Economic Studies in Motor Neurone Disease
Moore, Alan; Young, Carolyn A.; Hughes, Dyfrig

Pharmacoeconomics

DOI: 10.1007/s40273-016-0478-9

Published: 01/04/2017

Peer reviewed version

Cyswllt i’r cyhoeddiad / Link to publication

Dyfnyiad o’r fersiwn a gyhoeddwyd / Citation for published version (APA):

Hawliau Cyffredinol / General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Title: Economic Studies in Motor Neurone Disease: A Systematic Methodological Review

Authors: Alan Moore¹, Carolyn A. Young², Dyfrig A. Hughes¹

Affiliations: ¹Centre for Health Economics & Medicines Evaluation, Bangor University; ²The Walton Centre NHS Trust, Liverpool

Corresponding Author: Professor Dyfrig A. Hughes, Centre for Health Economics and Medicines Evaluation, Bangor University, Ardudwy, Holyhead Road, Bangor, UK, LL57 2PZ
Tel: +44 (0)1248 382950
E-mail: d.a.hughes@bangor.ac.uk

Running Head: Economic studies in MND

Acknowledgements: The authors would like to thank the Motor Neurone Disease Association UK for their funding.

Conflict of Interest: AM, CAY and DH declare that they have no conflict of interest.

Contributions: AM, CAY and DH contributed substantially to the conception and design of the work. All authors made contributions to the acquisition, analysis, or interpretation of data. AM drafted the paper and all authors revised it critically for important intellectual content, and gave their final approval of the version to be published. All authors agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.
Abstract

BACKGROUND: Motor Neurone Disease (MND) is a devastating condition which greatly affects patients’ quality of life and limits life expectancy. Health technology appraisals of future interventions in MND need robust data on costs and utilities. Existing economic evaluations have been noted to be limited and fraught with challenges.

OBJECTIVE: The aim was to identify and critique methodological aspects of all published economic evaluations, cost studies and utility studies in MND.

METHODS: We systematically reviewed all relevant published studies in English from 1946 until January 2016, searching the databases of Medline, EMBASE, Econlit, NHS Economic Evaluation Database (NHS EED) and the Health Economics Evaluation Database (HEED). Key data were extracted and synthesised narratively.

RESULTS: A total of 1,830 articles were identified, of which 15 economic evaluations, 23 cost and 3 utility studies were included. Most economic studies focused on riluzole (n=9). Six studies modelled the progressive decline in motor function using a Markov design but did not include mutually exclusive health states. Cost estimates for a number of evaluations were based on expert opinion and were hampered by high variability and location-specific characteristics. Few cost studies reported disease stage specific costs (n=3) or fully captured indirect costs. Utilities in 3 studies of MND patients used the EQ-5D questionnaire or standard gamble, but included potentially unrepresentative cohorts and did not consider any health impacts on caregivers.

CONCLUSION: Economic evaluations in MND suffer from significant methodological issues such as a lack of data, uncertainty with the disease course and use of inappropriate modelling framework. Limitations may be addressed through the collection of detailed and representative data from large cohorts of patients.

Key points for decision makers

- Existing economic evidence in MND is limited with respect to data on resource use, costs, and health utilities, as well as how models reflect disease progression
- Future studies should focus on generating longitudinal data from representative population groups; confirming the validity of models in how they represent the natural course of disease progression; and analysing cost and utility data according to defined health states
The evidence accumulated in this review provides a basis for the advancement of economic studies in MND
1. Introduction

Motor Neurone Disease or Amyotrophic Lateral Sclerosis (hereafter referred to as MND) is a progressively degenerative condition. The disease affects the motor neurones in the brain and spinal cord which severely impacts patients’ basic functioning such as walking, communication and breathing, and can additionally adversely affect cognitive abilities [1]. These impair patients’ health-related quality of life significantly [2]. Currently treatment for MND is focused on palliative care with the aim of sustaining a high quality of life for as long as possible. Estimated survival time from diagnosis is between 3 and 5 years [3]. Due to the extent of the disability, patients with MND have dependency on carers to help with their daily needs. This need is usually met by partners or family members of the patient and, due to the nature of care required, places a significant physical and emotional burden on their lives [4].

MND is a rare disease with incidence and prevalence rates varying by country and region. A recent systematic review of its epidemiology reported European, North American and Asian incidence rates of 2.08, 1.8 and 0.46 per 100,000 population per year, respectively [5]. Prevalence rates were reported as 5.4, 3.4 and 2.01 per 100,000 population in these regions. In the United Kingdom there are an estimated 4,000 people living with MND [6].

The economic costs of MND are high, both in terms of direct medical costs to health providers, non-medical costs incurred by patients and their caregivers, and indirect costs through loss of employment. Costs vary over the trajectory of the condition, and are dependent on disease manifestation, progression, and duration of survival [7]. To date, however, there has been a limited number of economic evaluations of interventions for MND, with the majority focused on riluzole which is the only disease-modifying drug currently approved. With the prospect of new treatments for MND [8], there will be an increased need for robust economic data and modelling framework for assessing their cost-effectiveness. The aim of this article is to systematically review sources of costs and utilities, and provide a critique of the data and methods used in economic studies of MND.

2. Methods

This review was conducted according to the Centre for Reviews and Dissemination’s (CRD) guidance for undertaking reviews in health care [9], and reported with alignment to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guideline, where applicable [10].

2.1 Search Strategy

Systematic searches were undertaken to identify economic evaluations, studies detailing costs and studies which estimated health state utilities in patients with MND. The search terms are listed in
Appendix 1. The databases searched (from 1946 to January 2016) were: Medline, EMBASE, Econlit, NHS Economic Evaluation Database (NHS EED), and the Health Economics Evaluation Database (HEED). The references of included papers were checked for any further articles for inclusion.

2.2 Inclusion criteria and study selection

The review included studies reporting economic evaluations, detailed costs and health utilities relating to MND. Studies not published in English were excluded from the review. Titles were screened independently by two reviewers. Articles deemed by either reviewer to meet the inclusion criteria were screened independently on abstract with any disagreements resolved by a third independent reviewer. The full texts were retrieved and assessed according to the inclusion criteria.

