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Abstract  10 

The sustainability within the fisheries of the commercially important European whelk, Buccinum 11 

undatum, has become a major concern through over-exploitation and increased landings in many 12 

European coastal shelf seas due to the expansion of export markets to East Asian countries. Current 13 

management of B. undatum populations is difficult to achieve as several life history traits make them 14 

problematic to accurately monitor. The current method of age determination for stock assessment 15 

has a low success rate and focuses on the use of putative annual rings on the surface of the organic 16 

operculum. Here we validate an annual periodicity of growth ring formation in B. undatum statoliths 17 

that provides an alternative, reliable and accurate method for determining a whelk’s age. Laboratory 18 

reared juvenile B. undatum of known provenance and age deposited a hatching ring at the time of 19 

emergence from their egg capsule and a clearly defined growth ring during February of their first 20 

and second years. Stable oxygen isotope profiles around the shells of two adult whelks confirmed 21 

annual growth ring deposition by demonstrating seasonal cycles of δ18O in the shell that matched 22 

the relative position and number of visible growth rings in the statolith. Validation of annually-23 

resolved statolith growth rings will for the first time, provide fisheries scientists with a tool to 24 

determine the age structure of B. undatum populations and allow analytical stock assessments that 25 

will enable informed decisions for future management practices of whelk fisheries. 26 

Keywords: Buccinum undatum, statoliths, age determination, fisheries monitoring, oxygen isotope, 27 

Raman Spectroscopy, Sclerochronology 28 

 29 
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Introduction 30 

The common whelk Buccinum undatum, is a commercially important species of marine gastropod 31 

fished in the coastal waters of the U.K. and across Northern Europe. In 2015 the UK landings of B. 32 

undatum by UK vessels totalled 20,900 tonnes with a value at first sale of £18.7 million (MMO, 33 

2016). A large proportion of the whelk landings in the UK and Ireland supply an export market to 34 

East Asia that has grown steadily since the mid-1990s (Fahy et al., 2000) in response to recent 35 

increases in consumer demand which has driven the expansion of the fishery. However, declines in 36 

the number of whelks caught have been noted across European waters (Jersey - Shrives et al., 2015; 37 

Ireland - Fahy et al., 2005; North Sea/Netherlands - Ten Hallers-Tjabbes et al., 1996) and have 38 

caused several local Inshore Fishery and Conservation Authorities (IFCA’s) recently to implement 39 

restrictions such as pot and/or catch limits and the number of permits issued (Devon & Severn IFCA, 40 

2016, Eastern IFCA, 2016 and Kent & Essex IFCA, 2016).  41 

The reliable assessment of age and longevity of B. undatum is problematic for fisheries scientists, 42 

due to B. undatum having several life history traits which make them difficult to monitor at a 43 

population level. The lack of a planktonic larval stage and a relatively inactive adult lifestyle with no 44 

apparent migration (Pálsson et al., 2014) has led to the formation of discrete stocks which are then 45 

vulnerable to overexploitation (Fahy et al., 2000). In many studies these stocklets have been 46 

observed to show clear genetic and morphometric differences (e.g. Weetman et al., 2006; 47 

Shelmerdine et al., 2007; Magnúsdóttir, 2010), including size at maturity which can also differ 48 

markedly between sites (McIntyre et al., 2014; Haig et al., 2015; Shrives et al., 2015).  49 

To resolve this conundrum a reliable ageing method needs to be established for B. undatum so that 50 

accurate population age assessments and analytical stock assessments can be undertaken. The 51 

currently accepted method used by fisheries scientists, and validated by Santarelli and Gros (1985), 52 

determines the age of whelks by reading growth rings on the operculum, an organic ‘shield’ that is 53 

used to protect the shell aperture when the animal withdraws into its shell. This was achieved by 54 
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matching cycles in oxygen isotope composition from the shell to the numbers of growth rings 55 

observed on the opercula. However, this method traditionally has had a low success rate owing to 56 

the poor clarity of the rings, a problem highlighted by Kideys (1996), who reported that only 16%, 57 

from a total of 10,975 opercula examined in whelks from the Isle of Man, U.K., having “clear and 58 

readable” rings, with a further 32% having “readable” rings, leading to 48% of the samples being 59 

discarded. More recently, similar low levels of readability were found in several sites around the UK 60 

