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Are single stock futures used as an alternative during a short-selling ban? 

The response of the single stock futures (SSF) market to a short-selling ban is 

investigated. The hypothesis is that traders use SSF as a substitute instrument for 

short-selling. A significant increase in SSF trading activity is documented, 

accompanied by narrower spreads. SSF market volatility did not react during the ban, 

which suggests that the increased trading activity did not weaken SSF market quality. 

The quality of the underlying market during the ban period is also assessed, with the 

results suggesting that changes in SSF market activity had neither positive nor 

negative effects on the stocks’ liquidity, volatility, and volume.  

 

  



1. Introduction 

Single stock futures (SSF) are a cost-effective trading instrument and offer advantages over 

trading in stocks. Ang and Cheng (2005a) argue that these derivatives are a potentially vital 

instrument for institutional and individual investors. Mitchell (2003, p.4) states that “investing, 

speculating, hedging, and market making can be facilitated with the use of SSF”. Moreover, 

SSF represent an alternative to securities lending/borrowing. Taking a long (short) SSF position 

provides similar advantages to lending (borrowing) the underlying stock while reducing fees 

and counterparty risk. Since SSF have lower margin requirements, they represent a cheap and 

less risky alternative mechanism to short-selling. Danielsen et al. (2009) examine the impact 

of the launch of SSF on the short-selling and trading features of underlying stocks in the US. 

Their evidence is consistent with the hypothesis that SSF represent a plausible alternative to 

short-selling because costs related to short sales and the level of short-selling decrease after the 

introduction of SSF. 

Short-sellers are heavily criticised for contributing to stock market crashes. Following 

the Lehman Brothers collapse in September 2008, many market regulators implemented 

restrictions on short-selling. On September 18th, 2008, the UK Financial Services Authority 

(FSA) announced a ban on short-selling financial stocks, which was in place until January 16th, 

2009.1 This emergency measure was an effort to stabilise markets, especially in bank stocks, 

whereby short-selling was a strong contributor to the massive selloff occurring globally.2 

However, many researchers question the effectiveness and benefits of such intervention. Based 

on theoretical models and empirical findings, short-selling enables traders to react to bad news, 

therefore any constraint on short-sales will decelerate price discovery and reduce market 

liquidity, without necessarily stemming price declines.3 This liquidity shock, especially during 

                                                           
1 The FSA announced the end of the ban on January 5th, 2009.  
2 See “Short sale ban spreads around the globe”, Wall Street Journal, September 22, 2008. 
3 For example, Jones and Lamont (2002); Diamond and Verrecchia (1987); Bai et al. (2006). 



the severe conditions of a crisis, is demonstrated to have a negative impact on stocks and fixed 

income markets (e.g. Danciulescu, 2009). Under these short-sale constraints, sophisticated 

traders may migrate to SSF to establish similar short positions to those they would have 

achieved by short-selling. 

This paper aims to identify whether short-sellers acknowledge SSF to be low-cost 

alternatives to short-selling. If this is the case, they will migrate to SSF if they can no longer 

short sell due to a ban. The reaction of trading activity, liquidity, and volatility are examined 

during the UK short-selling ban in 2008-09. A shift to SSF trading would imply that these 

instruments could be used by market participants to circumvent bans on short-selling. This 

paper offers a unique contribution in these respects. 

A difference-in-differences analysis is conducted whereby the Lisbon SSF market acts 

as a control group. The results indicate a significant increase in the number of quotes for SSF 

in the London market, accompanied by an increase in market liquidity. The volatility of the 

SSF market in London did not react, which suggests that SSF markets can absorb elevated 

trading activity while maintaining market quality. 

Prior literature suggests that SSF trading leads to more efficient pricing in the underlying 

market (e.g. Ang and Cheng, 2005b; Shastri et al., 2008; Danielsen et al., 2009). Based on this 

argument, the quality of the underlying stock trading in the presence of SSF is assessed during 

the short-selling ban. SSF are expected to mitigate the effect of the ban on their underlying 

stocks such that the latter are more liquid, more frequently traded, and less volatile than stocks 

without SSF. This study finds no evidence that SSF improve the underlying market’s quality 

during the ban.  Finally, the impact of the ban on SSF mispricing is investigated. In the absence 

of short-sale constraints, futures underpricing can be exploited by shorting the stock and going 

long futures, thus reducing the magnitude of the mispricing. Therefore, SSF mispricing is 



expected to be more prevalent during the short-selling ban. Consistent with theoretical 

prediction, the findings suggest that the level of SSF mispricing increases during the ban. 

This paper is structured as follows. Section 2 discusses prior literature on SSF and short-

selling. The data and methodology are explained in Section 3. Section 4 presents the empirical 

results, and Section 5 concludes. 

 

2. Literature Review and Hypotheses 

2.1. SSF and the underlying market 

There is an established debate about the impact of derivatives trading on the underlying stock 

market. Some researchers argue that derivative markets destabilise the spot market as they are 

used by speculators as tools for price manipulation and thus increase volatility.4 Others argue 

that derivatives encourage arbitrageurs to trade against uninformed trading demand, hence 

correcting any mispricing and maintaining asset prices at their fundamental values.5  

Several studies examine the impact of the introduction of SSF on the underlying market 

in terms of metrics such as volatility, pricing efficiency and cost reduction. Lee and Tong 

(1998) find that the introduction of SSF at the Sydney Futures Exchange did not induce any 

changes in volatility. McKenzie et al. (2001) find that SSF listing induces a significant decline 

in the systematic risk in the underlying market, where the response of volatility is firm-

dependent. Ang and Cheng (2005b) demonstrate that the presence of SSF improves market 

efficiency and stability. This is revealed by a decline in the price volatility of stocks with SSF 

listings after their introduction to the US market in 2002. Ang and Cheng (2005b) provide 

evidence suggesting that informed traders (arbitrageurs) might prefer SSF to options as they 

                                                           
4 e.g. Kuprianov (1995).  
5 e.g. Figlewski and Webb (1993); Phillips (2011). 



represent a cheaper mechanism to exploit mispricing in the spot market. Hence, SSF trading 

contributes to more efficient pricing in the underlying market. These results are supported by 

Shastri et al. (2008), who show that the information efficiency and market quality of the 

underlying market improved significantly compared to the pre-SSF period. 

Overall, prior literature suggests that the introduction of SSF contributes to the 

stabilisation of the underlying stock markets by reducing price volatility, improving price 

efficiency, and increasing market quality. Indeed, trading in SSF offers two major advantages 

over trading in the spot market. First, SSF relax short-selling constraints by enabling investors 

to establish a short position in an asset. Short-selling is subject to higher costs and risks, plus 

legal and institutional restrictions. In order to short a stock, an investor must find an owner 

willing to lend the stock in question and the lender requires a fee. Once the stock is borrowed, 

the borrower bears the risk of the lender recalling the stock at any time. Second, SSF have 

lower margin requirements than spot market trades.6 Hence, SSF enable holding a short 

position on a certain stock at lower costs while incurring less risk. Danielsen et al. (2009) 

provide evidence that short-sellers migrate to SSF at their introduction in the US market, while 

the underlying market’s bid-ask spreads (quoted and effective) fall after SSF introduction, 

accompanied by a decrease in short-selling costs and the level of short sales. 