2.3 Data extraction

Data forms were created for the economic evaluations and cost studies included in the review and key details relating to the methods of included studies extracted and tabulated (Tables 1 and 2). Cost and utility value data from these studies were also recorded along with the corresponding 2014/15 value of costs in pounds sterling (GBP) (Table 3). Currency conversions were undertaken using data from the International Monetary Fund (IMF) [11] and costs were inflated using the Hospital and Community Health Services (HCHS) pay and prices index [12].

2.4 Analysis of results

Important methodological features were summarised, and critiqued within a narrative review.

3. Results

A total of 1,830 articles were identified, of which 60 were considered potentially relevant and 41 eligible for inclusion in the review. The PRISMA flow diagram shows the number of included studies at the various stages of the review process (Figure 1).

3.1 Study characteristics

The systematic review identified 13 economic evaluations, 2 updates of economic evaluations, 23 cost studies, and 3 studies reporting health utilities (Tables 1, 2 and 3).

The majority of economic evaluations were conducted in the UK [16-20,24,26,27] (n=8) followed by North America [13,15,22,23] (n=4), Italy [14,21] (n=2) and Israel [25], showing the high concentration of studies originating in a few countries. Eight studies reported a cost utility analysis [15-20,22,23], 6 studies performed cost effectiveness analysis [13,14,21,24,26,27], and 1 study
carried out a cost-benefit analysis [25]. Eleven evaluations adopted a third party payer perspective, such as national health services [13,14,16-21,24,26,27], 1 study adopted a societal viewpoint [25], while 3 studies presented results from both perspectives [15,22,23]. More recent economic evaluations tended to report only direct medical costs to health service providers.

Studies focusing solely on costs were predominantly North American [28,30,33,34,37,40,43,44,46,48-50] (n=12) or European [31,32,36,38,39,41,42,45,47] (n=9) with two from Asia [29,35]. Cost studies adopted a health services perspective [28,31,35,39,43,44,46-48] (n=9), societal perspective [33,40,41,45,49] (n=5) or both [29,30,32,34,36-38,42,50] (n=9). Studies reported costs for a variety of categories, including: treatments [30,32-34,36,37,41,42,44,45,47,48] (n=12), places or methods of delivering care [28,29,31,35,38,39,43,46] (n=8), home ventilation [49,50] (n=2) and mobility devices [40]. However, only 3 studies reported disease stage specific costs [29,42,47].

Studies of health state utility reported disease stage utilities by five (mild, moderate, severe, terminal and death) [51,52], or two (mild and severe) [42] health states. All studies elicited utilities from patients with MND, based on structured interviews with MND patients [51,52], or from a postal questionnaire [42]. These used a combination of the EQ-5D-3L, visual analogue scale (VAS) and standard gamble to measure utility.

3.2 Modelling methodology

Eight studies, including the more recent evaluations, used Markov architecture which allow for progressive decline in motor function to be modelled [15-20,22,23]. The models attach costs and utilities to health states and allow patient cohorts to pass through states until they reach the (absorbing) death state or a pre-determined severely low functioning level. Health states within these models were defined by adaptation of Rivere et al. [53] who first modelled MND using the Markov model [15-20], Appel ALS scores [22] or according to forced vital capacity scores (FVC) [23]. Transition probabilities of subjects through the various health states were calculated using data from randomised control trials of riluzole [15-20], recombinant human insulin-like growth factor-1 (rHIGF-1) [22], and brain-derived neurotrophic factor (BDNF) [23].

Models used various techniques to estimate survival beyond the data available from randomised controlled trials (RCTs). Three studies used a linear function [16-18], and one an exponential function [22] to extrapolate trial data. Although these were deemed to have fit the data well by study
authors, they are not the correct functional form for survival analysis. The constant hazard rate model, which gives the exponential distribution, assumes the property of no-aging [58]. One study used a Weibull model [20] (based on a power hazard rate model). One study used a Gompertz model (exponential hazard rate model), without presenting goodness of fit [21], and one study used both a Weibull and a Gompertz model [19] to explore differences in model fit.

3.3 Resource use and costs

Twenty-two studies reported direct costs only [13,14,16-21,24,26-28,31,35,39,40,43-48], while 16 reported both direct and indirect costs [15,22,23,25,29,30,32-34,36-38,41,42,49,50].

Studies which included direct costs estimated resource use from medical records [13-15,28,31,32,37-39,43] (n=10), RCTs [19-27] (n=9), surveys [30,37,40,42,45,49,50] (n=7), utilization patterns based on consultation with neurologists with MND expertise [16-18,47,48] (n=5), national databases [36,46] (n=2), structured interviews with patients [33,41] (n=2), insurance claim data [34] and a mixture of medical records and insurance claim data [35]. Indirect costs were obtained via patient surveys [15,23,30,32,34,37,38,42,49,50] (n=10) and interviews [22,29,33,41] (n=4), and national databases [25,36] (n=2).

Unit costs came from institutional records [13,14,28,29,31-33,35,38,39,43,45,46] (n=13), national databases [15,21,24-27,36,37,42,44] (n=10), the published literature [16-20,23] (n=6), surveys [30,40,41,49,50] (n=5), consultation with MND experts [47,48] (n=2), insurance claim data [34] and estimation of drug costs from the manufacturer [22].

Some studies defined standard care costs [16,19,20,22,25,27] (n=6), but descriptions varied by location and setting.

Indirect unit costs were gathered by surveys [22,23,29,30,33,34,38,41,49,50] (n=10), national databases [15,36,37,42] (n=4) and using the national minimum [32] and average wage [25].