(Lawler, 2013). The exclusion of large portions of samples due to poor clarity of the rings is likely to 61 

have biased the data; the constructed population growth curves were highly variable, presumably 62 

due to the ambiguity of the operculum readings.  63 

Since whelks are becoming increasingly exploited there is an urgent scientific need to underpin the 64 

fisheries stock assessment of their populations with accurate data concerning the age of individuals 65 

and their growth rates. For many mollusc species, the age of an individual can be determined by 66 

counting the annual growth lines present in longitudinal shell sections (See Richardson, 2001, for 67 

review). This is particularly applicable to bivalve molluscs, but in gastropods this is not possible 68 

because there are often no obvious annual growth rings on or contained within their shells. 69 

Gastropod shells are also often problematic to analyse via sectioning as their coiled morphology 70 

makes it difficult to obtain a single clear growth axis using this technique.   71 

Mollusc shells are repositories of information about the past environmental history of shell growth 72 

and contain within the carbonate of their shells biogenic trace elements and oxygen isotopes at 73 

ratios (18O/16O, described as δ18O) which are incorporated into the shell matrix at equilibrium during 74 

mineralisation (Wilbur & Saleuddin 1983; Wheeler 1992). Seawater temperature at the time of shell 75 

formation can be reconstructed from the gastropod shell throughout ontogeny by determining δ18O 76 

along the growing axis of the shell e.g. Rapana venosa (Kosyan & Antipushina, 2011) and Conus 77 

ermineus (Gentry et al., 2008). The empirical fractionation of oxygen isotopes in mollusc carbonates 78 

with changes in temperature are well known (e.g. Epstein et al., 1953). Oxygen isotopes are sourced 79 
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from H2O and CO2 during shell formation (Leng and Lewis, 2016); a more negative value of δ18O 80 

reflects warmer seawater temperatures whilst a more positive value is indicative of cooler seawater 81 

temperatures (Grossman & Ku, 1986) at a constant δ18O of seawater. Sampling the shell carbonate 82 

at known intervals along the whorled axis of the shell and determining seasonal changes in δ18O 83 

allows the age (seasonality) of the shell to be determined. This approach is not suitable for large 84 

scale ageing of whelk due to the cost of analysing the potentially huge numbers of samples needed 85 

to accurately reconstruct the seasonality across a significant number of shells. 86 

In lieu of being able to directly use the shells or opercula to estimate age, an alternative age 87 

registering structure was sought; whelks contain an accretory hard structure called a statolith which 88 

is the focus of this paper.  Statoparticles (such as statoliths) are structures that are integral to the 89 

nervous system of a diverse range of animal groups including the Polychaeta (Beesley et al., 2000), 90 

Holothuroidea (Ehlers, 1997), Crustacea (Espeel, 1985) and several classes of the Mollusca e.g. the 91 

Bivalvia (Morton, 1985), Gastropoda (Barosso et al., 2005; Chatzinikolaou & Richardson 2007; 92 

Galante-Oliveira et al., 2013) and Cephalopoda (Arkhipkin, 2005). They are used in gravity 93 

perception and are contained within a statocyst, which detects movement of the statoparticle, 94 

indicating a change in orientation (Chase, 2002). Commonly composed of calcium carbonate they 95 

have a wide ranging morphology across the phylum in which they are found. The statoparticles of 96 

gastropods are often singular, roughly spherical granules called statoliths (Richardson, 2001; 97 

Galante-Oliveira et al., 2013). Gastropod statoliths can contain rings that are deposited annually e.g. 98 

Nassarius reticulatus (Barroso et al., 2005), Neptunea antiqua (Richardson et al., 2005b) and 99 

Polinices pulchellus (Richardson et al., 2005a) and are an archive of biota life history, containing 100 

information about the age and the seasonal temperature cycles (Richardson et al., 2005a, Galante-101 

Oliveira et al, 2015) and their transition from a planktonic pelagic larval lifestyle to a benthic 102 

existence (Barroso et al., 2005; Richardson et al., 2005a; Chatzinikolaou & Richardson 2007). Once 103 

the rings in the statolith have been deciphered, information about a gastropod’s life history can be 104 

extracted to understand their ontogenic growth. Thus they are potentially an invaluable resource for 105 
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fisheries scientists who could use this information to assess population age structure of 106 

commercially important gastropod species such as B undatum. 107 

Here we demonstrate for the first time that growth rings in the statoliths of B undatum are annually 108 

deposited like those within the opercula and can be used for the reliable age estimation of the 109 

species. The timing of statolith growth ring formation was determined in whelks of known age and 110 

life history that had been reared in the laboratory under ambient seawater temperatures for two 111 

years following their emergence from egg capsules. The structure of the statoliths was also 112 

investigated to determine their general morphology and mineralogical composition. We then used 113 

shell δ18O profiles drilled from around the whorl and compared these data with the matching whelk 114 

statoliths growth lines.  115 

Materials and methods  116 

Field collection: Approximately 200 whelks (>25mm shell length) were trapped and collected in 117 