One might argue that options offer similar advantages. However, options have non-linear 

payoffs and require buying and selling options with the same strike and maturity as the SSF 

contract in order to create a similar short position. In relation to market quality improvements, 

SSF are found to contribute a higher proportion of the price discovery process compared to 

options (Chakravarty et al., 2004).  

                                                           
6 See Table 2.1 (p. 11) in Mitchell (2003) for a detailed comparison of equities and SSF. 



2.2. Market reactions to short-selling bans 

Several researchers have investigated the effect of short-selling restrictions on asset prices and 

market efficiency. Diamond and Verrecchia (1987) argue that short-sales constraints hinder 

price discovery as they prevent asset prices from promptly reflecting private information 

known to sophisticated traders. The delay caused in the price discovery process implies 

uncertainty and consequently reduced liquidity. Bai et al.’s (2006) model shows that a short-

selling ban’s effect on prices could take two directions. It has an upward effect on prices as it 

lessens market liquidity and selling pressure, and a downward effect on prices as it weakens 

the information content of prices. 

Prior studies document negative effects of short-selling bans on market quality. Marsh 

and Payne (2012) study the extent to which the UK short-sale restrictions (2008-09) were 

effective in supporting the UK stock markets, and find that the ban failed to support both 

financial and non-financial stocks. Prices were following a downward trend and strong selling 

pressure existed before the ban. Compared to non-financial stocks, the ban undermined the 

liquidity of financial stocks. Moreover, the efficiency and information content of trading 

deteriorated during the ban for financials compared to non-financial stocks. Boehmer et al. 

(2013) examine the implications of short-sale restrictions in the US during autumn 2008 by 

comparing the liquidity (bid-ask spread and price impact) of financial stocks subject to the ban 

and those that were not. Stocks targeted by the ban were significantly less liquid than others. 

Considering data from around the world, Beber and Pagano (2013) explore the implications of 

short-sale restrictions on market liquidity, the price discovery process, and stock prices. They 

find that the regulatory interventions are accompanied by wider spreads and inferior price 

discovery, without improving stock price performance. 

Counter-intuitively, Battalio and Schultz (2010) find that short-sellers did not shift to 

options as an alternative to short-selling. Grundy et al. (2012) provide similar evidence on the 



reaction of options markets to the US short-sale ban. They explain that traders’ ability to 

establish a short-sale-like position by buying a put option depends on finding a writer able to 

short-sell the underlying. The only participants allowed to short sell during the US ban were 

options market makers. Grundy et al. (2012) also report a significant widening of spreads for 

options on stocks targeted by the ban, and a dramatic drop in option trading volumes. 

The above evidence suggests that short-sale restrictions did not necessarily meet 

regulators’ expectations. In the presence of bans, market quality (measured by liquidity, price 

impact, and volume) worsened for both equity and options markets. This study offers a 

substantial contribution by linking a short-selling ban to SSF contracts in a unique setting.  

2.3. Hypotheses 

Following the collapse of Lehman Brothers in 2008, several financial authorities in Europe 

announced restrictions on short sales (covered and/or naked). Table 1 lists these bans, their 

durations and their nature. The UK FSA announced on September 18th, 2008 a ban on net 

position short-selling in financial stocks at the London Stock Exchange, which was lifted on 

January 16th, 2009.  

[Insert Table 1 here] 

This paper tests the hypothesis that SSF constitute a viable substitute to short-selling. On 

this basis, an immediate increase in demand for trading in SSF should be observed when the 

ban begins. Second, if a negative relationship exists between spread and trading activity, 

narrower spreads in SSF during a ban period are expected. The SSF market’s reactions to a 

short-selling ban are assessed by testing three hypotheses: 

Hypothesis 1: Short-sellers migrate to SSF trading after the introduction of the ban, which 

will be revealed by an increase in trading activity; 



Hypothesis 2: If a negative relationship exists between trading activity and spread, any 

increase in SSF trading activity will lead to narrower bid-ask spreads;7 

Hypothesis 3: SSF volatility will decrease during the ban period if narrower spreads are 

accompanied by lower volatility in this market structure.8  

Moreover, the paper examines the impact of SSF trading on the underlying market quality 

(measured by liquidity, volume, and volatility). Prior literature reports that SSF improve the 

underlying market quality as their introduction is accompanied by a decline in information 

asymmetry and trading costs in the stock market. However, there is contrasting prior evidence 

on whether SSF trading has an impact on the underlying market’s volatility. 

3. Data and Methodology 

3.1. Data 

SSF began trading in London in June 2003. In this SSF market structure, liquidity is provided 

by designated market makers (DMM) who facilitate customer order flow by setting bid-ask 

spreads for a stipulated level of demand.9 The trading day starts at 08:00 and ends at 18:00. 

The SSF data comprise time-stamped observations on all SSF quotes including contract type, 

expiration date and price in the London and Lisbon markets, from January 2008 until December 

2010.10 The dataset comprises 135 SSF contracts in London and 13 in Lisbon. For the analysis, 

different maturities for each contract are defined as follows: short-maturity contracts with less 

than 30 days to expiry; medium-maturity contracts with between 30 and 60 days to expiry; 

long-maturity contracts with more than 60 days to expiry. Daily data on SSF open interest are 

collected from Bloomberg and Datastream for the sample period. 

                                                           
7 See George and Longstaff (1993); Wang et al. (1997); among others. 
8 See Wang et al. (1994); among others. 
9 See https://derivatives.euronext.com/en/stock-futures/liquidity-provider-programmes 
10 A number of days’ data between January 5th and February 9th 2009 do not contain bid prices, which rules out 
estimates of spreads on those days. The exchange confirmed that the data was indeed missing and there were no 
alternative sources to supply data for those days. 

https://derivatives.euronext.com/en/stock-futures/liquidity-provider-programmes


The SSFs’ underlying stocks trade in NYSE Euronext markets including Amsterdam, 

Brussels, and Paris. Data on the underlying assets (including bid and ask prices, volume, 

earnings per share, dividend per share, and market capitalisation) are collected from Bloomberg 

and Datastream. Similar data are collected for stocks traded in NYSE Euronext Amsterdam, 

Brussels, and Paris without SSF. For the London SSFs, there are 135 stocks with SSF 

(treatment group) and 1,019 stocks without SSF (control group). Euribor data are collected 

from the European Central Bank’s (ECB) Statistical Data Warehouse.11 Data from January 

2008 until December 2009 are used to assess the ban effect, and data from 2010 are used for 

placebo tests. 

In order to pursue the paper’s objectives, daily data is created from the intraday SSF data. 

