With its higher root density, A. odoratum is likely to be also more competitive 375 

under water-limiting conditions, as predicted to increase in frequency with climate change (IPCC 2013); 376 

this question, however, was not tested in our experiment and needs further investigation. It is possible 377 

that, in the long term, niche partitioning on the basis of uptake of different forms of N will occur in the 378 

real world under warming, especially due to acclimatisation of microbial activity and increased plant 379 

biomass production (Lu et al. 2013; Luo et al. 2001) or immigration of other species (Klanderud and 380 

Birks 2003; Parolo and Rossi 2008). We therefore conclude, in accordance with our third hypothesis, 381 

that warming reduces the need for niche differentiation on the basis of N form in grass species, at least 382 

in the short timescale of our study.  383 

Even though our data show how competition and temperature influence the uptake of N forms by F. 384 

ovina and A. odoratum, the applied 13C15N labelling technique has some limitations. First, it is possible 385 

that N forms other than those we supplied to soil might have also been important for plant nutrition. 386 

Unlike in the field (Wilkinson et al. 2015), concentrations of nitrate were higher than ammonium or 387 

DON in soil of the present experiment. We found that soil nitrate concentrations were reduced under 388 

ambient conditions by the presence of A. odoratum, indicating that nitrate was a significant part of 389 

nutrition for A. odoratum. Soil concentrations of nitrate in mixtures, however, suggest that A. odoratum 390 

did not increase its nitrate acquisition when grown alongside with F. ovina. Hence, even though A. 391 
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odoratum may have taken up a significant amount of nitrate, our conclusions, gained from the reduced 392 

ammonium uptake in mixture compared to monoculture, would not be different. Second, correlations 393 

between 13C and 15N excess values in A. odoratum roots and 13C15N excess values in microbes may 394 

indicate that a higher fraction of tri-alanine, compared to alanine, was first mineralised then taken up as 395 

inorganic N, as similarly reported by Farrell et al. (2013). We presume, however, that direct uptake of 396 

tri-alanine was nevertheless an important source for plant nutrition: on the one hand we found higher 397 

plant 13C excess values for tri-alanine than for alanine, indicating that direct uptake of the peptide was, 398 

in absolute numbers, higher than of the monomer; on the other hand, differences between 13C and 15N 399 

correlations might be explained by faster within-plant mineralisation of tri-alanine compared to alanine 400 

(Hill et al. 2011; Warren 2012). In other words, residual carbon, including 13C, might have been respired 401 

to a higher extent when applied as peptide than as amino acid, resulting in a higher 15N13C ratio. To 402 

reduce such uncertainties about direct uptake of labelled isotopes in future experiments, the application 403 

of other techniques might be helpful, such as compound-specific stable isotope measurements (Sauheitl 404 

et al. 2009a), position-specific labeling (Apostel et al. 2013) and the use of 14C-labelled isotopes (Hill 405 

et al. 2013). However, all available techniques are subject to some caveats and assumptions. Third, pool 406 

dilution of applied labelling solutions has to be taken into account when interpreting 13C and 15N uptake 407 

in plant samples (Jones et al. 2005). At field conditions, concentrations of alanine, tri-alanine and other 408 

amino acids and peptides competing for the same root transporters were smaller than those of 409 

ammonium in the soil used during the present pot experiment (Farrell et al. 2011a; Farrell et al. 2011b). 410 

Hence, the chance of a plant root to take up labelled ammonium was smaller in comparison with labelled 411 

N derived from organic forms. Otherwise, considering the faster turnover rates of amino acids and 412 

peptides comparing to ammonium, plants have much more capacity to take up 15N-NH4
+ during the 413 

labelling period. Taking pool dilution into account by multiplying soil N pools reported by Farrell et al. 414 

(2011b) by 15N excess values recorded within root or shoot tissue, we estimate that 30-100x more 15N-415 

NH4 was recovered in plant material than the tested organic 15N forms. Likely, differences in N uptake 416 

in ambient monocultures would be even more distinct when considering pool dilution, whereas shifts in 417 

N uptake by A. odoratum grown in mixture would be less obvious. However, as this correction would 418 
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likewise apply for both monocultures and mixture, the relative difference in ammonium uptake would 419 

not be different and hence, our main conclusions from this experiment are still likely to be true. 420 