February 2015 from a site in the Menai Strait (North Wales, U.K., 53.235556, –4.141835 – decimal 118 

degrees, depth 10-11.5m) using a string of 3 baited scientific inkwell pots laid for 24 hours. The 119 

drainage holes in the pots were covered with 3mm mesh and the whelk catch was not riddled (the 120 

process used by fishermen to remove undersized whelks) to ensure all size classes were retained for 121 

analysis. Dispensation for the landing of undersized whelks (<45mm) was granted by the Welsh 122 

Government (disp#004). Once collected, whelks were frozen until required, whereupon they were 123 

thawed and the body removed from their shells using forceps by gently pulling on the foot to detach 124 

the collumellar muscle. Shell height (aperture to spire length) was measured to the nearest 1mm 125 

using Vernier callipers, total body weight was recorded to the nearest 0.1g and reproductive 126 

maturity assessed using the scale of Haig et al. (2015). The body of each whelk were re-frozen for 127 

later statolith extraction. 128 
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Laboratory experiment: This experiment was designed to study the formation of the whelk statolith 129 

during ontogeny and to determine the timing of growth ring formation. Seven whelk egg masses 130 

that had been laid naturally in an intertidal location at Tal-y-Foel (53.158512, –4.279493 – decimal 131 

degrees), in the Menai Strait were collected in November 2013 and 2014. Egg masses were 132 

transported to the laboratory and held in aquaria supplied with flowing ambient seawater from the 133 

Menai Strait. Approximately 2 months later juvenile whelks hatched directly from the egg capsules 134 

and were reared for 1 year (2014 hatching) and 2 years (2013 hatching) under an approximate 135 

10:14hr light/dark cycle and fed regularly thrice weekly with small pieces of frozen and thawed 136 

mackerel Scomber scombrus. Each month for 24 months, ten whelks were removed and frozen for 137 

later statolith extraction.  138 

Statolith extraction and ageing: Selected individuals of both frozen field caught adult and laboratory 139 

reared juvenile whelks were thawed (3hrs) and the body bisected (Figure 1a). Each half of the whelk 140 

body was examined under a low power binocular microscope to locate, dissect and then remove, 141 

using fine forceps (0.10 x 0.06mm tip), a pair of statocyst sacs (left and right side) each containing a 142 

statolith (Figure 1b). Incident illumination as well as transmitted light were used during the 143 

dissections and highlighted the statoliths as small shadows beneath the cerebral ganglion (Fig. 1c). 144 

The <0.75mm statocysts were transferred to a watch glass with a drop of Milli-Q® ultrapure water 145 

(Merck Millipore), torn open and the statoliths removed using a hypodermic needle (0.5 mm 146 

diameter). Where necessary, each statolith was cleaned of any adhering tissue by immersion in 20% 147 

sodium hydroxide (NaOH) for 30 minutes and rinsed in Milli-Q® quality water. Once the statoliths 148 

had air-dried they were mounted on a microscope slide using Crystalbond™ 509 thermoplastic resin 149 

and imaged under a Meiji Techno MT8100 microscope with a Lumenera Infinity 3 microscope 150 

camera at 40x magnification. This allowed the visualisation of the statolith growth rings that could 151 

then be counted and statolith diameter measured using ImageJ (version 1.48, Ferreira & Rasband 152 

2012; Fig. 2).  153 



7 
 

Scanning Electron Microscopy (SEM): Several statoliths from the right and left side of small and large 154 

whelks were selected for structural analysis. Each statolith was mounted in Crystalbond™ 509 on an 155 

aluminium SEM stub and imaged as above. The statolith was ground by hand to the central plane 156 

using progressively finer 400, 1200, 2500 & 4000 silicon carbide grinding papers lubricated with 157 