Let t represent the time when the bid and ask quotes are observed. The quoted percentage 

spread is calculated by dividing the difference between ask and bid prices by the midpoint, for 

each SSF contract i for each maturity (short, medium, long):12 

%BASi,t =
pi,t

A −  pi,t
B

Pi,tM
 (1)   

Where ptA and ptBare the ask and bid prices, respectively. The midpoint price is the average of 

the bid and ask prices: 

Pi,tM =
pi,t

A +  pi,t
B

2
 (2)   

In order to create daily data, the average percentage spread is calculated over each trading 

day d, for each SSF contract i for each maturity: 

                                                           
11 See http://sdw.ecb.europa.eu/.  
12 Note that contracts with less than 7 days to maturity are not included, as is standard practice in related derivatives 
literature. 

http://sdw.ecb.europa.eu/


BASi,d = �
%BASi,t

Ni,d

N

t=1

 (3)   

Where Ni,d is the number of quotations of a given contract with a given maturity on trading 

day d. 

For each SSF contract i, for each maturity, the daily volatility is measured by the absolute 

return defined as in Ding et al. (1993): 

RISKi,d = �
Pi,dM − Pi,d−1M

Pi,d−1M � ∗ 100 (4)   

Where Pi,dM and Pi,d−1M  are the last observed midpoint SSF prices on days d and d −

1,  respectively. 

Finally, the daily trading activity is estimated by the number of quotes on each trading 

day d, for each contract i in each maturity group. 

All measures are calculated for both the London and Lisbon SSF markets. 

The underlying market’s quality is measured by the bid-ask spread, trading volume, and 

volatility. For each stock s, the daily bid-ask spread is calculated as expressed in Equation (1). 

The volatility measure for a stock s traded in the underlying market is also given by the absolute 

return: 

RISKs,d = �
Ps,d − Ps,d−1

Ps,,d−1
� ∗ 100 (5)   

Where Ps,d and Ps,dare the closing prices on days d and d − 1,  respectively. 



3.2. Methodology 

3.2.1. Spread – volatility – trading activity relationship  

Prior to considering the market reactions to the short-selling ban, the spread-volatility-trading 

activity relationship is investigated. The SSF market structure is similar to that of a specialist 

market because of the presence of DMMs. In such a context, microstructure literature predicts 

an inverse spread-trading activity relationship and a direct spread-volatility relationship, where 

trading activity and volatility are two of the main determinants of spreads.13 Existing literature 

suggests that higher trading activity is expected to narrow spreads. Providing liquidity in 

infrequently traded assets will be costly because market makers are exposed to greater risk, i.e. 

there exists an inverse relationship between spreads and trading activity. Microstructure models 

predict that higher volatility is expected to widen spreads because market makers will aim to 

protect their positions. The spread-volatility relationship is normally positive. Therefore, SSF 

bid-ask spreads are expected to respond to changes in trading activity and volatility. 

In order to test this relationship, the following equation is estimated: 

BASi,d =  β0 + β1Activityi,d +  β2Riski,d +  εi,d (6)   

Where Activityi,d is defined as the daily trading activity of an SSF contract i on a day d. 

Equation (6) is estimated with the Generalised Method of Moments (GMM). This is 

efficient in producing robust estimates, particularly when facing potential endogeneity 

problems. The purpose of this estimation is solely to establish the nature of the relationship 

between spreads, trading activity, and volatility. The estimation is run for the London and 

Lisbon markets separately, and for each maturity group separately. 

                                                           
13 These models explain the bid-ask spread as (i) the price of immediacy, i.e. the cost of processing and fulfilling 
an order (e.g O’Hara and Oldfield, 1986); or (ii) the cost arising from information asymmetry (e.g. Bessembinder, 
1994). 



3.2.2. Difference-in-differences test 

The primary focus is to assess the SSF market response to the short-selling ban, which is 

achieved using a difference-in-differences approach. The treatment is the short-selling ban and 

the aim is to estimate the average treatment effect of the treated (ATT). The treatment group 

comprises SSF contracts traded in London while the control group is the Lisbon SSF market 

(both of which are in the same exchange ownership group).14 The short-selling restrictions were 

implemented shortly after the sudden collapse of Lehman Brothers, therefore, it is assumed 

that the market could not “prepare” for this event, and indeed, that short-sellers were profiting 

from trades in financial stocks up to this point (due to other events in the crisis). Two 

categorical variables are defined:  ban and treat. The ban variable represents the treatment and 

takes the value of 1 during the period of short-selling restrictions and 0 otherwise. The treat 

variable represents the categories for the treatment/control group, i.e. treat = 0 for the control 

group and treat = 1 for the treatment group (London).  

A shift to the SSF market would cause an increased demand for trading, i.e. would be 

captured well by the number of quotes. Variations in the liquidity of the market (measured by 

the bid-ask spread) and its volatility are hypothesised to follow as a response to the increase in 

trading activity. Because the variables of interest could be influenced by the underlying 

equity’s firm size, it is appropriate to add market capitalisation to the model specification. 

The difference-in-differences coefficient is obtained by estimating the following model: 

Vari,d =  β0 + β1band + β2treati + β3treati ∗ band + β4 CAPi,d + εi,d (7)   

                                                           
14 A different specification was also considered, where, for each contract, the treatment variable takes the value 
of 1 with respect to the ban period in the home market of its underlying asset; and the treatment group comprised 
SSF written on stocks subjected to the ban. The results from such a specification imply that all SSF react to the 
ban, regardless of their underlying market. This reaction is most evident during the UK ban period. 



Var represents one of trading activity, spreads, or volatility. β0 represents the level of Vari,d in 

the control group (Lisbon) outside of the treatment (ban). β1, the coefficient of the categorical 

variable band, captures the difference in Vari,d in the control group (Lisbon) during the ban. 

β2, the coefficient of the dummy variable treati, captures differences between the treatment 

market (contracts traded in London) and control (contracts traded in the Lisbon market) groups 

before and after the ban.15 The coefficient of interest here is β3, which captures the effect of 

the ban on the treated group. Finally, CAPi,d is the control variable for firm size. Equation (7) 

is estimated for the three variables, using the pooled data and for each maturity group 

separately.16 

In a separate exercise, a model similar to (7) is used to evaluate the underlying market’s 

quality during the ban period in the presence of SSF. The dependent variable Vars,d then 

represents stocks’ spreads, trading activity and volatility. The treated group comprises stocks 

with SSF and the control group comprises stocks without SSF (traded in NYSE Euronext 

Amsterdam, Brussels, and Paris). 