Key cost data used in economic evaluations in MND are presented in Table 3. Many of the cost inputs originate from the same sources, suggesting a limited evidence base [16-20]. Furthermore, costs varied by location, with the annual price of riluzole, for example, reported as £6,429 in the United Kingdom and £9,487 in the United states (2014/15 adjusted values in £GBP). Table 4 presents the main data from cost studies in MND. Costs and cost categories include length of hospital stays [35,43,46], ventilation [30,49,50], complementary medicines [45] and mobility [40]. Differences in costs within countries may be attributed to type of treatments considered, methods of data collection or source populations [30,37,43]. The diverse cost estimates and categories highlights the
challenges of generalising results, with the need for more detailed and encompassing cost of illness studies.

-- Insert Tables 3 and 4 here --

3.4 Health state utilities

Eleven studies included the use of health state utility values (HSUVs), of which 6 [15-20] took their values from Kiebert et al. [51] who elicited utilities based on standard gamble using structured interviews in the UK. However, this study is limited in size, with only 77 MND patients involved and with some health states being represented by as few as 15 patients. Two other studies used hypothetical utility values which were not based on any empirical evidence but rather, intended for illustrative purposes [23,24]. One study estimated utilities using the standard gamble technique administered to a panel of healthcare professionals with experience of treating patients with MND [22]. A study in Spain used postal administration of the EQ-5D-3L and EQ-Visual Analogue Scale (VAS) in a sample of 36 patients [42]. The most recent utility study, which was set in the UK with a sample of 214 patients, also used the EQ-5D-3L along with the EQ-VAS, to elicit utilities longitudinally [52].

Studies which included HSUVs varied in their description of health states. A five-stage model was used in Kiebert et al. [15-20,51] based on the earlier work of Rivere et al. [53]. The full definitions of health states are presented in Box 1. Jones et al. [52] used the King’s ALS clinical stage framework consisting of five states; stage 1: diagnosis and involvement of 1st region, stage 2: involvement of 2nd region, stage 3: involvement of 3rd region, stage 4: need for intervention (gastrostomy or non-invasive ventilation) and stage 5: death. Ackerman et al [22] used a five state model defined by Appel ALS scores which cover aspects of speech, respiratory function, swallowing, dressing and feeding, need for assistive device, work status and medical care. By contrast Ringel et al [23] used a four health stage model based solely on forced vital capacity scores (FVC). López-Bastida et al. [42] used a simple two-stage classification of the disease with patients either in the mild state (not in need caregiver help), and the severe state (in need of caregiver help).

Health state utility data in the economic evaluations came from a limited number of sources [15-20,22], with some reliant on hypothetical data [23,24] highlighting a lack of evidence in this area (Table 3). Furthermore, as descriptions of health states are not uniform [15-20,22,23], utility values varied significantly, especially in some progressively low functional states. In the most recent UK evaluations [16-20], the terminal state value is 0.45, compared with -0.53 in the study by Ackerman et al [22]. Differences in health utility values appear to be more divergent than the health descriptions used in these evaluations [22,53].
Box 1. Health states as defined by Rivere et al. [53].

State 1 (mild). Recently diagnosed; mild deficit in only 1 of 3 regions (i.e., speech, arm, and leg); and functionally independent in speech, upper extremity activities of daily living, and ambulation.

State 2 (moderate). Mild deficit in all 3 regions or moderate to severe deficit in 1 region, while the other 2 regions are normal or mildly affected.

State 3 (severe). Needs assistance in 2 or 3 regions; speech is dysarthric and/or patient needs assistance to walk and/or needs assistance with upper extremity activities of daily living.

State 4 (terminal). Non-functional use of at least 2 regions and moderate or non-functional use of the third region.

3.5 Uncertainty analysis

Most economic evaluations considered parameter uncertainty by application of one-way sensitivity analysis around benefits/utilities [16-22,24] (n=9), costs [16-20,25] (n=6) and tolerance of patient cohorts to treatment [15]. Three studies performed two-way sensitivity analysis to jointly assess the contribution of both costs and benefits/utilities on cost-effectiveness [16-18], while only one study carried out a full probabilistic sensitivity analysis [23]. Scenario analyses considered uncertainty in costs, health benefits and survival [21,26] (n=2). Two studies attempted to account for structural uncertainty with alternative models [19,21], while another study assessed the impact of different patient demographics on cost-effectiveness (of riluzole) [26]. Uncertainty analysis in the studies showed that the main drivers of cost effectiveness in MND treatments were drug costs and estimated extension in survival.

4. Discussion

With the prospect of new treatments for MND on the horizon, including the neuroprotective agent edaravone, tyrosine kinase inhibitor masitinib and gene and stem cell therapies [59-62], there will be an increased need for robust data and modelling framework to assess their cost-effectiveness. Most economic evaluations are based on Markov models with disease-specific stages which aim to trace disease progression and its effects on patients and their use of healthcare resources. The often used five-stage disease progression model [15-20,51,53] has methodological issues with respect to its clinical classification system of health states. It conflates recency of diagnosis with severity of illness and would lead to some patients being misplaced in health states which may not reflect the true costs or benefits related to their disease status. It therefore fails to meet the Markov assumption of
mutual exclusivity. The Kings ALS clinical staging model, as used in Jones et al. [52], provides health state descriptions which are mutually exclusive, and therefore potentially making it more appropriate for use in Markov modelling.

Costs can vary considerably between stages of MND [29,42,47]. However, only a few studies have reported disease stage specific costs. Munsat et al. [47] is the most cited among UK economic evaluations, but the estimates from this analysis are based on resource utilization taken from interviews with four neurologists with experience of treating MND, and needs updating. The authors highlight the variation in cost estimates between each expert, reflecting differences in clinical practice. Economic evaluations included in our review did not consider changes to the annual costs of standard palliative care by disease stage as it was claimed that these would be unaffected by treatment. This assumption has been untested empirically.

Several studies have reported or estimated indirect costs associated with MND [15,22,23,25,29,30,32--34,36-38,41,42,49,50]. While there are recognised challenges relating to the measurement of lost productivity by both patients and their caregivers [63-65], the importance is more so in MND as patients have a higher earning potential than the national averages [36], owing to the average age of onset peaking around the mid-fifties and the fact that the disease presents more in men [1].