Milli-Q® quality water. Each statolith was finally polished with a 1 µm diamond suspension gel and 158 

thoroughly cleaned with detergent and water and dried before submersion in 0.1M hydrochloric 159 

acid for 2 minutes to etch the exposed statolith surface. The exposed and etched statolith surfaces 160 

were then imaged using a FEI QUANTA 600 environmental scanning electron microscope (SEM) 161 

operated in low vacuum mode, with an electron beam accelerating voltage of 12.5 - 15 kV, a beam 162 

probe current of 0.14 - 0.26 nA, and a working distance of 10.6-10.9 mm.  163 

Micro-Raman Spectroscopy (MRS): Raman spectroscopy allows differentiation between the 164 

polymorphs of CaCO3 (amorphous CaCO3, calcite, aragonite and vaterite) by focusing a laser light 165 

onto the statolith surface. Inelastic scattering of the incident light occurs after interacting with the 166 

sample structure due to interaction with the vibrational levels of the composite molecules causing a 167 

shift in the wavelength of the measured scattered photons (Raman shift) (Higson, 2006). The 168 

wavelength shifts of the spectra are predictable in position and intensity for different substances. 169 

For CaCO3, two main wavelength regions of the spectra are of interest, peaks in the 100–350 cm-1 170 

range pertain to interaction with features of the external lattice structure whereas peaks in the 600–171 

1800 cm-1 relate to interactions with the internal molecular planes (Parker et al., 2010). To 172 

determine the statolith composition, individual statoliths were fractured using fine tipped forceps 173 

(0.10 x 0.06mm tip) to reveal the inner growth axis and analysed with MRS (Reinshaw InVia Raman-174 

Microscope) at the Diamond Light Source, Harwell, UK. The MRS consisted of a 473 nm laser at a 175 

power of 15 mW and focussed using a lens with a magnification of 20x; a grating with 2400 176 

lines/mm-1 and a pinhole size of 100 µm were used for spectra acquisition. The spectra were 177 

acquired between 100 and 3200 cm-1. Three sample spots were taken approximately equidistant 178 

along the interior growth axis of three statoliths from the central nucleus to the outer edge although 179 



8 
 

only the results from one statolith are presented. Synthetic calcite and speleothem aragonite 180 

standards (Brinza et al., 2014) were analysed prior to and after statolith analyses and the resulting 181 

Raman spectra adjusted using a polynomial background correction. Following MRS, the fractured 182 

statolith surface was imaged using SEM to obtain a detailed image of the sampled surface. 183 

Isotope Ratio Mass Spectrometry (IRMS): The outer periostracum and any adhering material were 184 

cleaned from the shells of an adult male and female whelk collected from the Menai Strait using a 185 

stiff bristled brush and tap water and air-dried. The shell surface was abraded using a 1mm diamond 186 

burr attached to a Dremel® 4000 to remove any contamination from the shell surface. A sampling 187 

axis around the entire whorled growth was marked out close to the shoulder of the shell whorl with 188 

1mm notations along its length. 1x10mm tracks were drilled at a resolution of 2 mm at the apex and 189 

most recently formed whorl, the oldest and youngest parts of the shell, then at 4mm for the central 190 

portion where growth is fastest, in line with the visible growth striations. Care was taken to only 191 

sample the outer nacreous layer of the shell and not drill into the inner nacreous layers which are 192 

deposited at a later time. The drilled CaCO3 samples were collected on small square (2x2 cm) sheets 193 

of greaseproof paper transferred to a labelled 0.5ml Eppendorf tube. This sampling strategy was 194 

extended as close to the tip of the shell as possible, however, in all cases the earliest shell growth 195 

(top 1-1.5cm) could not be sampled owing to shell damage and resolution of drilling.  196 

Approximately 50 – 100 µg of powdered carbonate sample were used for isotope analysis using an 197 

IsoPrime dual inlet mass spectrometer plus Multiprep device (at the British Geological Survey, 198 

Keyworth, UK). Weighed samples were added to glass vials which were then evacuated and 199 

anhydrous phosphoric acid (H3PO4) was added to each sample at 90OC. The samples were left to 200 

digest for 15 minutes and the expressed gas collected, cryogenically cleaned to remove any moisture 201 

and passed into the mass spectrometer. Isotope values (13C, 18O) are reported as per mille (‰) 202 

deviations of the isotopic ratios (13C/12C, 18O/16O) calculated to the VPDB scale using a within-run 203 

laboratory standard (KCM) calibrated against NBS-19. The aragonite-acid fractionation factor applied 204 
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to the gas values was 1.00855 (Sharma & Clayton, 1965). A drift correction is applied across the run, 205 