The difference-in-differences approach assumes that the trend in the control and 

treatment groups in the absence of the treatment is similar. Here, if there had been no ban, the 

assumption is that the trend in the variables of interest would be similar in contracts traded in 

both London and Lisbon. A placebo difference-in-differences test which consists of using a 

“fake” treatment group is performed to test this assumption. Specifically, the same difference-

in-differences model is estimated using data from 2010 and using a “fake” ban period from 

September 18th, 2009 until January 16th, 2010. If the assumption is valid, the difference-in-

                                                           
15 The only SSF contract written on a Portuguese financial stock subject to short selling restrictions (Banco 
Espírito Santo) is dropped from the control group. 
16 Both contracts written on financial and non-financial stocks are used for the estimation. 



differences estimator computed on the placebo data should not be significant, i.e. the fake ban 

should not have any impact on the variables of interest. 

3.2.3. Propensity score matching and difference-in-differences 

An issue arises from the fact that units in the treatment and the control groups are not assigned 

randomly. Because contracts traded in London (treated) and Lisbon (control) differ in certain 

specific characteristics, the direct comparison of the outcome of the ban might be subject to 

potential bias. A matching exercise, using a propensity score, is used to improve the quality of 

the inference from the difference-in-differences estimates. The propensity score refers to the 

conditional probability that a unit will be assigned to the treatment group. It is most commonly 

defined by a logistic regression/probit model where the treatment is a function of a set of 

independent variables x (e.g. Austin, 2011): 

 p(x) =  prob( treat = 1|x)  (8)   

Estimating model (8) yields the predicted probability p�(x). The independent variables x 

should represent factors based on which a unit receives the treatment or not. Ang and Cheng 

(2005a) report that SSF exchanges tend to list larger stocks. The SSF trading in London are 

written on larger firms than is the case for Lisbon SSF. Therefore, the covariate chosen for the 

calculation of propensity scores is firms’ market capitalisation.  

Once propensity scores are calculated, the conditioning method considered is n:1 

matching. Blundell and Costa Dias (2000) note that combining the difference-in-differences 

method and propensity score matching produces high-quality results for the evaluation of a 

non-experimental treatment. Smith and Todd (2005a) demonstrate that cross-sectional 

matching estimators are weaker and find that the most robust estimators are given by the 

difference-in-differences matching. The matching exercise combines an observation j from the 



control group with one or more observations i in the treatment group on the basis of their scores. 

The best match for observation i is found using a caliper, i.e. a pre-specified range �pi − pj� 

where p refers to the propensity score. Following Rosenbaum and Rubin (1985) and Austin’s 

(2011) recommendations, the caliper is set to a value of 0.20. Only matched units are then 

included in the difference-in-differences estimation method, following Girma and Görg (2007). 

This process will be reliable if the balance property is verified. The balancing condition 

is assessed by calculating the standardised mean difference for the covariate x between the 

treated and the control groups (e.g. Smith and Todd, 2005b). If the standardised differences 

exceed an arbitrary criterion, the balancing condition is not satisfied. Here, 0.20 is considered 

as the threshold, following Rosenbaum and Rubin (1985). For a covariate x, the standardised 

difference, or bias, is calculated as: 

D(x) =  
100 ∗  |x�T −  x�C|

�s2T + s2C
2

  (9)   

Where T and C refer to the treatment and control groups, respectively; x�T and x�C are the sample 

means of the covariate x, respectively; and s2T and  s2C are the sample standard deviations of 

the covariate x in the treatment and control groups, respectively. 

3.2.4. Nature of the shift to SSF and arbitrage opportunities 

After assessing the effect of the ban on SSF trading activity, the origins of any changes are 

investigated. The ban coincides with a financial crisis, which implies that trading could be 

driven by hedging (or an increase in investors’ risk aversion) and/or speculation. A plot of the 

number of quotes before, during and after the ban period conveys easily the nature of the effect 

of the ban on trading activity. The dynamics of trading activity for London and Lisbon SSF 



around September 18th, 2008 is depicted in Figure 1.17 There is a clearly discernible effect on 

London SSF trading at the start of the ban period. Any effect in Lisbon is captured in the 

difference-in-differences design. 

[Insert Figure 1 here] 

Distinguishing between speculative and hedging activity is based on the length of the 

holding period, i.e. shorter for speculators. According to Bessembinder and Seguin (1993), 

daily open interest can be used to capture hedging activity in derivative markets. Changes in 

open interest are combined with daily volume to proxy for speculative demand. For day d, 

Rd is calculated as follows: 

Rd =  
Activityd

|OId − OId−1|
 (10)   

Where OId and OId−1 are the daily open interest for days d and d − 1, respectively. Rd is used 

to measure the relative importance of speculators’ trading activity compared to hedgers’ 

activity. Therefore, high speculative demand would increase trading activity within the day but 

closure of positions would imply little impact on open interest. An increase in Rd suggests 

either an increase (decrease) in speculative activity or a decrease (increase) in hedging activity. 

Therefore, relatively higher speculative demand is associated with high Rd. 

Further, the impact of the ban on SSF mispricing is investigated. Theory suggests that 

prices can deviate from their fundamental value as a result of investors’ over- or under-reaction 

to information. Short-sellers’ attempts to take advantage of these deviations move prices closer 

to their fair value (e.g. Diamond and Verrecchia, 1987). MacKinlay and Ramaswamy (1988) 

argue that, in the absence of short-sale constraints, short-sellers are able to establish futures 

                                                           
17 The time period of partial missing data is excluded in Figure 1. See footnote 10. 



arbitrage portfolios. Arbitrageurs can exploit futures underpricing by shorting the stock and 

going long futures, thus reducing the magnitude of the mispricing. This can only be achieved 

without short-selling constraints in the underlying market, but this latter condition does not 

apply to futures overpricing. Therefore, the magnitude of futures underpricing is larger than 

that of futures overpricing with short-selling constraints in the underlying market. Based on 

this argument, SSF mispricing is expected to be larger, especially on the lower bound, during 

the short-selling ban. 

Following Fung and Draper (1999), the fair price of an SSF contract on day d is 

calculated as: 

Fd∗ =  Sd (1 + r – D)t (11)   

Where Sd, r , D, and t are stock price on day d, the daily risk-free rate (proxied by the Euribor 

rate), the dividend payout ratio (dividends per share divided by earnings per share), and time 

to maturity as a fraction of a year, respectively. 

The mispricing is defined in Yadav and Pope (1994): 

πd =  
 Fd −  Fd∗

Sd
 (12)   

Where Fd is the closing price of the SSF contract on the trading day d. πd− (πd+) represent 

negative (positive) values of πd, suggesting underpricing (overpricing). 

A one-way ANOVA test is used to compare the means of Rd, the trading activity, the 

level of mispricing, |πd|, πd+ and  πd− during four phases. Phase 0 is defined as the 20 days prior 

to the ban. Phase 1 is defined as the first 20 days of the ban; Phase 3 is defined as the last 20 

days before January 5th, 2009, while Phase 2 is the period in between. 