Instruments used to measure the health related quality of life in patients with MND need to be sensitive enough to capture changes across the disease course, have the required dimensions which apply to the condition and robust psychometric properties. The EQ-5D-3L has been used as a generic measure, but concerns have been highlighted over its ability to record an accurate representation of the complexity surrounding quality of life (QoL) in MND. The narrow conceptual components of the EQ-5D-3L often restricts utility measurement and fails to include symptom characteristics which are salient to those with MND, such as respiratory function and communicative ability [66,67]. Issues such as sensitivity of the EQ-5D-3L to clinical changes in the disease course and their resulting impact on utilities, and floor effects further limit the usefulness of the instrument. One undertaking which could help in this regard is using the EQ-5D-5L, which improves the range of responses and mitigates the floor effects to some degree [68,69].

The ALS Utility Index is a disease-specific instrument which has been developed through surveying a general population sample, but is yet to be validated in MND patients [70]. This index also focuses solely on the physical functioning aspect of MND, with no domain for emotional wellbeing or pain. In spite of its drawbacks, it represents an advance that should prompt further research in this area.
Patients’ preferences may vary with respect to the management of the different symptoms experienced. Direct utility estimation in MND has been limited to the standard gamble approach. Kiebert et al. [51] found that utility scores, based on standard gamble, were higher for disease stage 3 (needs assistance in two or three regions) than disease stage 2 (mild defect in three regions) in the ALS Health State Scale; despite the descriptions of disease stage 3 appearing to be significantly worse. However, when the same sample of patients completed the EQ-5D-3L questionnaire, the results showed a progressive lowering of health stage utilities along the disease course. Furthermore, this study elicited significantly different utility score estimations for standard gamble and EQ-5D-3L methods. The standard gamble results from this study featured in the riluzole manufacture’s submission to National Institute for Health and Care Excellence (NICE) [18], as well as the more recent economic evaluations in MND [15-17]. Alternative methods of direct utility estimation, such as time trade off or the use of choice-based techniques such as the Discrete Choice Experiment (DCE), have hitherto not featured in MND studies.

MND has important and significant impacts on informal caregivers, such as family members [71-73]. While there is debate concerning the inclusion of the QoL effects on carers in economic evaluations, and methodological challenges relating to the measurement, valuation and incorporation of QoL impacts on carers [63-65], the lack of consideration for carer utilities in MND is apparent. Further challenges include consideration of how carers’ productivity is affected by the disease, especially in the latter stages of the condition when more help is required. The inclusion of caregiver utilities in a cost-effectiveness framework for MND could affect conclusions of economic evaluations of treatments if those treatments are near cost-effectiveness threshold values, as was the case for riluzole, and prove to impact on carers’ QoL [63].

The strengths of the review are in its inclusiveness and in-depth analysis of the methods and findings from economic and cost of illness studies. We are unaware of any other review of the economic evidence in MND, but acknowledge some unpublished articles such as HTA reports in jurisdictions outside the UK may have been omitted. We excluded non-English studies, which may have been available to European, Latin American and Asian reimbursement authorities (for instance in relation to riluzole).

The challenges presented in this review highlight the current methodological limitations faced by health economists in MND. These issues, such as the need to incorporate the broader impact of treatments on patients’ QoL and the uncertainty surrounding the current empirical evidence, transcend into other disease areas, notably multiple sclerosis and dementia [74,75]. This would
indicate that the issues pertinent to the economic analysis of MND treatments are far reaching, and require due consideration in other health economic work.

5. Conclusion

Current economic studies in MND are limited in many ways, including the comprehensiveness and reliability of cost studies, a lack of research reporting health state utilities across the disease course, and poorly defined health states. Our review has highlighted a clear need for up to date and methodologically rigorous economic data for unbiased assessment of the cost-effectiveness of future interventions in MND. We have also identified a need for a robust evaluation framework in MND. Future research should target these limitations, and utilise data from large, longitudinal studies, such as the UK Trajectories of Outcome in Neurological Conditions (TONiC) study [76], which has recruited over 800 patients to complete cost and quality of life questionnaires. Improvements in economic studies in MND will result in more informative guidance on healthcare resource allocation when new, and inevitably expensive, interventions are licensed.

6. Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

7. References

Table and Figure legends

Table 1: Methods of economic evaluations in MND
Table 2: Methods of cost studies in MND
Table 3: Key cost and utility data in economic evaluations in MND
Table 4: Principal direct and indirect cost data in cost studies in MND
Figure 1: PRISMA systematic review flow diagram
Appendix

Medline Ovid Search Strategy

1. Econ*.sh
2. Economic Model.mp
3. Discrete Event Simulation.mp
4. Decision Analysis.mp
5. Markov*.mp
6. ICER or Incremental Cost Effectiveness Ratio.mp.
7. exp cost benefit/
8. exp cost analysis/
9. cost$2 adj2 (benefit$ or effect* or analy* or utility$ or minim* or utilit*) .mp.
10. Quality Adjusted Life Year$ or QALY$.mp.
11. Life year$ gain*.mp.
12. cost*.kw.ti.ab
13. economic adj2 cost$.mp
14. Socioeconomic.mp
15. Productivity Costs or Absenteeism.mp
16. Healthcare cost$ or Cost$ of Illness.mp
17. exp cost analysis/
18. financ*.ti.ab
19. Utilit*.mp
20. HSUV or Health State Utility Values.mp
21. Standard Gamble.ti.ab
22. Time Trade Off.ti.ab
23. Visual Analogue Scale.ti.ab
24. EQ-5D.ti.ab
25. SF-36 or Short Form 36.ti.ab
26. SF6D.ti.ab
27. ALS Utility Index or Amyotrophic Lateral Sclerosis Utility Index
28. 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23 or 24 or 25 or 26 or 27
29. exp Motor Neuron$. Disease
30. Amyotrophic Lateral Sclerosis.mp.
31. Lou Gehrig$ adj 2 (Disease or Syndrome).mp.
32. Progressive Muscular Atrophy.mp.
33. Progressive Bulbar Palsy.mp.
34. Primary Lateral Sclerosis.mp.
35. Charcot Disease.mp.
36. 29 or 30 or 31 or 32 or 33 or 34 or 35
37. 28 and 36
38. Comment.pt
39. Editorial.pt
40. Letter.pt
41. 38 or 39 or 40
42. 37 not 41
43. Limit 42 to English

