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SHORT COMMUNICATION
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Abstract Here, we investigated how root age and mode of
death influenced their subsequent turnover and rate of C loss
from soil. Young white-coloured and older pigmented roots of
Cistusmonspeliensiswere excised (to simulate death bymechan-
ical severance) or frozen (to simulate death by cell rupture) and
immediately buried in soil. CO2 loss from soil was then mea-
sured over time. In a parallel experiment, the rate of CO2 loss
from severed or ruptured roots in the absence of soil was deter-
mined. Our results revealed large differences in root chemistry
related to age, with young roots having a lower C:N ratio and a
greater nutrient content (soluble C, N, P and K). Both root age
and mode of death resulted in very different temporal patterns of
C release from soil. The amount of C lost from soil followed the
series: severed white roots (42.6 ± 3.3 mg C) > ruptured
pigmented roots (27.7 ± 0.4 mg C) = ruptured white roots
(27 .1 ± 0 .5 mg C) > seve red p igmented roo t s
(10.1 ± 1.0 mg C) > soil only (3.0 ± 0.2 mg C). Therefore,
depending on the treatment, 7 to 41% of the total root-derived
C was lost as CO2 over the duration of the experiment.
Comparison with soil-free treatments revealed that the CO2 re-
lease from the severed roots buried in soil was not associated
withmicrobial breakdown but caused by root-induced autophagy
in an attempt to keep themselves metabolically active. Ruptured
roots also induced a rapid loss of CO2 which we ascribe to the
diffusive loss of root solutes into the soil and subsequent micro-
bial mineralization. Surprisingly, the rate of C loss from soil was

greater from the severed root tips than those that were ruptured.
Our results imply two distinct routes of C loss dependent on how
roots die, one which bypasses the microbial community and one
which flows through it.

Keywords Apoptosis . Carbon cycling . Heterotrophic
respiration . Necromass . Rhizosphere . Rhizodeposition .

Carbon sequestration

Introduction

Fine roots contribute approximately 33% of the annual net
primary production in terrestrial ecosystems (Jackson et al.
1997). Upon senescence, their turnover is responsible for the
formation of stable humic material, the release of nutrients that
contribute to soil fertility, whilst also releasing substantial
amounts of CO2 back to the atmosphere. Fine root decompo-
sition is plant species dependent and is regulated by a range of
plant factors (e.g. presence of mycorrhizal symbionts, age and
physiological state) and edaphic factors (Ghidey and Alberts
1993; Silver and Miya 2001; Redin et al. 2014; Goebel et al.
2011; Han et al. 2015; Tahir et al. 2016). The quantity, quality
and lability of root C inputs to soil are also dependent on the
way in which roots enter the necromass pool (Jones et al.
2004; van Doorn et al. 2011). At least three distinct pathways
for fine root death can be identified:

(1) Type I death: Programmed (vacuolar) root cell death
where C and nutrients are re-translocated to other grow-
ing areas of the plant prior to metabolic activity ceasing
leaving just a nutrient-poor root corpse behind (e.g.
occurs when a root has exhausted a patch of soil and is
no longer needed or occurs during senescence and seed
setting of annual crops; Jones et al. 2004).
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(2) Type II death: Necrotic root death, where live roots be-
come excised from the host plant (e.g. severing of during
tillage, by meso/macrofauna, during tree windthrow) but
still remain structurally intact and metabolically active.
As the supply of C from the host plant is cut off, the roots
maintain their supply of energy by breaking down all
available internal C reserves. This autophagy progres-
sively exhausts all internal soluble and structural C re-
serves before the roots ultimately die many days or
weeks later (Saglio and Pradet 1980). There is no nutrient
re-translocation, and the cell corpse (largely insoluble
and structural C) remains largely unprocessed.

(3) Type III death: Catastrophic root death where metabolic
activity in the root ceases immediately, and all C and
nutrients from the roots are free to enter soil (e.g. occurs
upon freezing-induced cell lysis, from severe mechanical
damage in which the cells rupture; Schaberg et al. 2008;
Kreyling et al. 2012; Muliele et al. 2015).

