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Abstract 

Understanding how animals respond to atmospheric conditions across space is critical for 

understanding the evolution of flight strategies and long-distance migrations. We studied the 

three-dimensional movements and energetics of great frigate birds (Fregata minor) and showed 

that they can stay aloft for months during transoceanic flights. To do this, birds track the edge 

of the doldrums to take advantage of favorable winds and strong convection. Locally, they use 

a roller-coaster flight, relying on thermals and wind to soar within a 50- to 600-meter altitude 

band under cumulus clouds and then glide over kilometers at low energy costs. To deal with 

the local scarcity of clouds and gain longer gliding distances, birds regularly soar inside 

cumulus clouds to use their strong updraft, and they can reach altitudes of 4000 meters, where 

freezing conditions occur. 

The movement of animals is driven by processes that act across multiple spatial and temporal 

scales. Long-distance movements such as the migrations of birds have evolved in response to 

large-scale environmental gradients (1). In particular, atmospheric conditions play a large role 

in determining the efficiency of migratory routes, whose consistency over years has allowed 

evolutionary processes to act at population levels (2). At smaller time and spatial scales, long-

range movements have to constantly be adjusted to local conditions, in particular to minimize 

energy expenditure (3, 4). These long movements or migrations can be done over inhospitable 

areas as different as deserts, high mountains, or oceans, which come with specific 

environmental constraints to which birds need to behaviorally and physiologically adapt their 

flight strategies (5, 6). How these long restless flights can be energetically achieved has 

attracted much interest, but remains largely unknown because of the inherent difficulties of 

studying such behaviors in situ. 

Biologists have long been attracted to locomotor extremes because they provide clear examples 

from which information about structure-function relationships can be drawn (7). Among birds, 

frigate birds are extreme in many aspects of their life history, including having the lowest wing 

loading, with a specialized capacity for soaring flight (8). They are also unusual seabirds 

because their feathers are not waterproof and their legs are small, so they are unable to land on 

the sea surface even though they feed exclusively at sea. They deal with these conflicting 

constraints by staying aloft for days when they are foraging from their nest when breeding (9). 

Probably as a consequence of these extreme attributes, frigate birds have the longest period of 

parental care in birds, suggesting a long period of learning to acquire flight and foraging 

abilities in early life (10). Their ability to remain airborne continuously for days is probably 

possible because of the capability of frigate birds to use thermals over the sea as a main energy 

source for soaring (11, 12). 
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We asked how frigate birds can perform long migrations over oceans without landing and 

whether oceanic thermals are reliable enough in space and time to allow birds to stay airborne 

over long periods. To address these questions, we investigated the movement of frigate birds 

at several spatial scales with regard to (i) how frigate birds make use of large-scale weather 

systems to perform long-range movements, and (ii) how flight dynamics and energetics at a 

finer scale contribute to these long ranges. 

We studied the three-dimensional movements and energetics of frigate birds on Europa Island 

(Fig. 1) between 2011 and 2015 (13). To study large-scale migratory movements, 24 adults and 

25 juvenile birds were equipped with solar-powered Argos transmitters (13). To study the 

relationship between heart rate, activity (flapping frequency), and behavior (ascent rates and 

horizontal speed), 11 adult females were equipped with external custom-designed loggers 

measuring triaxial acceleration and electrocardiography and a Global Positioning System 

(GPS) device (13). To study movements, activity, and ambient temperature, 37 adult females 

and males were equipped with solar-powered GPS accelerometers, whose data were recovered 

regularly by an automatic recording station (13). 

 
Fig. 1 Movements of adult and juvenile frigate birds in relation to wind conditions in the 

Indian Ocean. 

(Left) Two successive clockwise movements from Aldabra Island (Seychelles) of an adult male 

great frigate bird (no. 138502) in relation to wind strength (in meters per second, color scale) 

and direction (arrows). (A) In May 2015, a 24-day foraging trip around the doldrums (shown 

by the absence of wind, in white), with 1 day of rest in Chagos. (B) In June 2015, a 28-day 

foraging trip, with a 36-hour rest in Chagos. (C) Movements between June and September 2015 

of six young frigate birds fledged from Europa Island, moving around the doldrums zone. (D) 

Climatology of wind speed and direction (average values over 4 months) in June to September 

2015, showing the average position of the doldrums (white) on the equator. 

During the southwest Indian monsoon from June to October, strong trade winds occur in the 

southern Indian Ocean and cross the equator to form southwest winds in the northern Indian 

Ocean (14) (Fig. 1). During this season, adult frigate birds finishing the breeding season left 

Europa and migrated northward to take advantage of the southerly winds. They settled on 

roosting sites in the Seychelles from where they foraged for months. Some adults performed 

long looping movements around the equator, where a belt of converging air and wind occurs, 

with no wind in the center, named the doldrums zone by ancient mariners (Fig. 1). On 
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successive loops, adults closely followed the edges of the doldrums, which oscillate 

longitudinally (Fig. 1, A and B). Birds stayed continuously on the wing for periods lasting up 

to 48 days and traveled on average 420 ± 220 km daily. 