Conclusions 421 

Our data show that grass species grown in mixture and under ambient conditions reduce competition by 422 

taking up different N forms. Thereby, N derived from organic forms as amino acids and peptides can 423 

play a major role for plant nutrition. Hence, the possibilities for a plant species to create its own niche 424 

are manifold and may include intricacies such as acquiring different N forms. Increased availability of 425 

inorganic N due to warming deregulated the need for differential uptake of N forms. Hence, we conclude 426 

that uptake of different N forms is mainly important at nutrient-limiting conditions. Besides taking up 427 

different N forms, grass species have also been shown to coexist through spatiotemporal shifts in nutrient 428 

acquisition (McKane et al. 1990; Pornon et al. 2007). Whereas we exclude spatiotemporal shifts in N 429 

uptake as a source for niche differentiation in the present study, these other strategies might explain why 430 

in some field studies niche differentiation by taking up different N forms has been reported (Ashton et 431 

al. 2010; Kahmen et al. 2006), whereas in others it has not (Ashton et al. 2008; Harrison et al. 2007). 432 
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Figure legends 580 

Fig. 1 a: Average root and shoot biomass per individual (g, ± SE, n = 32), separately for each temperature 581 

and planting treatment. Total root length is shown in Fig. S1. b: Average nitrogen (N) concentrations in 582 

root and shoot biomass (%, ± SE, n = 12). Please note that the y-axis (shoot N) starts at 2%. a & b: 583 

Values of the two individuals in the monoculture treatment were pooled prior analysis. Significant (P < 584 

0.05) pair-wise comparisons are indicated by *: difference between monoculture and mixed treatments 585 

within the same species and temperature treatment; s: difference between species within the same 586 

temperature and competition treatment; w: difference between temperature treatments within the same 587 

species and competition treatment.  588 

Fig. 2 Average 15N excess rates in root (a) and shoot biomass (b) after a chasing period of 3 hours (µmol 589 

g-1, ± SE, n = 4), separately shown for NH4
+, alanine and tri-alanine. Differences between the applied 590 

tracer solutions within a given treatment combination (column) are indicated by different lower/upper 591 

case letters (all P < 0.05). Average 13C excess values are shown in Table 2. Please note the different 592 

scales between the two species. 593 

Fig. 3 Relationship between 13C and 15N excess values in roots of A. odoratum and F. ovina , separately 594 

shown for alanine (open circles) and tri-alanine (closed circles). Broken (alanine: R2 = 0.287, P = 0.027) 595 

and solid lines (tri-alanine: R2 = 0.401, P = 0.011) show significant regressions between the excess of 596 

both isotopes in A. odoratum roots. The regressions in F. ovina roots were not significant (alanine: R2 = 597 

0.022, P = 0.557; tri-alanine: R2 < 0.001, P = 0.946). The dotted lines show the molar 13C:15N ratios for 598 

the nitrogen sources injected (3:1).  599 

Fig. 4 Average 15N excess rates in bulk soil and microbes after a chasing period of 3 hours (nmol g-1, ± 600 

SE, n = 4), separately shown for NH4
+, alanine and tri-alanine. Differences between the applied tracer 601 

solutions within a given treatment combination are indicated by different letters (all P < 0.05). No excess 602 

values are available for microbial samples in the warming treatment. Average 13C excess values are 603 

shown in Table 2.  604 
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Supplementary Figures 605 

Fig. S1 a: Average total root length per individual (m, ± SE, ambient F. ovina & A. odoratum 606 

monocultures: n = 16, all other: n = 20) and b: N content in roots and shoot (g, ± SE, n = 12), separately 607 

for each temperature and planting treatment. Significant (P < 0.05) pair-wise comparisons are indicated 608 

by *: difference between monoculture and mixed treatments within the same species and temperature 609 

treatment; s: difference between species within the same temperature and competition treatment; w: 610 

difference between temperature treatments within the same species and competition treatment. 611 
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Tables 

Table 1 Soil properties at the end of the experiment. Values are mean ± SE. Different letters indicate 

significant differences between competition treatments within the same warming treatment. SWC: soil 

water concentration (%, n = 32, residual df = 183), Ctot: total carbon (mg g-1, 8, 42), DOC: dissolved 

organic C (µg g-1, 32, 186), Ntot: total nitrogen (mg g-1, 12, 66), NH4
+: ammonium (µg g-1, 32, 181), NO3

-

: nitrate (µg g-1, 32, 181), DON: dissolved organic nitrogen (µg g-1, 32, 181), MicC: microbial carbon 

(mg g-1, 32, 167), MicN: microbial nitrogen (mg g-1, 32, 167). An asterisk * indicates a significant 

difference between warming treatments within the same competition treatment (all P < 0.05). Statistical 

analyses (F-values): Effects of temperature (T, df = 1), planting (P, df = 2) and their interactions (T × P, 

df = 2), levels of significances (***: P < 0.001, **: P < 0.01, *: P < 0.05, (*): P < 0.1)).  

