

Microbial uptake and utlization of low molecular weight organic substrates in soil depend on carbon oxidation state

Gunina, Anna; Smith, Andrew; Jones, David; Kuzyakov, Yakov

Biogeochemistry

DOI: 10.1007/s10533-017-0313-1

Published: 01/03/2017

Peer reviewed version

Cyswllt i'r cyhoeddiad / Link to publication

Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA): Gunina, A., Smith, A., Jones, D., & Kuzyakov, Y. (2017). Microbial uptake and utlization of low molecular weight organic substrates in soil depend on carbon oxidation state. *Biogeochemistry*, 133(1), 89-100. https://doi.org/10.1007/s10533-017-0313-1

Hawliau Cyffredinol / General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal ?

Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Figure 1

Time (min)

Figure 1. Temporal dynamics of ¹⁴C-labelled sugar, organic acid and amino acid disappearance from soil solution. Values represent means \pm SE (n = 4). Lines are the following: blue: solid - glucose, dotted - fructose; green: solid - formic acid, dashed - malic acid, dotted - succinic acid; brown: solid - glycine, dashed - alanine.

Figure 2. Relationship between the half-life (min) of different LMWOS in soil solution and their C oxidation state (top panel) and number of C atoms in the molecule (bottom panel). Values represent means \pm SE (n = 4). The error bars for the half-life times of LMWOS in DOC are smaller than size of icon symbols.

Figure 3. Cumulative ¹⁴C-CO₂ production from mineralization of ¹⁴C-labelled LMWOS in soil. Values represent means \pm SE (n = 4). In case error bars are not present, they are smaller than size of icon symbols.

Figure 4

Figure 4. Relationship between ¹⁴C remaining in the cytosol, SOC and CO₂ pools and C oxidation state (top panel) and ¹⁴C remaining in the cytosol and number of C atoms and -COOH groups (bottom panel) in different LMWOS. Values represent means \pm SE (n = 4). *P*-values for the regression lines on the top panel figure are less than 0.002; *p*-values for the regression lines on the bottom panel figure are less than 0.004. The substance names are shown only once.

Figure 5

Figure 5. Relationship between ¹⁴C incorporated into cytosol (anabolism)/¹⁴C incorporated into CO_2 (catabolism) and C oxidation state at the end of LMWOS mineralization experiment.

Figure 6. Schematic representation showing the dependence of microbial uptake rate (red), utilization (green) and mineralization efficiency (black) of three distinct classes of LMWOS as a function of substrate C oxidation state.