EconLit Search Strategy

(MESH(ECON*) OR all((economic model OR discrete event simulation)) OR all((Markov* OR Incremental Cost Effectiveness Ratio)) OR all((cost benefit analysis OR cost effectiveness)) OR all((cost analysis OR cost utility)) OR all((QALY* OR quality adjusted life year*)) OR all((life year* gain*)))

OR

(TI,AB(cost*) OR all((Productivity OR absenteeism)) OR all((Healthcare cost* OR Cost Analysis)) OR all((cost of illness OR Direct costs)) OR all(Indirect costs) OR TI,AB(finac*))

OR

(all(Utilit*) OR all((Health State Utility Values OR standard gamble)) OR all((time trade off OR EQ-5D)) OR all((visual analogue scale OR sf-36)) OR all((SF-6D)) OR all(ALS Utility Index))

AND all(Motor Neurone Disease) OR all((Amyotrophic Lateral Sclerosis OR Lou Gehrig* disease)) OR all((progressive muscular atrophy OR progressive bulbar palsy)) OR all((primary lateral sclerosis OR Charcot disease))
<table>
<thead>
<tr>
<th>Author(s), Year, Country</th>
<th>Definition of MND, Source population, Number of patients</th>
<th>Intervention and comparator</th>
<th>Economic evaluation</th>
<th>Cost perspective</th>
<th>Clinical data</th>
<th>Measurement of benefits</th>
<th>Methods of estimating survival</th>
<th>Measurement of costs</th>
<th>Sensitivity analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alanazy et al 2014 [13] Canada</td>
<td>Not stated Clinic population 333 patients</td>
<td>Immunoglobulin/standard care</td>
<td>Cost effectiveness analysis</td>
<td>Health service</td>
<td>Observational data</td>
<td>Diagnosis rate</td>
<td>None</td>
<td>Resource use from institutional data. Local cost tariffs used</td>
<td>None</td>
</tr>
<tr>
<td>Vitacca et al 2010 [14] Italy</td>
<td>El Escorial criteria Clinic population 39 patients</td>
<td>Telephone assisted consultation/home visits by health staff</td>
<td>Cost effectiveness analysis</td>
<td>Health service</td>
<td>Observational data</td>
<td>Number of avoided hospitalizations</td>
<td>None</td>
<td>On call telephone access, home visits, equipment, rehabilitation costs and resource use from institutional data. Local cost tariffs used</td>
<td>None</td>
</tr>
<tr>
<td>Gruis et al 2005 [15] United States</td>
<td>Not stated Hypothetical cohort Not stated</td>
<td>Non-invasive ventilation/standard care</td>
<td>Cost utility analysis Markov model with 5 health states: based on functioning of three regions (speech, arms</td>
<td>Health service and societal</td>
<td>Hypothetical data</td>
<td>QALYs derived from a patient population (n=77) by standard gamble approach [51]</td>
<td>None</td>
<td>Costs of non-invasive ventilation and accessories for patients tolerant to treatment. One month rental and accessories costs for those intolerant to</td>
<td>One way</td>
</tr>
<tr>
<td>Country</td>
<td>Diagnosis</td>
<td>Treatment</td>
<td>Cost Utility Analysis</td>
<td>Health Resource Use</td>
<td>QALYs Derived</td>
<td>Model</td>
<td>Linear Interpolation</td>
<td>Scenario Analysis</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>-----------</td>
<td>-----------------------</td>
<td>---------------------</td>
<td>---------------</td>
<td>-------</td>
<td>----------------------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>United Kingdom</td>
<td>Clinical diagnosis of definite or probable MND</td>
<td>Riluzole/ Standard care</td>
<td>Cost utility analysis</td>
<td>Health service</td>
<td>Randomised controlled trial [54]</td>
<td>QALYs derived from a patient population (n=77) by standard gamble approach [51]</td>
<td>Linear interpolation</td>
<td>Resource use taken from consultation with experts. Cost data taken from Munsat et al using local tariffs [47]</td>
<td>Two way</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>Clinical diagnosis of definite or probable MND</td>
<td>Riluzole/ Standard care</td>
<td>Cost utility analysis</td>
<td>Health service</td>
<td>Randomised controlled trial [54]</td>
<td>QALYs derived from a patient population (n=77) by standard gamble approach [51]</td>
<td>Weibull and Gompertz models</td>
<td>Riluzole and monitoring costs taken from the published literature and resource use taken from RCT [54]</td>
<td>Scenario analysis</td>
</tr>
</tbody>
</table>