calculated using the standards that bracket the samples. The Craig correction was also applied to 206 

account for the influence of 17O within the sample (Craig, 1967). The average analytical 207 

reproducibility of the standard calcite (KCM) is 0.05‰ for 13C and 18O. The resulting (18O/16O ratio) 208 

data were treated with a 5-point Savitsky-Golay smoothing filter (Steiner et al., 1972). The 13C data 209 

is not presented here. 210 

Results 211 

Statolith location and morphology: Each whelk contains two statocysts in the tissues of its foot, each 212 

containing a single roughly spherical statolith (st) (<0.75mm in diameter) (Fig. 1b). Orientation of the 213 

statolith in resin in a dorsal/ventral position shows a circular outline shape and is the optimum 214 

position to view and measure the visible growth rings (Fig. 2a). Laterally the statolith has an oval 215 

shape (Fig. 2b) and has a dorso-ventrally compressed spherical shape where the rings are less clear. 216 

Thus to maintain consistency and to maximise the visibility of the rings all analyses/images were 217 

undertaken from statoliths orientated in a dorsal-ventral view.  218 

The relationship between Statolith Diameter (StD) and Shell Length (SL) was shown to display a 219 

power relationship (Fig. 3a). This was investigated further using the ‘smatr’ package in R to analyse 220 

the log10 transformations of each variable (Fig. 3a inset). A significant correlation was found 221 

between the two variables (p < 0.001) and with a slope of 0.438 (0.432 and 0.443 lower and upper 222 

95% confidence intervals respectively). This shows the relationship has negative allometry, indicating 223 

that statoliths and shells do not grow proportionally. Instead the growth of the statoliths decreases 224 

in comparison to the shell length over time. This results in smaller whelks having proportionally 225 

larger statoliths in comparison to shell length. The data in Fig. 3a closely fit the line for whelks 226 

<60mm allowing estimates of shell length to be determined from the diameter of the rings. 227 

However, above this size there is wide variation in statolith diameter. By measuring the statolith 228 

diameter at successive rings for whelks <60mm it is feasible to reconstruct shell length at each ring. 229 



10 
 

Figure 3b, shows the relationship between StD and age (ascertained from statolith rings in field 230 

caught whelks) has been fitted with a von Bertalanffy growth curve (R2 = 0.90). Although there is a 231 

strong relationship, there are large amounts of overlap between ages. The clarity of the statoliths 232 

was also very high with the vast majority of samples included in the analysis (n=800). 48.6% of the 233 

samples were classed as “clear and readable” and a further 43% as “readable (using the same 234 

criteria as Kideys, 1996), thus only 8.4% of samples were excluded. 235 

Statolith Structure: The broken statolith shown in Figure 4a is composed of aragonite. All three of 236 

the analysed statoliths displayed the characteristic peaks for aragonite. The Raman spectra extracted 237 

between 100 and 750 cm-1 demonstrate a coincidence of peaks at 151 cm-1, 183 cm-1, 206 cm-1 and a 238 

wide peak at 702-706 cm-1 for both sample spots 1-3 from the statolith and the aragonite standard 239 

(Figure 4b). A shoulder is also visible on the 151 cm-1 peak at 143 cm-1. By contrast the calcite 240 

standard peaks at 155 cm-1, 281 cm-1 and 712 cm-1 indicate that this statolith contains no trace of 241 

calcite. Figure 4c shows an additional peak between 2850 and 3000 cm-1 for the three sample spots. 242 

Peaks in this range are thought to be indicative of C-H functional groups found within organic matter 243 

(Smith & Dent, 2005) thus likely indicative of the presence of an organic component within the 244 

crystal matrix. Figure 5 shows the agreement between the visible rings in the optical microscope 245 

(OM) image of a whole statolith (Fig. 5a) and the exposed acid etched SEM image of the central 246 

plane of the paired statolith (Fig. 5b). The clarity of the rings in Figure 5b suggests that a clear 247 

structural change has occurred during the formation of a growth ring.  248 

Hatching ring and growth ring formation: The inner opaque area seen in Figure 5a signifies the 249 

period of development in the egg culminating in the formation of a hatching ring (HR). The hatching 250 

ring can also be seen and appears in January when these animals hatched (Figure 6a, b, c & d). For 251 

the 2013 juvenile cohort the hatching ring was deposited at a statolith diameter of 53.6 ± 4µm (± 252 