 Ambient  Warming  F-values 

 
F. ovina 

monoculture 

A. odoratum 

monoculture 
mixture  

F. ovina 

monoculture 

A. odoratum 

monoculture 
mixture 

 
T P T × P 

SWC * 41.1 ± 1.0a  39.2 ± 1.2a  38.0 ± 1.0a  * 45.0 ± 1.6a  31.2 ± 1.7b  34.0 ± 2.1b  9.6** 17.6*** 8.3*** 

Ctot  90.1 ± 1.6a  91.8 ± 0.7a  92.5 ± 0.8a   91.4 ± 0.6a  91.2 ± 1.0 a  92.2 ± 1.9a  <0.1 0.9 0.4 

DOC   62.1 ± 5.7a  73.3 ± 4.8a  63.4 ± 5.1a   56.4 ± 4.8a  65.3 ± 2.9b  59.2 ± 4.3ab  1.5 4.7 * 0.1 

Ntot   7.8 ± 0.1a  7.8 ± 0.0a  7.9 ± 0.0a   7.9 ± 0.1a  7.8 ± 0.1a  7.9 ± 0.1a  <0.1 0.8 0.5 

NH4
+   *2.7 ± 0.7a  *1.3 ± 0.1b  *1.6 ± 0.2a  * 10.9 ± 1.7a  *2.3 ± 0.3b  *3.5 ± 0.5b  88.0*** 36.6*** 8.7*** 

NO3
-  *12.0 ± 2.0a  *2.5 ± 0.5b  *7.2 ± 1.6a  * 57.9 ± 4.4a  *6.5 ± 1.2b  *14.9 ± 2.9c  59.9*** 44.9*** 7.7*** 

DON  3.9 ± 0.3a  *5.5 ± 1.0a  4.0 ± 0.3a   2.9 ± 0.6a  *3.5 ± 0.3a  4.1 ± 0.2a  5.2* 2.2 2.1 

MicC  *1.9 ± 0.1a  *1.9 ± 0.1a  1.6 ± 0.1b   *1.2 ± 0.1a  *1.4 ± 0.1b  1.7 ± 0.1b  26.6*** 2.1 11.8*** 

MicN  *0.29 ± 0.01a  *0.30 ± 0.02a  0.28 ± 0.01a   *0.23 ± 0.01a  *0.25 ± 0.01ab  0.26 ± 0.01b  18.5*** 0.7 2.9(*) 
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Table 2 Mean 13C excess values (nmol 13C excess g-1) in roots, shoots, soil and microbes, separately 

shown for the 13C labelling solutions alanine and tri-alanine. Values are mean ± SE, n = 4. Different 

letters indicate significant differences between species and competition treatments within the same 

warming treatment and N form (all P < 0.05). An asterisk * indicates a significant difference between 

N forms within a given treatment. No excess values are available for microbial samples in the warming 

treatment. 

 Ambient  Warming 

 F. ovina 

monoculture 

A. odoratum 

monoculture 

F. ovina 

mixture 

A. odoratum 

mixture 

 F. ovina 

monoculture 

A. odoratum 

monoculture 

F. ovina 

mixture 

A. odoratum 

mixture 

Roots          

 Alanine  279 ± 49a  *235 ± 60a  *129 ± 39b  259 ± 50a   439 ± 49a  558 ± 113a  348 ± 91a  440 ± 109a 

 Tri-alanine  474 ± 35a  *475 ± 23a  *268 ± 64a  487 ± 67a   567 ± 46a  702 ± 83a  397 ± 71a  585 ± 103a 

Shoots          

 Alanine  190 ± 82a  269 ± 47a  55 ± 111a  310 ± 168a   298 ± 41a  428 ± 74a  221 ± 149a  324 ± 78a 

 Tri-alanine  168 ± 50a  292 ± 75a  189 ± 134a  212 ± 59a   347 ± 46a  475 ± 63a  235 ± 58a  347 ± 84a 

Soil        

 Alanine  *17 ± 1a  11 ± 3b  *17 ± 3a   *14 ± 1a  *13 ± 2a  18 ± 2a 

 Tri-alanine  *32 ± 2a  13 ± 2b  *27 ± 1a   *26 ± 2a  *22 ± 2a  25 ± 6a 

Microbes        

 Alanine  11 ± 3a  -4 ± 5a  16 ± 9a     

 Tri-alanine  23 ± 14a  17 ± 10a  6 ± 1a     

 