4. Results 

4.1. Spread – Volatility – Trading relationship 

This sub-section documents the relationship between the SSF bid-ask spread, volatility, and 

trading activity. As suggested by previous literature, a narrower spread is expected to be 

accompanied by a larger number of quotes and lower volatility. Table 2 presents the results of 

the estimation of Equation (6).18 

Based on Table 2, there exists a significant direct relationship between liquidity and 

trading activity. Higher levels of trading activity are therefore accompanied by narrower 

spreads. This is consistent for both the London and Lisbon markets and across maturities. 

Moreover, the results suggest a significant positive relationship between spreads and volatility, 

i.e. wider spreads are accompanied by higher volatility. The relationships found are in 

accordance with theoretical predictions and prior empirical findings (see Section 2). 

[Insert Table 2 here] 

4.2. SSF and the short-selling ban 

The purpose of this section is to answer the question: Are SSF acknowledged as a viable 

substitute for short-selling? If the answer to this question is affirmative, short-sellers are 

expected to migrate to trading in SSF when they no longer have the ability to short sell. This is 

investigated with equation (7), whereby β3 is expected to be positive for the number of quotes, 

and negative for both spreads and volatility. 

Prior to the difference-in-differences estimation, a placebo test is conducted to investigate 

the common trend assumption. A fake treatment is created one year after the actual ban, i.e. 

                                                           
18 The full dataset from 2008 to 2010 is used to estimate Equation (6). 



from September 18th, 2009 until January 16th, 2010, in order to address any potential seasonal 

effects. Table 3 displays the results of the placebo test. 

[Insert Table 3 here] 

The placebo difference-in-differences results show a significant negative effect of the 

“fake” treatment on trading activity, suggesting that trading activity dropped during the last 

third of 2009.19 The lower level of trading activity is accompanied by wider spreads and slightly 

lower volatility. The common trend assumption could not be verified with this fake ban. The 

assumption is, however, valid when other fake treatment dates are considered (e.g. June 1st, 

2010 to August 1st, 2010). However, most importantly, these placebo tests do not indicate any 

upward trend in trading activity. 

Table 4 presents the results of estimating Equation (7). The estimated coefficient for the 

effect of the ban on trading activity is positive and strongly significant. Therefore, there is an 

increase in London SSF trading activity during the ban period resulting from a shift to trading 

in SSF. This is consistent for all maturity groups. 

[Insert Table 4 here] 

For the bid-ask spreads, the estimated β3 is negative and strongly significant, which 

indicates that spreads are narrower after the ban takes effect. This is expected due to the 

negative relationship between spreads and trading activity, as reported in Table 2. The increase 

in trading activity is accompanied by narrower spreads, for the three maturity groups. Volatility 

shows a much weaker, statistically insignificant reaction. This suggests that volatility in SSF 

markets is robust to increased trading activity, i.e. an increase in trading in SSF is not associated 

                                                           
19 This could be due to the drop in electronic trading volume in 2009 as announced by the London Stock Exchange 
news release. See 'LSE Reveals Year-On-Year Declines In Order Book Trading Volumes In December'. London 
Stock Exchange, January 8th, 2010. 



with a change in market quality.20,21 The model’s goodness of fit is higher for the number of 

quotes and spreads, where estimates are the most significant. 

The n:1 matching exercise reduces the number of contracts to 45 in London and 9 in 

Lisbon. First, the balance of the matched groups is tested. Table 5 reports the results of the 

balancing condition based on the n:1 matching approach. The comparison of standardised 

differences across groups (treatment and control) for both unmatched and matched samples, 

for the three maturities separately, show that the matching improves the balance of the sample 

by reducing the size bias by about 82% on average. The standardised differences of size are 

less than 0.21, which confirms the balancing property of the propensity score adjustment. 

[Insert Table 5 here] 

The matching and difference-in-differences results are presented in Table 6. The number 

of quotes and liquidity react as expected to the short-selling ban. The difference-in-differences 

matching estimates show that the level of trading activity increases significantly and that 

spreads are significantly narrower during the ban period. The reaction of volatility is benign 

which shows that SSF markets’ quality is not sensitive to the level of trading activity and that 

these markets can absorb high demands for trading without recording any change in volatility 

levels. These results strongly confirm the ‘pre-matching’ findings of Table 4. 

[Insert Table 6 here] 

These results contrast with Grundy et al. (2012) who find that SSF trading in the US is 

unaffected during the US short-selling ban. The duration of the bans in the UK and the US 

differ. The US ban was much shorter, from September 19th to October 8th, 2008. Comparing 

                                                           
20 Similar tests are performed where volatility is measured by the standard deviation of the midpoint prices within 
each trading day and similar results are found. The ban does not have any effect on volatility. 
21 Several studies link market quality to short-term volatility and conclude that a decrease in volatility is a sign of 
enhanced market quality, e.g. Chordia et al. (2011).  



the number of SSF contracts traded in the US and the UK suggests that SSF became more 

popular in the UK. In 2008, a total of 2.5 million SSF contracts were traded in the UK market 

compared to 4 million in the US. In 2009 (2010), the total number of contracts traded in the 

UK increased to 9.5 million (11.2 million), while US trading amounted to 2.9 million (4.9 

million) contracts.22 Also, the context of the UK ban is that similar bans are in place in several 

other European countries (see Table 1). 

4.3. SSF and underlying market quality 

Attention now turns to the quality of the underlying market during the ban in the presence of 

SSF. Section 2.1 discusses the relevant prior literature on this aspect. This subsection presents 

how the underlying stocks react during the ban compared with stocks on which no SSF are 

written.23 The treated and control groups are unbalanced in terms of firm size. Most stocks with 

SSF are considerably larger than those without SSF. Hence, the stocks are matched as described 

in Section 3.2.3. The matching exercise reduces the size bias in the unmatched sample by 

85%.24  

 Table 7 reports the results of the difference-in-differences estimation in the unmatched 

and matched stock samples. In the unmatched sample, stocks with SSF are found to be more 

liquid, to have higher trading volume and volatility during the ban, compared to stocks without 

SSF. However, these effects disappear when the samples are matched by size, which implies 

that the effects of the ban are more prevalent in the largest firms which have listed SSF. This 

suggests that the presence of SSF does not improve the liquidity, the trading volume, nor the 

volatility level of the underlying stocks under restrictions on short sales. Consistent with Lee 

                                                           
22 The figures are obtained from the OneChicago and Eurex press releases in January of each year. 
23 Similar to Table 3 for SSF, a placebo test is conducted with a fake treatment to test the parallel trend assumption. 
The fake treatment is again set one year after the actual UK ban, i.e. from September 18th, 2009 until January 16th, 
2010. The results indicate that liquidity and volume have similar patterns in both the treated and control stocks 
outside the ban period. However, this assumption is not verified for volatility. The results are available on request. 
24 The results of the balance test are available on request (i.e. the equivalent of Table 5 for the stocks). 



and Tong (1998) and Dennis and Sim (1999), SSF are not found to influence the effect of the 

ban on the market quality for their underlying stocks. The ban was implemented as a response 

to extreme market conditions, which can explain why the matched sample test does not support 

findings in McKenzie et al. (2001) and Danielsen et al. (2009). 