Young frigate birds left their birthplace at the same time as adults, but independently of their 

parents. They crossed the equator and turned eastward to enter into a circular transoceanic 

movement into the wind belt around the doldrums (Fig. 1, C and D). During these dispersive 

movements, juvenile birds stayed continuously aloft for flights lasting up to 2.1 months 

(average maximum time spent aloft, 41.2 ± 15.1 days, n = 8 birds). They travelled on average 

450 ± 220 km daily. They episodically stopped on isolated islands such as Chagos, islets off 

Indonesia, or on islets of the Seychelles archipelago for very short rests (8 to 48 hours) before 

continuing their large-scale wandering movement tracking the edge of the doldrums (Fig. 1C 

and fig. S1). They flew at altitudes ranging between the sea surface and 3000 m, but mainly 

between 0 and 600 m (fig. S2). 

To understand how frigate birds are able to stay aloft for such long periods, we studied their 

flight dynamics and energetics during 2- to 15-day foraging trips from Europa. Breeding frigate 

birds travelled on average 410 ± 142 km per day (n = 18 birds), mainly during the daytime, 

traveling over shorter distances at night (Fig. 2). Two clear behavioral modes were identified 

during movements at sea. Traveling occurred with high ground speeds and low wing beat 

frequencies (82 ± 9% of travelling time with no or rare wing beats), with birds remaining at 

altitudes ranging from 30 to 2000 m, reaching up to 4120 m. Foraging can only occur when 

birds descend close to the sea surface (altitudes 0 to 30 m), and during these periods they are 

very active, flapping during 75 ± 18% of the foraging phase (Fig. 2). Active foraging occurred 

only episodically (10 ± 7% of time at sea), indicating rare feeding opportunities, mainly during 

the day (86.4% of bouts of active foraging occurred during the daytime). 
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Fig. 2 Movement, changes in altitude, heart rate, and flight parameters during a 2-day trip at 

sea. 

(A) 1130-km-long movement from Europa during the daytime (green) and night (blue) with 

foraging bouts in red, with recorded (B) heart rate and (C) altitude. Shaded blue areas represent 

nighttime, and red blocks represent foraging bouts. (D) A 2-hour period during the trip at sea, 

with an active foraging phase followed by a traveling phase, showing the changes in altitude 

and corresponding heart rate, wing-flapping rate, climb rate, and ground speed. On the altitude 

panel, the predicted presence of cumulus clouds is indicated (gray). 

When in flight at sea, heart rate was on average 203 ± 84 beats min−1 but varied extensively 

(Fig. 2 and figs. S3 and S4), occasionally attaining values as low as when resting on the nest 

(71 ± 25 beats min−1, range 57 to 215). Heart rate and dynamic body acceleration were 

generally well correlated (13) (figs. S3 and S4); therefore, we used dynamic body acceleration, 

measured on all individuals, as the main proxy for energy expenditure. Whereas active foraging 

is very costly for frigate birds, requiring high dynamic body acceleration and heart rates, 

traveling periods have a remarkably low energy expenditure, with few wingbeats (Fig. 2 and 

fig. S3), suggesting that overall field metabolic rate during months at sea is likely to be 

exceptionally low (13) (figs. S5 and S6). Excluding periods of active foraging close to the 

surface, dynamic body acceleration was the lowest at altitudes between 300 and 600 m (fig. 

S7), indicating an optimal altitude for traveling at low cost. 

Traveling at low cost is achieved by successive climbs, mainly through soaring with no or few 

wing flaps and low heart rate, and descents, by gliding (Figs. 2 and 3). A close examination of 

flight paths shows that when soaring, birds move with the wind (fig. S8), using circling 

movements to soar (Fig. 3C) in thermals below cumulus clouds where rising air creates updrafts 
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(15). Because of the strong trade winds, they drift with the wind while climbing (Fig. 3), 

resulting in “wind-drift circling soaring.” Conversely, when gliding, they preferentially fly with 

side winds and achieve the highest ground speeds (Figs. 2 and 3 and fig. S8). The resulting 

movement is a complex zig-zagging, roller-coaster movement, with an average altitude xgain 

of 59.1 ± 43.8 m per kilometer covered (ground distance); i.e., 15.4 ± 3.0 km climbed daily. 

These vertical movements take place generally up to 600 to 700 m, corresponding to the base 

of the cumulus clouds that is relatively constant throughout the trade wind zone (16). 

 
Fig. 3 Three-dimensional movement of a frigate bird at three scales. 

(A) Section of a track of a frigate bird traveling with side winds. (B) Enlargement showing the 

movement alternating gliding and soaring, resulting in a zig-zag and roller-coaster movement. 

(C) Detailed schematic representation of a single cycle of soaring and gliding, illustrating the 

climb by circling, with a resulting drift due to wind, followed by the descent. 