Eachmode of death is likely to greatly influence howC and
nutrients flow through the soil as well as influencing the size,
activity and composition of the soil microbial community. The
aim of the study was therefore to elucidate how root age and
the mode of death influences root decomposition and thus the
rate of C return to the atmosphere. We hypothesise that a Type
III cell death would lead to a much more rapid release of CO2

from soil in comparison to a Type II cell death due to the
greater availability of labile C for the soil microbial commu-
nity. We also hypothesise that in a Type II root death, most of
the C release in the early stages is plant-derived rather than
soil-microbially derived.

Materials and methods

Plant material

Plants of the dwarf shrub Cistus monspeliensis L. were prop-
agated through cuttings and grown in hydroponic culture
using half-strength Long Ashton nutrient solution (Hewitt
1966). Plants were grown at 20 °C, with a light intensity
(photosynthetically active radiation) of 200 μmol m−2 s−1 at
canopy height and 16 h photoperiod. After 6 months (plant
height 40 cm), young white roots (<7 days old) and older
highly pigmented (brown) roots (>30 days old) were harvest-
ed from the plants. Immediately after excision, sub-samples of
each root type were placed in to polypropylene
microcentrifuge tubes and killed by immersion in liquid N2

(de Neergaard et al. 2000). The cell sap was then recovered by
the centrifugal-drainage procedure outlined in Hill et al.
(2008), and the sap analysed for the following properties: total
C and N using a Multi N/C 2100S analyser (AnalytikJena,
Germany), total free amino acids (TFAA) using the

fluorometric o-phthaldialdehyde β-mercaptoethanol proce-
dure of Jones et al. (2002), nitrate using the VCl3 method of
Miranda et al. (2001), ammonium using the salicylate-
nitroprusside-hypochlorite procedure of Mulvaney (1996)
and total soluble phenolics using the Folin Ciocalteu method
of Swain and Hillis (1959). The roots were also analysed for
the distribution of soluble and structural components (cellu-
lose, hemicellulose, lignin and ash) using an ANKOM2000
automated fibre analyser (Ankom Technology, Macedon, NY;
Karcher et al. 2015). Root nutrient content was determined
after drying (80 °C, 16 h) by total reflection X-ray florescence
spectroscopy using a S2-PICOFOX-TXRF (Bruker, Billerica,
MA).

Soil

A sandy clay loam textured soil (Eutric Cambisol) was collected
(Ah horizon; 0–10 cm depth) from Abergwyngregyn, North
Wales, UK (53° 14′ N, 4° 01′ W). Physical, chemical and bio-
logical properties of the soil are detailed in Hill et al. (2008).
Immediately after collection, the soil was transferred to the lab-
oratory, sieved (<2mm) and stored at 5 °C. Soil moisture content
was determined by oven drying (105 °C, 16 h).

Root mineralisation

Newly excised white or pigmented roots (3 g, ca. 96 mg C)
were placed into individual 50 cm3 sterile polypropylene
tubes. Half the roots were then frozen (−80 °C, 30 min) to
instantly kill them. Roots were then mixed with field-moist
soil (30 g) to give five treatments: (i) severed white roots plus
soil, (ii) severed pigmented roots plus soil, (iii) ruptured white
roots plus soil, (iv) ruptured pigmented roots plus soil and (v)
soil-only control. There were three replicates of each treat-
ment, and the level of soil disturbance was identical in all
treatments. In addition, the four root treatments were also
studied in an identical way but in the absence of soil (i.e.
root-only controls). All treatments were incubated at 20 °C
and CO2 evolution measured using an automated, multichan-
nel SR1 respirometer (PP Systems, Hitchin, UK). The SR1
respirometer has a built-in humidifier unit which prevents
moisture loss from the samples. The CO2 flux derived solely
from roots when buried in soil (rootsoil CO2 flux) was estimat-
ed by subtracting the background soil respiration (soilonly CO2

flux; unamended controls) from the total CO2 flux values for
each mesocosm.

Statistical analysis

Differences in root chemistry were compared by one-way
ANOVA, whilst differences in C mineralisation were com-
pared using a repeated measure ANOVAwith post-hoc testing
using SPSS v20.0 (SPSS Inc., Chicago, IL). Cumulative CO2
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evolution in the root treatments over the duration of the ex-
periment were compared with a two-way ANOVA with the
presence of soil and root type as factors. P < 0.05 was used as
the cut-off for statistical significance.