[Insert Table 7 here] 

4.4. Nature of the shift to SSF and arbitrage opportunities 

Is the increase in SSF trading driven by hedging or speculation? Figure 2 displays the dynamics 

of Rd (defined in Equation (10)) around the ban period in London. 

[Insert Figure 2 here] 

Comparing the evolution of Rd and trading activity in Figure 2 gives a better insight into 

the nature of trading underlying the increased trading activity. The ratio Rd has several peaks 

before and during the ban. The spikes are in most cases synchronous with those observed in 

the number of quotes which implies that the increase in trading activity is mainly driven by 

high speculative demand. 

The conclusions drawn from the plot are confirmed by a one-way ANOVA test to 

compare the means of Rd and the trading activity in four phases. Panel A of Table 8 reports the 

results. As defined in Section 3.2.4, Phase 0 represents the reference level of Rd and the number 

of quotes. The other estimates in each phase are the differentials between the variables’ mean 

values in that phase compared with Phase 0. Both Rd and the number of quotes significantly 

increase in the first 20 days of the ban compared to the pre-ban period. They remain 

significantly elevated during the ban then Rd falls in the last 20 days of available data. 

[Insert Table 8 here] 



Further, the level of SSF mispricing is compared across the four phases. Panel B of Table 

8 reports that the absolute value of mispricing does not change significantly in the first 20 days 

of the ban. It is significantly higher during Phase 2 and the last 20 days of data. Similar results 

are found for negative and positive mispricing, in terms of the phases with statistically 

significant coefficients. Additionally, the mispricing levels react asymmetrically to restrictions 

on short-selling. Consistent with theoretical prediction, the magnitude of the negative 

mispricing increases, i.e. underpriced SSF fall further below their fair value under short-selling 

constraints. The magnitude of positive mispricing decreases, i.e. the extent of overpricing 

reduced significantly under short-selling constraints. 

Referring back to Figure 1, the number of quotes remains higher than the pre-ban period 

after the UK ban’s expiry and then follows a downward trend to the end of 2009. This implies 

that speculators gradually (rather than immediately) revert to short-selling, as they are likely to 

still hold SSF with outstanding maturities. The ban expiry date was announced on January 5th, 

2009, i.e. only 10 days before the end of the ban. It would take time for some positions to 

unwind. Also, short-selling bans in other European markets (see Table 1) remained in effect at 

this time, which is a further reason why short-sellers may not immediately alter their trading 

behaviour at the end of the UK ban. As suggested by the column for negative mispricing in 

Table 8, mispricing-related arbitrage demand could be a further important influence in the post-

ban period. 

  



5. Conclusions 

The main purpose of this paper is to answer the question: do market participants employ SSF 

as an alternative instrument to short-selling? The reaction of SSF markets to the short-selling 

ban in the UK from September 18th, 2008 to January 16th, 2009 is examined, considering the 

trading activity, liquidity, and volatility of SSF in London. The answer to the question is 

conclusively affirmative. The evidence is that SSF trading activity in London increases at the 

beginning of the ban period, accompanied with narrowing spreads, while volatility is not 

sensitive to the ban. The increased trading activity can be explained by an increase in demand 

from short-sellers as they shift to trading in SSF. Additional tests indicate that the increase in 

trading is predominantly speculative activity rather than hedging. The change in the trading 

activity level improves market liquidity as spreads become narrower during the restriction 

period. Despite the elevated SSF trading, volatility does not increase, which means that the 

SSF market is able to absorb the extra demand for trading without reducing market quality. In 

order to ensure reliable inferences, propensity score analysis is used to obtain a randomised 

treatment variable. The difference-in-differences specification is re-estimated using matched 

data and consistent estimates are found, which strongly confirms the findings.  

The study also investigates how SSFs’ underlying stocks react to the ban. In prior 

literature, restrictions on short selling are associated with deteriorations in market quality (e.g. 

Boehmer et al. 2013). This paper finds neutral evidence in that increased SSF trading neither 

improves nor worsens market quality in the underlying stocks during the ban. This could be 

due to the fact that the period considered is characterised by unique market conditions. 

However, there is evidence that market quality for the largest stocks is affected. 

Another test is conducted to investigate the level of SSF mispricing during the short 

selling ban. Short sale restrictions prevent arbitrageurs from exploiting futures underpricing by 

shorting the stock and going long futures. Therefore, the magnitude of any negative mispricing 



is expected to increase during short selling bans. This is found to be true for SSF as their 

mispricing, in absolute value, increases during the ban period. The mispricing magnitudes react 

asymmetrically to restrictions on short-selling, as the negative mispricing became wider, while 

the positive mispricing narrowed. 

The findings strongly imply that market participants use SSF as a viable alternative to 

short-selling. Therefore, SSF represent a mechanism via which market participants can 

circumvent a short-selling ban. Further investigation shows that stocks with SSF have similar 

liquidity, trading volume, and volatility levels as size-matched stocks without SSF during the 

ban period. The findings have important implications for regulators, exchanges, and investors, 

and present further evidence on the effectiveness of regulatory interventions during financial 

crises.  
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Figure 1: Trading activity in SSF around the UK short-selling ban 

This figure displays the average number of quotes per day across all contracts traded in 

London and Lisbon. The UK short selling ban was effective from September 18th, 2008 to 

January 16th, 2009.  

 

 

 

 

 

 

 

 

 

 

 

 



 

 
Figure 2: Ratio Rd and Number of Quotes 

This figure displays the average ratio Rd and the total number of quotes per day during the 

UK short-selling ban. Rd for day d is defined as follows: 

Rd =  
Activityd

|OId − OId−1|
 

Where OId and OId−1 are the daily open interest for days d and d − 1, respectively. Higher 

values of Rd indicate relatively high speculative activity. 

 

 

 

 

 

  



Table 1: Short-Selling Ban Periods around Europe 

This table documents the periods during which short-selling was banned by different European 
financial authorities. The Nature of Ban column shows whether these restrictions are on naked 
short positions (NSS) or covered short positions (SS), and whether they are exclusive to financial 
stocks (FIN) or not (ALL). 