Costs taken from Medicare fee schedule. Resource use is estimated on the uptake levels of the treatment.
<table>
<thead>
<tr>
<th>Country</th>
<th>Clinical diagnosis of definite or probable MND</th>
<th>Clinical trial population</th>
<th>Riluzole/ Standard care</th>
<th>Cost utility analysis</th>
<th>Health service</th>
<th>Randomised controlled trial</th>
<th>QALYs derived from a patient population (n=77) by standard gamble approach</th>
<th>Weibull model</th>
<th>Riluzole and monitoring costs taken from the British National Formulary. Resource use is taken from RCT data [54]</th>
<th>One way</th>
</tr>
</thead>
<tbody>
<tr>
<td>United Kingdom</td>
<td>Stewart et al 2000 [20]</td>
<td>959 Patients</td>
<td>Riluzole/ Standard care</td>
<td>Cost utility analysis</td>
<td>Health service</td>
<td>Randomised controlled trial</td>
<td>QALYs derived from a patient population (n=77) by standard gamble approach</td>
<td>Weibull model</td>
<td>Riluzole and monitoring costs taken from the British National Formulary. Resource use is taken from RCT data [54]</td>
<td>One way</td>
</tr>
<tr>
<td>United States</td>
<td>Ackerman et al 1999 [22]</td>
<td>Recombinant Human Insulin-Like Growth Factor 1 Therapy/ Standard care</td>
<td>Cost utility analysis</td>
<td>Health service and societal</td>
<td>Randomised controlled trial</td>
<td>QALYs derived from a panel of experts (n=10) using the standard gamble approach</td>
<td>Exponential distribution</td>
<td>In- and out-patient procedures, home health, hospice care costs and resource use measured from</td>
<td>One way</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Design</td>
<td>Patients</td>
<td>Function defined by</td>
<td>Methodology</td>
<td>Cost utility analysis</td>
<td>Resource use</td>
<td>Sensitivity analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------</td>
<td>----------</td>
<td>---------------------</td>
<td>-------------</td>
<td>-----------------------</td>
<td>--------------</td>
<td>---------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ringel et al 1999 [23] United States</td>
<td>Clinical diagnosis of definite or probable MND Clinical trial population 1135 patients</td>
<td>Hypothetical therapies/Standard care</td>
<td>Cost utility analysis Markov model with 5 health states based on lung function defined by forced vital capacity score (FVC)</td>
<td>Health service and societal Randomized controlled trial [57]</td>
<td>QALYs derived from hypothetical utility scores</td>
<td>Resource use derived from RCT [55] Direct costs and costs related to reduced productivity included, also taken from RCT using national tariffs [57]</td>
<td>Probabilistic sensitivity analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ginsberg and Lev 1997 [25] Israel</td>
<td>Not stated Hypothetical cohort Not stated</td>
<td>Riluzole/Standard care</td>
<td>Cost benefit analysis</td>
<td>Health services and societal Randomised controlled trial [54]</td>
<td>Survival</td>
<td>None</td>
<td>Direct costs to health service and Indirect productivity costs. Unit costs obtained thorough</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