1SD, n=30) and for the 2014 cohort at 55.1± 6µm (± 1SD n=30). The data from the two cohorts were 253 

not significantly different (independent t-test, p = 0.1). The central opaque area (larval growth) seen 254 
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in Figure 5a is followed by a less opaque region containing weak and diffuse rings. This pattern is 255 

also mirrored in Figure 6 which shows the ontogenetic development of statoliths removed from 256 

laboratory reared animals of different ages between 2 weeks and 2 years. Clear disturbance rings 257 

can be seen in the increment following hatching ring deposition and are a common feature of adult 258 

statoliths. The clear year 1 ring in the statolith in Figure 6d marks a colour change from brown to 259 

light brown and was deposited in February during the coldest part of the annual temperature cycle. 260 

A similar positioned ring can be seen in Figure 5a, signifying the first annual ring formation. The 261 

colour change is regularly seen in statoliths taken from “field caught” adult whelks and is a good 262 

indicator of the position of the first annual growth ring. Following deposition of the slightly unclear 263 

first annual ring, subsequent annual rings are clearly delineated in both the optical microscope and 264 

SEM images of Figure 5a & b. Disturbance rings, that are a common feature of the statoliths in 265 

younger whelks, are typically much weaker in definition than the clear annually-resolved rings. 266 

Annual growth ring validation: Figure 7 shows the coincidence between the statoliths ring position 267 

(7c & f) and maximum values in the shell δ18O cycles (7a & d). Maximum δ18O represents minimum 268 

seawater temperatures. The three δ18O minima in the female shell (a) match the position of the 269 

three statolith rings (c) and the four maxima seen in the male shell (d) match the four statolith rings 270 

(f). In both shells the tip of the apex was not sampled, represented by the grey hatch area in Figure 271 

7a & d, and the point at which sampling ceased is indicated by a black arrow (Fig. 7b and e).  272 

Discussion 273 

This study validates for the first time the annual periodicity of growth rings found within the 274 

statoliths of the common whelk, Buccinum undatum; as well as investigating their structure and 275 

composition. This was achieved using a combination of laboratory rearing of juvenile specimens and 276 

geochemical analysis of both statoliths and shells from wild collected adults. The validation of the 277 

annual growth lines as a reliable ageing tool will provide an alternative to the currently used and 278 

often unreliable operculum. 279 
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Visualization, interpretation and timing of statolith ring formation: In a previous study following 280 

extraction and statolith cleaning, Richardson et al. (2005a) hand-ground and polished the statoliths 281 

of the neogastropd Neptunea antiqua to observe the growth rings. However in the current study 282 

when B. undatum statoliths were hand-ground (using the above described methods for SEM 283 

preparation) and observed in the optical transmitted light microscope, weaker disturbance rings 284 

became more apparent and often obscured the earliest annual growth rings due to the removal of 285 

the overlying statolith structure which often masked them. However, when a whole statolith was 286 

observed weaker lines were less apparent and this approach was adopted throughout the study.  287 

A single, clear growth ring was deposited annually within the statoliths of the laboratory 288 

reared juveniles during February and March when seawater temperatures were minimal in the 289 

Menai Strait. Female B. undatum lay egg capsules in which larvae develop and juveniles hatch 290 

directly leaving their egg capsules without a planktonic larval stage. The first identifiable diffuse 291 

statolith ring deposited can be termed a “hatching ring”, formed as the juveniles emerge from their 292 

capsules. The hatching ring has a similar position in the statolith to the settlement ring in statoliths 293 

from Polinices pulchellus (Richardson et al., 2005b) and Nassarius reticulatus (Barroso et al., 2005; 294 

Chatzinikolaou & Richardson 2007)) that hatch from egg capsules and undergo a planktonic larval 295 

existence prior to settlement. Thus importantly, these two kinds of juvenile rings in gastropods with 296 

different early life strategies represent the same life history event i.e. the transition from larvae to 297 

juvenile. Whilst hatching ring diameters in reared B. undatum juveniles are fairly constant (53.6 to 298 

55.1µm), it has been shown that maternal size directly influences egg capsule size and subsequently 299 

juvenile hatching size, which in turn can also be mediated by intra-capsular cannibalism (Nasution, 300 