Country Start End Nature of Ban Source 

Belgium 23/09/2008 12/08/2011 NSS – FIN FSMA - Royal Decree 
of 23 September 2008 

France 23/09/2008 01/02/2011 SS – FIN 
AMF instruction n° 

2010-08 - AMF article  
223-37 

Germany 19/09/2008 21/01/2010 NSS – FIN 

BaFin  – General 
Decree Section 49 of 
the Administrative 

Procedure Act 
Verwaltungsverfahrens

gesetz (VwVfG) 

Italy 22/09/2008 01/08/2009 
SS - FIN until 

10/10/2008 then 
SS – ALL 

Consob  –  Resolutions 
n° 16622 and 16971 

Netherlands 22/09/2008 01/06/2009 
NSS until 

05/10/2008 then 
SS - FIN 

AFM Press release on 
September 22, 2008 

Portugal 22/09/2008 01/07/2010 NSS- FIN CMVM Press release 
on September 22, 2008 

Spain 22/09/2008 23/06/2009 NSS – FIN CNMV Communication 
on September 22, 2008 

United Kingdom 18/09/2008 16/01/2009 SS – FIN  FSA Press release n° 
FSA/PN/102/2008 

 

 

 

 

 

 

 



Table 2: The Spread-Volatility-Trading Activity Relationship 
This table presents the estimated coefficients of trading activity and volatility as 
explanatory variables of spread in London and Lisbon for all contracts and each 
maturity group. The model is estimated using GMM: 

BASi,d =  β0 + β1Activityi,d +  β2Riski,d +  εi,d 
Where i is the SSF contract, and d indicates the day on which the observation is 
recorded. 
  ALL SHORT MEDIUM LONG 
Panel A: Spreads in London    
Intercept 0.668 0.651 0.681 0.685 
 (184)*** (178)*** (180)*** (59.8)*** 
Activity (x103) -0.040 -0.070 -0.070 0.062 
 (-17.1)*** (-34.4)*** (-29.4)*** (6.80)*** 
Volatility (x103) 0.366 1.820 0.982 -1.130 
 (2.05)** (2.50)** (1.71)* (-3.31)*** 
R-Squared 0.004 0.025 0.018 0.003 
No. of Obs. 152102 53677 67410 31015 
Panel B: Spreads in Lisbon    
Intercept 1.397 1.123 1.502 1.547 
 (91.2)*** (75.8)*** (59.6)*** (76.8)*** 
Activity (x103) -0.910 -0.740 -1.630 -0.830 
 (-18.7)*** (-13.0)*** (-17.9)*** (-15.3)*** 
Volatility 3.997 2.328 7.081 4.414 
 (7.30)*** (5.61)*** (6.69)*** (6.05)*** 
R-Squared 0.023 0.031 0.034 0.030 
No. of Obs. 22901 6502 8358 8041 

Significance: 0.01 ‘***’ 0.05 ‘**’ 0.1 ‘*’  
 

 

 

 

 

 

 

 

 

 



Table 3: Placebo Test for Parallel Trend in SSF 
This table shows results for the “fake” treatment of trading activity, 
bid-ask spread, and volatility, where the fake treatment is set between 
September 18th, 2009 and January 16th, 2010. Data from January 1st, 
2009 until December 31st, 2010 are used for this estimation.  

 TRADING 
ACTIVITY 

BID-ASK 
SPREAD VOLATILITY 

Intercept 186.6 1.379 0.014 
 (60.9)*** (73.6)*** (4.09)*** 
Treat 730.0 -0.734 -0.001 
 (112)*** (-38.3)*** (-0.05) 
Fake Ban -7.734 -0.234 -0.007 
 (-0.99) (-6.68)*** (-13.6)*** 
Treat*Fake Ban -286.0 0.200 -0.028 
 (-23.9)*** (5.54)*** (-1.82)* 
Cap (x105) -141.0 -0.011 0.093 
 (-25.5)*** (-2.22)** (1.26) 
R-squared (x10) 0.740 0.650 0.001 

No. of Obs. = 175003 
Significance: 0.01 ‘***’ 0.05 ‘**’ 0.1 ‘*’ 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4: The Effect of the Short-Selling Ban on SSF – Initial Estimation 
This table represents the estimated coefficients of the difference-in-difference equation: 

Vari,d =  β0 + β1band +  β2treati + β3treati ∗ band + β4 CAPi,d + εi,d 
Where Var represents Trading Activity, Spread, and Volatility in each panel, i is the SSF 
contract, and d indicates the day on which the observation is recorded.  

 ALL SHORT MEDIUM LONG 
Panel A: Trading Activity    
Intercept 160.1 151.5 144.8 182.9 
 (60.1)*** (43.5)*** (51.5)*** (41.8)*** 
Treat 530.5 560.8 551.6 453.1 
 (103)*** (74.2)*** (86.4)*** (49.5)*** 
Ban 97.28 87.98 86.33 113.5 
 (11.0)*** (8.67)*** (10.2)*** (8.06)*** 
Treat*Ban 697.2 744.3 712.8 576.8 
 (36.4)*** (29.4)*** (31.4)*** (13.8)*** 
Cap (x103) -1.610 -1.720 -1.620 -1.350 
 (-40.4)*** (-34.6)*** (-35.9)*** (-20.0)*** 
R-Squared 0.184 0.177 0.188 0.181 
Panel B: Bid-Ask Spreads    
Intercept 1.189 0.943 1.249 1.334 
 (83.9)*** (87.9)*** (54.6)*** (71.9)*** 
Treat -0.556 -0.335 -0.609 -0.671 
 (-37.8)*** (-28.1)*** (-26.2)*** (-33.7)*** 
Ban 0.697 0.401 0.885 0.725 
 (14.3)*** (16.6)*** (11.5)*** (16.5)*** 
Treat*Ban -0.654 -0.348 -0.838 -0.713 
 (-13.3)*** (-13.6)*** (-10.8)*** (-15.8)*** 
Cap (x106) -0.018 0.123 -0.026 -0.267 
 (-0.32) (1.49) (-0.43) (-4.08)*** 
R-Squared 0.068 0.018 0.071 0.203 
Panel C: Volatility    
Intercept 0.016 0.017 0.016 0.016 
 (56.9)*** (33.9)*** (45.0)*** (36.5)*** 
Treat 0.008 0.007 0.006 0.011 
 (16.1)*** (8.22)*** (10.4)*** (14.1)*** 
Ban 0.017 0.018 0.017 0.015 
 (11.3)*** (6.30)*** (7.73)*** (8.51)*** 
Treat*Ban 0.003 0.003 0.001 0.007 
 (1.60) (0.83) (0.22) (0.02) 
Cap (x106) -0.029 -0.027 -0.026 -0.041 
 (-3.89)*** (-2.55)** (-3.15)*** (-3.31)*** 
R-Sq. (x10) 0.018 0.017 0.017 0.027 
No. of Obs. 102814 36212 44989 21613 

Significance: 0.01 ‘***’ 0.05 ‘**’ 0.1 ‘*’  
 



Table 5: Balance Assessment of the Matched SSF groups 
This table shows the results of the balance assessment. The standardised difference of size is calculated 
as follows: 

D(size) =  
100 ∗  |x�T −  x�C|

�s2T +  s2C
2

 

Where T and C refer to the treatment and control groups, respectively; x�T and x�C are the sample means 
of the covariate x, respectively; and s2T and  s2C are the sample standard deviations of the covariate size 
in the treatment and control groups, respectively. 
    Unmatched Sample  Matched Sample 

  Mean D 
 Mean D % Bias 

Reduction  Maturity  Treatment Control  Treatment Control 
Short 41374.56 4557.01 0.939  5317.76 4700.48 0.196 79 
Medium 41349.70 4548.71 0.935  5238.46 4618.20 0.205 78 
 Long 41273.47 4503.12 0.938  6273.69 5938.29 0.108 88 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

      Table 6: The Effect of the Short-Selling Ban on SSF – Matched Samples 
This table shows the results of the estimated difference-in-difference equation after 
matching treated and control contracts based on a caliper = 0.20. The model is: 

Vari,d =  β0 + β1band +  β2treati + β3treati ∗ band + β4 CAPi,d + εi,d 
The variables are defined in Table 4. 