QALYs: Quality-adjusted life years
<table>
<thead>
<tr>
<th>Study</th>
<th>Region</th>
<th>Design</th>
<th>Comparator</th>
<th>Economic Evaluation</th>
<th>Methodology</th>
<th>Data Source</th>
<th>Economic Evaluation Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chilcott et al 1997 [26] United Kingdom</td>
<td>Clinical diagnosis of definite or probable MND Clinical trial population 959 patients</td>
<td>Riluzole/ Standard care</td>
<td>Cost effectiveness analysis</td>
<td>Health services</td>
<td>Randomised controlled trial [54]</td>
<td>Survival</td>
<td>Kaplan-Meier estimator</td>
</tr>
<tr>
<td>Author(s), Year, Country</td>
<td>Definition of MND, Source population, Number of patients</td>
<td>Treatment</td>
<td>Cost perspective</td>
<td>Source of resource use data</td>
<td>Items of resource use</td>
<td>Unit costs</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
<td>-----------</td>
<td>-----------------</td>
<td>----------------------------</td>
<td>----------------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>Boylan et al 2016 [28] United States</td>
<td>El Escorial criteria Clinic population 1117 patients</td>
<td>Multi-disciplinary centre care</td>
<td>Health services</td>
<td>Institutional data</td>
<td>Staff time Medical supplies Medical equipment Overhead costs</td>
<td>Local tariffs</td>
<td></td>
</tr>
<tr>
<td>Oh et al 2015 [29] South Korea</td>
<td>El Escorial criteria Clinic population 151 patients</td>
<td>Standard care</td>
<td>Health services and societal</td>
<td>Interviews with patients and institutional data</td>
<td>Loss of income Hospital care</td>
<td>National tariffs</td>
<td></td>
</tr>
<tr>
<td>Obermann and Lyon 2015 [30] United States</td>
<td>Not stated Home based population 1 patient</td>
<td>Various treatments</td>
<td>Health services and societal</td>
<td>Longitudinal survey completed by family members</td>
<td>Hospital care Home care Equipment Home renovations Transport Home care</td>
<td>Local tariffs</td>
<td></td>
</tr>
<tr>
<td>Connolly et al 2015 [31] Ireland</td>
<td>Not stated Clinic population 250 patients</td>
<td>Multi-disciplinary centre and social care</td>
<td>Health services</td>
<td>Institutional data and Interviews with patients</td>
<td>Specialist Care Social Care</td>
<td>Local tariffs</td>
<td></td>
</tr>
<tr>
<td>Attanasalais et al 2015 [32] Greece</td>
<td>Not stated Clinic population 33 patients</td>
<td>Various treatments</td>
<td>Health services and societal</td>
<td>Institutional data and interviews with patients and caregivers</td>
<td>Loss of income</td>
<td>National tariffs</td>
<td></td>
</tr>
<tr>
<td>Gladman et al 2014 [33] Canada</td>
<td>El Escorial criteria Home based population 50 patients</td>
<td>“Out of pocket” procedures</td>
<td>Societal</td>
<td>Interviews with patients and caregivers</td>
<td>Medical Mobility Home renovations Loss of income</td>
<td>Local tariffs</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Country</td>
<td>Study Design</td>
<td>Clinic Population</td>
<td>Treatment Details</td>
<td>Health Services and Societal Data Sources</td>
<td>Medical Costs and Other Costs</td>
<td>Country Tariffs</td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
<td>-------------------------------</td>
<td>-------------------</td>
<td>--</td>
<td>--</td>
<td>---------------------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Larkindale et al 2013 [34]</td>
<td>United States</td>
<td>Not stated Clinic population</td>
<td>600 patients</td>
<td>Various treatments</td>
<td>Health services and societal databases</td>
<td>Medical Loss of income</td>
<td>National tariffs</td>
</tr>
<tr>
<td>Kang et al 2013 [35]</td>
<td>Taiwan</td>
<td>Not stated Clinic population</td>
<td>30 patients</td>
<td>Hospice care</td>
<td>Health services</td>
<td>Institutional data and health insurance claims</td>
<td>General hospice care</td>
</tr>
<tr>
<td>Jennum et al 2013 [36]</td>
<td>Denmark</td>
<td>Clinical diagnosis of MND</td>
<td>2,384 patients</td>
<td>Various treatments</td>
<td>Health services and societal surveys</td>
<td>Medical costs National tariffs</td>
<td>National tariffs</td>
</tr>
<tr>
<td>Muscular Dystrophy Association 2012 [37]</td>
<td>United States</td>
<td>Clinical diagnosis of MND</td>
<td>954 patients</td>
<td>Various treatments</td>
<td>Health services and societal statistics</td>
<td>Medical costs National tariffs</td>
<td>National tariffs</td>
</tr>
<tr>
<td>De Alemeida 2012 [38]</td>
<td>Portugal</td>
<td>Not stated Clinic and home based populations</td>
<td>39 patients</td>
<td>Home tele-monitoring care</td>
<td>Health services</td>
<td>Institutional data Hospitalisation Outpatient Transport Equipment Loss of income</td>
<td>National tariffs</td>
</tr>
<tr>
<td>Vitacca et al 2012 [39]</td>
<td>Italy</td>
<td>El Escorial criteria</td>
<td>73 patients</td>
<td>Home tele-monitoring care</td>
<td>Health services</td>
<td>Staff time</td>
<td>National tariffs</td>
</tr>
<tr>
<td>Ward et al 2010 [40]</td>
<td>United States</td>
<td>Not stated Clinic population</td>
<td>45 patients</td>
<td>Power wheelchairs</td>
<td>Societal</td>
<td>Wheelchair</td>
<td>Local tariffs</td>
</tr>
<tr>
<td>Schepelmann et al 2010 [41]</td>
<td>Germany</td>
<td>El Escorial criteria</td>
<td>Clinic</td>
<td>Various treatments</td>
<td>Societal</td>
<td>All disease related expenditure</td>
<td>Local Tariffs</td>
</tr>
<tr>
<td>Study</td>
<td>Country</td>
<td>Diagnosis</td>
<td>Clinic population</td>
<td>Costs</td>
<td>Methods</td>
<td>Indirect costs</td>
<td>Direct costs</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------</td>
<td>----------------------------</td>
<td>-------------------</td>
<td>-------------------------------</td>
<td>--------------------------------</td>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Lopez-Bastida et al 2009 [42]</td>
<td>Spain</td>
<td>Not stated</td>
<td>Clinic population 63 patients</td>
<td>Various treatments</td>
<td>Health services and societal</td>
<td>Patient survey</td>
<td>Hospital stay, Medicines, Transport, Loss of income</td>
</tr>
<tr>
<td>Elman et al 2006 [43]</td>
<td>United States</td>
<td>Clinical diagnosis of MND</td>
<td>Clinic population 25 patients</td>
<td>Hospice care</td>
<td>Health services</td>
<td>Institutional data</td>
<td>Length of stay, Staff, Transport, Medicines</td>
</tr>
<tr>
<td>Forshew and Bromberg 2003 [44]</td>
<td>United States</td>
<td>Not stated</td>
<td>Clinic population</td>
<td>Various treatments</td>
<td>Health services</td>
<td>Doctor survey</td>
<td>Drug costs</td>
</tr>
<tr>
<td>Lechtzin et al 2001 [46]</td>
<td>United States</td>
<td>El Escorial criteria</td>
<td>Hospital care</td>
<td>Health services</td>
<td>Nationwide in-patient sample database</td>
<td>Length of stay costs</td>
<td>National tariffs</td>
</tr>
<tr>
<td>Munsat et al 1998 [47]</td>
<td>United Kingdom</td>
<td>Not stated</td>
<td>Standard care</td>
<td>Health services</td>
<td>Consultation with neurologists</td>
<td>Hospitalization, Physician time, Outpatient care, Palliative drug cost, Medical devices</td>
<td>Local Tariffs</td>
</tr>
<tr>
<td>Klein and Forshew 1996</td>
<td></td>
<td>Not stated</td>
<td>Various</td>
<td>Health</td>
<td>Consultation with</td>
<td>Diagnosis costs</td>
<td>National</td>
</tr>
</tbody>
</table>