2003; Nasution et al., 2010, Smith & Thatje, 2013). Therefore, in a population with larger than 301 

average sized whelks, the hatching ring will be larger than the average observed here. A strong 302 

relationship exists between statolith diameter and shell length, however with wide variation in 303 

statolith diameters in large (>60mm) and older whelks means that it is not possible to estimate an 304 

older whelk’s age solely from statolith size. The age of each whelk must be determined by counting 305 
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the number of annually-resolved statolith rings. The annual periodicity of the growth rings was 306 

further validated with the reconstruction of δ18O profiles from shells (Fig. 7). This is the same 307 

method used by Santarelli & Gros (1985) to validate the observable growth rings in the opercula. 308 

However, in this study a higher sampling resolution was used, producing more clearly defined δ18O 309 

cycles that are directly overlaid on the visible growth rings of the statolith. Santarelli and Gros (1985) 310 

did not demonstrate the ages of the animals from the opercula. 311 

Statolith composition: The statoliths of B. undatum are aragonite as shown by Raman spectra with 312 

no visible trace of calcite. There was close agreement between the aragonite standard and the 313 

sample spots taken from the statolith, several of the reported Raman spectra peaks differed by 1-3 314 

cm-1 compared with those reported in the literature (see Parker et al., 2010). It is probable that the 315 

difference between the observed statolith spectra peaks and the published spectra is the presence 316 

of trace elements such as Mg2+ substituting for Ca2+ within the lattice and distorting it (Parker et al., 317 

2010). This would explain why the synthetic calcite standard exhibited all of the expected peaks 318 

whereas the sample spots and the speleothem aragonite standard (which can contain trace 319 

elements, Finch et al. 2001) did not. The Raman spectra of the sample spots also exhibited a diffuse 320 

band between 2850 and 3000 cm-1 which likely indicates the presence of structural organic matter 321 

within the CaCO3 matrix. All three of the spot samples showed a peak in the spectra likely indicating 322 

the presence of organic matter throughout the statolith matrix, although the most intense peak was 323 

observed when the structure of a growth ring was coincidentally analysed (spot 3 on the statolith). A 324 

similar conclusion was reached by Galante-Oliveira et al., (2014) who observed similar spectra in the 325 

statoliths of Nassarius reticulatus. If the Raman peaks represent differences in the concentration of 326 

organic matter present in different parts of the statolith then this will aid in interpreting the 327 

distribution of elements such as Sr and Mg in the statolith. In N. reticulatus annual cycles of Sr-Ca 328 

ratios were found to correspond with the visible growth rings (Galante-Oliveira et al., 2015) with 329 

minimum ratios associated with the rings and maximum concentrations present in the increments 330 

between adjacent rings. Schone et al. (2010) has demonstrated the role of organic material in 331 
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bivalve shells in regulating the control of biogenic element incorporation into the shell structure, 332 

highlighting that insoluble organic matter present aragonitic shell of Arctica islandica is significantly 333 

enriched in Mg and depleted in Sr. 334 

Implications for fisheries: With the development of this ageing technique for such a commercially 335 

important species, the construction and comparison of population growth curves can be easily 336 

implemented on a potentially large scale. Vast improvements over the operculum age determination 337 

method have been shown, with a decrease in discarded samples from 48% down to 8.4% and an 338 

increase in useable samples from 52% to 91.6%. Whilst the methodology for statolith extraction and 339 

analysis is potentially more time consuming than the use of opercula, the huge increase in reliability 340 

and decrease in potential sample bias (from large discards) is clear. 341 

Summary  342 

Here, an annually-resolved periodicity of growth ring formation in whole resin-mounted statoliths 343 

from Buccinnum undatum was validated by comparison with seasonally-collected and laboratory-344 

reared juvenile whelks of known age and from similarities between growth rings and the δ18O cycles 345 

in their shells. This validated novel age determination tool (using the statoliths) can be used to 346 

accurately reconstruct the population structure and population growth rates of B. undatum and the 347 

technique will now be available for fisheries scientists to undertake stock assessments of whelk 348 

populations European-wide to determine both size at age, and age at reproduction. These are both 349 

metrics that will aid in future management decisions. The statoliths present a viable alternative to 350 

the “difficult to use” opercula. Buccinum undatum statoliths are composed of aragonitic calcium 351 

carbonate and their structure determined by Raman-Microscopy has revealed variations in organic 352 

matter throughout the statolith that might have implications for the way in which biogenic elements 353 

are incorporated into the organic lattice of the statolith. Overall we conclude understanding 354 

differences in the age, growth rate and distributions of whelks in coastal waters will add 355 
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immeasurably to understanding how to manage and conserve these important scavengers in coastal 356 

zones.  357 
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Figures 525 

 526 

Figure 1. a) ventral view of a female Buccinum undatum removed from its shell showing; s - Siphon, 527 

m – Mantle, p – Proboscis, op – Operculum, f – Foot and  t – Tentacles. dg – Digestive Gland and g – 528 