 ALL SHORT MEDIUM LONG 
Panel A:  Trading Activity    
Intercept 88.76 60.11 58.42 171.3 
 (16.3)*** (6.99)*** (7.08)*** (13.9)*** 
Treat 538.1 585.1 580.4 423.3 
 (72.0)*** (42.4)*** (49.1)*** (33.7)*** 
Ban 112.9 102.5 98.39 142.5 
 (16.7)*** (10.1)*** (11.2)*** (8.73)*** 
Treat*Ban 266.3 307.3 253.4 222.7 

 (10.6)*** (6.91)*** (6.92)*** (4.25)*** 
Cap 0.157 0.018 0.018 0.009 
 (14.7)*** (10.2)*** (10.2)*** (4.57)*** 
R-Squared 0.300 0.318 0.341 0.224 
Panel B: Bid-Ask Spread      
Intercept 1.302 1.033 1.390 1.618 
 (81.4)*** (86.0)*** (46.6)*** (49.6)*** 
Treat -0.254 -0.143 -0.300 -0.317 
 (-19.0)*** (-9.65)*** (-13.1)*** (-11.6)*** 
Ban 0.579 0.343 0.586 0.835 
 (15.7)*** (13.4)*** (8.71)*** (10.8)*** 
Treat*Ban -0.619 -0.310 -0.598 -1.002 
 (-15.5)*** (-9.07)*** (-8.39)*** (-11.9)*** 
Cap (x103) -0.042 -0.027 -0.053 -0.064 
 (-24.1)*** (-17.5)*** (-15.1)*** (-18.2)*** 
R-Squared 0.094 0.092 0.093 0.141 
Panel C: Volatility      
Intercept 0.016 0.017 0.015 0.018 
 (29.5)*** (19.5)*** (18.5)*** (13.6)*** 
Treat 0.013 0.011 0.011 0.016 
 (19.7)*** (9.87)*** (12.3)*** (12.1)*** 
Ban 0.018 0.019 0.019 0.017 
 (15.7)*** (9.02)*** (9.18)*** (9.80)*** 
Treat*Ban (x103) 3.248 3.507 1.154 7.063 
 (1.52) (0.93) (0.37) (0.14) 
Cap (x106) -0.003 -0.066 0.133 -0.326 
 (-0.03) (-0.39) (0.79) (-1.45) 
R-Squared 0.049 0.047 0.056 0.049 
No. of Obs. 18084 5832 7226 5026 

Significance: 0.01 ‘***’ 0.05 ‘**’ 0.1 ‘*’  



 

 

 

 

 

Table 7: The Ban’s Effect on Underlying Market Quality 
This table shows the results of the estimated difference-in-difference equation after 
matching treated stocks with control stocks based on a caliper = 0.20. The model is: 

Vars,d =  β0 + β1band +  β2treats + β3treats ∗ band + β4 CAPs,d + εs,d 
Where Var represents Spread, Trading Activity and Volatility in each panel, 𝑠𝑠 is the 
stock, and d indicates the day on which the observation is recorded. 

 SPREAD TRADING 
ACTIVITY VOLATILITY 

Panel A:  Unmatched Samples    
Intercept 5.068 254.2 1.827 
 (113)*** (44.8)*** (262)*** 
Treat -3.544 6617 0.218 
 (-68.3)*** (32.5)*** (11.4)*** 
Ban 1.862 78.49 1.041 
 (14.9)*** (5.13)*** (45.4)*** 
Treat*Ban -1.646 

(-10.6)*** 
1090 0.717 

 (2.60)** (11.2)*** 
Cap (x105) -0.200 224.5 -0.037 
 (-33.1)*** (13.1)*** (-13.5)*** 
R-Squared 0.020 0.132 0.025 
No. of Obs. 492193 
Panel B: Matched Samples      
Intercept 0.138 -1678 1.851 
 (10.7)*** (-11.6)*** (71.0)*** 
Treat 0.211 4486 0.143 
 (16.1)*** (28.3)*** (6.79)*** 
Ban 0.238 1453 1.719 
 (2.70)*** (12.9)*** (24.4)*** 
Treat*Ban -0.056 561.2 0.081 
 (-0.53) (1.46) (0.83) 
Cap ( x105) -0.005 2709 -0.033 
 (-0.67) (30.2)*** (-2.50)** 
R-Squared 0.005 0.057 0.080 
No. of Obs. 36085 

Significance: 0.01 ‘***’ 0.05 ‘**’ 0.1 ‘*’  



Table 8: ANOVA Test in the Four Phases of the Ban 
This table contains the results of the ANOVA tests for whether there are significant 
differences in the average level of Rd (number of quotes divided by the change in open 
interest), the number of quotes, the level of mispricing |πd|, the mean upper bound, 
πd+, and lower bound, πd−, across four phases of time. Phase 1 is defined as the first 20 
days of the ban; Phase 3 is defined as the last 20 days before January 5th, 2009; while 
Phase 2 is the period in between.  
Phase 0 is the reference level; the estimates for phases 1, 2, and 3 represent the 
differential between the mean in each phase and Phase 0. The test for Phase 0 is 
whether the variable in question equals zero. For the other phases, the question is 
whether the difference in the variable compared to its value in Phase 0 equals zero. 
Panel A: Rd and the Number of Quotes 

  Rd No. Of Quotes 
Phase 0 
 

273.9 1564 
(4.89)*** (25.1)*** 

Phase 1 
 

144.2 1011 
(1.83)* (11.9)*** 

Phase 2 
 

163.5 1970 
(2.52)** (27.1)*** 

Phase 3 
 

-170.0 13.51 
(-1.91)* (0.13) 

Panel B: Levels of Absolute, Negative and Positive Mispricing 

  Absolute 
Mispricing 

Negative 
Mispricing 

Positive 
Mispricing 

Phase 0 0.717 -0.783 0.568 
 (7.47)*** (-5.81)*** (25.2)*** 

Phase 1 0.127 -0.173 -0.025 
 (0.93) (-0.91) (-0.74) 
Phase 2 0.475 -0.701 -0.169 
 (3.89)*** (-4.12)*** (-5.71)*** 
Phase 3 0.346 -0.549 -0.196 
 (1.88)* (-2.16)** (-4.38)*** 

Significance: 0.01 ‘***’ 0.05 ‘**’ 0.1 ‘*’  
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