However, birds regularly climbed up to 1000 to 2000 m, with a maximum of 4120 m (fig. S9). 

The frequency of climbs at altitudes higher than 700 m increased throughout the day to peak 

during the first hours of night (fig. S10). Climbing to high altitudes can be separated into a 

phase of slow climb up to the base of the cumulus clouds at 600 to 700 m, followed by a more 

rapid climb to 1600 m (Fig. 2D) or higher. This second phase of the ascent is performed without 

flapping the wings (Fig. 2D); i.e., in pure soaring flight and with climb rates reaching 4 to 5 m 

s−1 at 2000 to 3000 m (fig. S11). Ascent to high altitude can only take place inside cumulus 

clouds, where updrafts reach 5 m s−1 and are strong enough to provide such climb rates (15). 

During the gliding phase made outside the clouds, the minimum sink rate was 23.6 ± 19.1 m 

of ground distance covered per meter lost between 500- to 700-m altitudes, compared to 14.3 

± 11.7 m at higher altitudes (F1,7 = 8.4, P = 0.045). 

Our study shows that frigate birds can remain almost indefinitely on the wing by tracking, at a 

basin-wide scale, the wind belt around the doldrums, an atmospheric feature whose location is 

predictable. Locally, they display a specific flight strategy based on an energy-efficient use of 

convection and wind. By using wind-drift circling soaring and long periods of gliding, frigate 

birds are able to simultaneously use convection and wind as energy sources and move over 

extensive distances at low energy costs. They favor altitudes between 50 and 600 m, where 

atmospheric conditions are optimal for low-cost flight; i.e., steady winds and updrafts from 
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convection under clouds (Fig. 4). These altitudes are also convenient to spot feeding 

opportunities from long distances away during the daytime; birds then descend close to the 

surface to forage actively when feeding opportunities have been detected (9). 

 
Fig. 4 Altitudinal movement of a frigate bird in relation to potential atmospheric conditions. 

The traveling flight is performed between 30 and 600 to 700 m altitude in a band with regular 

winds, avoiding the turbulence close to the surface. The bird occasionally climbs to 2000 m 

within cumulus clouds that form by convection, whose base is at 600 to 700 m and whose 

vertical extension is limited by the inversion layer where strong shear occurs. A schematic 

presentation of the updrafts and downdrafts characteristic of cumulus clouds is shown at left 

(24). 

Although birds are not thought to carry out intentional, sustained cloud climbs (17, 18), our 

study shows the ability of frigate birds to frequently ascend to very high altitudes inside clouds. 

At an altitude of 4000 m, air temperatures are negative and air density and oxygen availability 

are almost half of those at sea level (17), suggesting that this tropical bird encounters extreme 

conditions at such altitudes. Cumulus clouds and cloud fields are considered to be randomly 

distributed in space in the trade wind zone (16). In these conditions, climbing higher than 1000 

m presents a fundamental advantage by allowing frigate birds to cover much longer distances 

by gliding to reach the next updraft under clouds; for example, >60 km of glide from 4000 m 

as compared to 17 km when starting a glide just at the base of cumulus clouds. Therefore, when 

clouds are sparsely distributed, birds can adjust their gliding distance by climbing higher to 

avoid the risk of switching to costly flapping flight. Juvenile individuals are able to master the 

flight strategy of adults as soon as they become independent. When they leave their birthplace, 

they all head north to reach the equator and circle the entire Indian Ocean. This stereotyped 

movement suggests a genetically encoded behavior that brings young individuals directly to a 

predictable, favorable, and large-scale atmospheric feature located thousands of kilometers 

from their birthplace. 

Great frigate birds are the only birds other than swifts (19) to be able to stay aloft for months. 

Long periods in continuous flight are interrupted by very short periods of rest on land, 

suggesting that frigate birds might sleep while airborne (20). Periods of low activity (no 

flapping) occur mainly during soaring episodes and may allow sleep. However, periods of 

completely motionless (no flapping at all) flight, potentially corresponding to periods of sleep, 
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are relatively short, (~2 min, never exceeding 12 min). Animals such as frigate birds may have 

evolved the ability to dispense with sleep when ecological demands favor wakefulness such as 

during extended flights (21), but studies are needed to determine how they sleep during much 

longer-lasting flights 

Frigate birds clearly encounter several atmospheric challenges during their movements at sea, 

such as low temperatures, low air density and oxygen levels during high climbs, and the 

unpredictable distribution of cumulus clouds at small scale, together with the presence of 

powerful cyclones in their optimal range. This dependence on atmospheric systems could make 

them particularly sensitive to future climate changes, along with some other seabirds (22). 

Climate models for the tropical ocean forecast an increase in the intensity of tropical storms 

and of convections around the equator, where the doldrums and strong convections occur (23). 

More variable atmospheric conditions in the future may become too challenging for a species 

that already seems to encounter extreme conditions during its lifetime movements. 
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