Note: MND stands for Motor Neuron Disease.
<table>
<thead>
<tr>
<th>Study</th>
<th>United States</th>
<th>Clinic population</th>
<th>treatments</th>
<th>services</th>
<th>neurologists</th>
<th>Palliative costs</th>
<th>Tariffs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sevick et al 1996 [49]</td>
<td>United States</td>
<td>Not stated Clinic population 277 patients</td>
<td>Home based ventilator care</td>
<td>Societal</td>
<td>Patient and caregiver survey</td>
<td>Home help Occupational therapy Physical therapy Transport Ventilation care</td>
<td>Local Tariffs</td>
</tr>
<tr>
<td>Moss et al 1996 [50]</td>
<td>United States</td>
<td>Not stated Clinic population 50 patients</td>
<td>Hospital and home based ventilator care</td>
<td>Health services and societal</td>
<td>Patient and caregiver survey</td>
<td>Hospital care Equipment Out of pocket expenses</td>
<td>National and Local Tariffs</td>
</tr>
<tr>
<td>Author(s), Year of Publication, (cost data year)</td>
<td>Mean direct cost per patient (2015 cost in £)</td>
<td>Health state utilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitacca et al 2010 (2005) [14] Italy</td>
<td>Tele assisted care: €425 (£369) per month Standard care: €239 (£214) per month</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gruis, Chernew and Brown 2005 (2003) [15] United States</td>
<td>Non-invasive ventilation: $3,132 (£2,584) per annum Trial of non-invasive ventilation in patients who prove to be intolerant: $467 (£385) (lifetime cost) Control (Standard care): Standard care costs assumed in both groups</td>
<td>Mild State: 0.8 Moderate State: 0.6 Severe State: 0.5 Terminal State: 0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aventis Pharma 2000 (1998) [18] and updates / revisions [16,17] United Kingdom</td>
<td>Intervention (riluzole): £3,742 (£6,429) per annum + Standard care costs Control Group (Standard care annual costs): Mild State Care: £1,224 (£2,068) Moderate State Care: £805 (£1,360) Severe State Care: £1,754 (£2,963) Terminal State Care: £3,231 (£5,458)</td>
<td>Mild State: 0.79 Moderate State: 0.67 Severe State: 0.71 Terminal State: 0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stewart et al 2000 (1999) [20] United Kingdom</td>
<td>Intervention (riluzole): £10.21 (£16.59) per day; monitoring: £17 (£28) per month Control (Standard care annual costs): Mild state care: £1,237 (£2,056) Moderate state care: £834 (£1,352) Severe state care: £1,771 (£2,957) Terminal state care: £3,263 (£5,444)</td>
<td>Mild State: 0.79 Moderate State: 0.67 Severe State: 0.71 Terminal State: 0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Messori et al 1999 (1996) [21] Italy</td>
<td>Intervention (riluzole): US$8,736 (£9,487) per annum Control: standard care costs assumed to be equal in both groups</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ackerman et al 1999 (1996) [22] United States</td>
<td>rhIGF-1 therapy: US$46,860 (£51,295) (lifetime cost) Control (Standard care): £7,754 (£8,494) (lifetime cost)</td>
<td>Appel ALS score 40 - 59: 0.89 Appel ALS score 60 - 86: 0.82 Appel ALS score 87- 109: 0.41 Appel ALS score 110 - 128: 0.01 Appel ALS score 129 - 164: -0.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Country</td>
<td>Study Design</td>
<td>Treatment Intervention</td>
<td>Control intervention</td>
<td>Survival Time with Utilities</td>
<td>Cost Calculation</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
<td>-------------------------------</td>
<td>------------------------</td>
<td>----------------------</td>
<td>------------------------------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>Gray 1998 (1997)</td>
<td>United Kingdom</td>
<td>Intervention (riluzole): Non-tracheostomy patients: £286 (£491) per month; patients post-tracheostomy: £300 (£504) per month</td>
<td>Control (Standard care): standard care costs assumed equal in both groups</td>
<td>Various scenarios: survival time with utilities of 1, 0.8 and 0.5 (hypothetical values)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chilcott et al 1997 (1996)</td>
<td>United Kingdom</td>
<td>Intervention (riluzole): £3,720 (£6,568) per annum</td>
<td>Control (Standard care): Standard care costs assumed to be equal in both groups</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Booth-Clibborn et al 1997 (1996)</td>
<td>United Kingdom</td>
<td>Intervention (riluzole): £15,000 (£25,771) (lifetime costs)</td>
<td>Control (Standard care): Standard care costs assumed to be equal in both groups</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author(s), Year of Publication, (cost data year)</td>
<td>Mean direct cost per patient (2015 cost in £)</td>
<td>Mean indirect cost per patient (2015 cost in £)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oh et al 2015 (2013) [29] South Korea</td>
<td>Healthcare costs (per month):</td>
<td>Patient lost wages (per month):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stage 1: Not stated</td>
<td>Stage 1: Not stated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stage 2: $3,181 (£2,027)</td>
<td>Stage 2: $1,155 (£736)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stage 3: $2,773 (£1,767)</td>
<td>Stage 3: $1,889 (£1,204)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stage 4: $4,415 (£2,722)</td>
<td>Stage 4: $2,629 (£1,675)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connolly et al 2015 (2010) [31] Ireland</td>
<td>Health and social care costs: €1,795 (£1,255) per month</td>
<td>Not considered</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gladman et al 2014 (2012) [33] Canada</td>
<td>Healthcare provider and “out of pocket costs”: Can$32,337 (£21,455) per annum</td>
<td>Lost wages of patients and caregivers: Can$56,821 (£37,700) per annum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Larkindale et al 2013 (2010) [34] United States</td>
<td>Total direct and indirect costs per patient: $63,693 (£48,468) per annum (cost not disaggregated)</td>
<td>Not considered</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muscular Dystrophy Association 2012 (2010) [37] United States</td>
<td>Medical costs: $30,934 (£23,165) per annum</td>
<td>Not considered</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>De Alemedia 2012 (2010) [38] Spain</td>
<td>Tele monitoring care: €8,909 (£9,030) per annum</td>
<td>Not stated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Standard care: €19,952 (£19,952) per annum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitacca et al 2012 (2007) [39] Italy</td>
<td>Tele assistance: €105 (£84) per month</td>
<td>Not considered</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schepelmann et al 2010 (2009) [41] Germany</td>
<td>Medical costs: €14,980 (£13,076) per annum</td>
<td>Patient lost earnings: €21,400 (£18,680) per annum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Country</td>
<td>Costs Description</td>
<td>Not Considered</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------------</td>
<td>---</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forshew and Bromberg 2003 (2002) [44]</td>
<td>United States</td>
<td>Various drug costs</td>
<td>Not considered</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klein and Forshew 1996 (1995) [48]</td>
<td>United States</td>
<td>Diagnosis costs: $10,000 - $20,000 (£10,946 - £21,893) (lifetime cost)</td>
<td>Not considered</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>De Alemedia 2012 (2010) [38]</td>
<td>Spain</td>
<td>Home ventilation: $91,704 (£101,997) per annum</td>
<td>Caregiver lost wages: $7,008 (£7,671) per annum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Home ventilation: $136,852 (£149,804) per annum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Records identified through database searching (n = 2,481)

Additional records identified through other sources (n = 3)

Records after duplicates removed (n = 1,843)

Records screened (n = 1,843)

Records excluded (n = 1,782)

Full-text articles assessed for eligibility (n = 63)

Full-text articles excluded, with reasons (n = 20)
 Lacking in outcomes, costs and comparator (n=5)
 Lack of detailed costs (n=4)
 Lack of HSUVs (n=11)

Studies included in review (n=43)