Gonad are out of frame. The dashed line represents the bisection of the whelk. b) half a bisected B. 529 

undatum illuminated using transmitted light, viewed in a dissection microscope, showing the cg – 530 

Cerebral Ganglion and st – Statolith. Dotted line represents area of interest shown in c). c) a statolith 531 

following removal; n – Nerve, st – Statolith and sc – Statocyst. 532 

 533 

 534 

 535 
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 536 

Figure 2. Photomicrographs of two statoliths removed from an individual Buccinum undatum from 537 

the Menai Strait. a) shows a dorso-ventral view whilst b) shows a lateral view of the statolith. The 538 

annual growth rings are marked with arrows and hatching rings with red arrows in each statolith 539 

orientation. 540 

 541 
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 542 

Figure 3. a) the relationship between Shell length and Statolith Diamater (StD), showing field 543 
collected whelks (filled circles), and laboratory reared juveniles (empty circles), fitted with a power 544 
function line (dotted line, y = 41.38 * x0.4354), R2 = 0.96. 3a grey inset, scatterplot showing the 545 
relationship between log10 statolith diameter (StD) and log10 shell length (SL) of field collected 546 
Buccinum undatum from the Menai Strait (filled circles), and laboratory reared juvelines (empty 547 
circles). The slope of the linear relationship (dashed line) is 0.43 (R2 = 0.96). The dotted line 548 
represents an isometric relationship. c) scatterplot showing the relationship between StD and age, 549 
constructed from statolith rings for field collected (filled circles) and laboratory reared animals of 550 
known age (empty circles), fitted with a von Bertalanffy growth curve, R2 = 0.90. n = 931 for all plots.  551 
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 553 

 554 

 555 

 556 

 557 

 558 

 559 

 560 

 561 

Figure 4a. Scanning electron microscope image of a 562 

cracked statolith with the central plane exposed. The 563 

sample spots used for micro-raman analysis are 564 

shown with circles (1, 2 & 3). Arrow highlights a clear 565 

growth ring coincidentally sampled with spot 3. 566 

Figure 4b.Raman spectra from the 3 sample spots 567 

together with the aragonite and calcite standards. 568 

Raman spectra aquired from 100-750 cm-1 are 569 

displayed. Figure 4c. Raman spectra for the 3 sample 570 

spots extracted between 1500 and 3200 cm-1 (y axis 571 

presented as arbritrary units). 572 
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 573 

Figure 5. Composite image of two statoliths from the same Buccinum undatum specimen. a) a 574 

photomicrograph of an extracted and mounted left hand statolith imaged using optical microscopy. 575 

b), a Scanning Electron Microscope image of the matching right hand statolith that has been resin-576 

mounted, ground to the central plane, polished and etched. Annual growth rings highlighted with 577 

black arrows, hatching ring highlighted with red arrow. 578 
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 579 

Figure 6. Composite image showing seasonal juvenile statolith development at a) 2 weeks after 580 

hatch, b) 6 months after hatch, c) 1 year after hatch and d) 2 years after hatch. In all cases the 581 

hatching ring is visible (HR) as are multiple faint disturbance lines. The 1 year ring is also visible in the 582 

2 year old (Yr 1). CD – Collection Date. 583 
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 584 

Figure 7. Comparison of the shell δ18O profiles with the associated statolith for two Buccinum 585 

undatum. Figure 7a. δ18O profile from the shell of a female B. undatum, the y axis has been inverted 586 

to show the position along the shell of the positive peaks in the δ18O cycles (coldest seawater 587 

temperatures, highlighted with numbers). The data have been smoothed using 5 point Savitsky-588 

Golay filter. Figure 7b. The shell drill sampled for the data in 7a, visible drill tracks have been 589 

highlighted with red dots and the black arrow denotes where sampling at the apex was ceased. This 590 

un-sampled area corresponds to the hatched area in 7a. The very tip of this specimen has been lost 591 
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due to damage. Figure 7c. Photomicrograph of the matching statolith from the animal in 7a & b, 592 

showing the nucleus (N), Hatching ring (HR) and annual bands (numbers). Figure 7d, e & f show the 593 

same figures as Figure 7a, b & c respectively for an older male specimen. 594 