Results

Analysis of the two different root types revealed large differ-
ences in their chemistry (Table 1). Overall, the white roots had
a much higher intrinsic nutrient content (soluble C, N, P and
K) and much less structural C by weight, although the lignin
concentration did not vary with root age, and the concentra-
tion of Ca was much higher in the older roots.

C mineralisation rates varied quantitatively and temporally
between white and pigmented roots, and the mechanism of
root death also influenced C mineralisation rates, especially
during the first 72 h (Fig. 1a; Fig. S1; P < 0.001). Overall, the
rate of respiration was low in the unamended soil

(0.48 ± 0.06 mg CO2 kg
−1 h−1), with much greater CO2 fluxes

seen in the root-amended soils (P < 0.001). Over the duration
of the experiment (300 h), the total CO2 flux was significantly
different between the soil treatments (P < 0.001; Fig. 1) and
followed the series:

Severed white roots (42.6 ± 3.3 mg C) > ruptured
pigmented roots (27.7 ± 0.4 mg C) = ruptured white roots
(27.1 ± 0.5 mg C) > severed excised pigmented roots
(10.1 ± 1.0 mg C) > soil only (3.0 ± 0.2 mg C)

Table 1 Major nutrient composition of young white and older
pigmented roots of Cistus monspeliensis L. Chemical characteristics of
the cell sap and soluble components of white and pigmented roots

Root type

White Pigmented

Cell sap

Total soluble C (mg l−1) 3093 ± 181ac 1085 ± 186b

Total soluble N (mg l−1) 758 ± 34a 231 ± 40b

Free amino acids (mg l−1) 312 ± 16a 25 ± 12b

NH4
+-N (mg l−1) 62.5 ± 4.6 58.6 ± 1.1

NO3
−-N (mg l−1) 152 ± 7a 100 ± 3b

Soluble phenols (mg l−1) 262 ± 1a 240 ± 2b

Whole root

Detergent solublea (% DW)b 46.0 ± 0.7a 34.4 ± 0.5b

Hemicellulose (% DW) 14.2 ± 0.5a 16.3 ± 0.1b

Cellulose (% DW) 20.7 ± 1.1a 29.7 ± 1.0b

Lignin (% DW) 18.7 ± 0.5 19.3 ± 0.5

Ash (% DW) 0.38 ± 0.02 0.32 ± 0.05

Total C (g kg−1 DW) 425 ± 11 410 ± 6

Total N (g kg−1 DW) 44.5 ± 1.3a 28.7 ± 0.1b

C-to-N ratio 9.5 ± 0.1a 14.3 ± 0.2b

Total P (g kg−1 DW) 12.8 ± 0.9a 5.1 ± 0.3b

Total K (g kg−1 DW) 16.8 ± 1.2a 4.7 ± 0.3b

Total Ca (g kg−1 DW) 6.4 ± 0.4a 12.1 ± 0.4b

a Includes fats, oils and waxes and soluble cell contents (carbohydrates,
lipids, pectin, starch, and soluble proteins)
bDW dry weight
cMeans (±SEM, n = 3) followed by different letters indicate significant
differences between root types at the P < 0.05 level. The absence of letters
indicates no significant difference
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Fig. 1 Cumulative production of CO2 from soil after burial of either
severed or ruptured roots of Cistus monspeliensis (a), and the
production of CO2 from the same roots in the absence of soil (b). The
roots were either young (white) or old (pigmented). Values represent
means ± SEM (n = 3). Values are expressed per mesocosm to allow
direct comparison between treatments (i.e. 30 g soil, 30 g soil + 3 g
roots or 3 g roots)
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Therefore, depending on the treatment, 7 to 41% of the
total root-derived C was lost as CO2 over the duration of the
experiment.

When the CO2 flux for the two severed root treatments was
measured in the absence of soil (i.e. roots only), the respiratory
fluxes were extremely similar to those of the root + soil treat-
ments (P > 0.05; Fig. 1b, Fig. 2). In contrast, in the two rup-
tured root-only treatments, the rate of CO2 loss was initially
(0–24 h) much less than the parallel treatment performed in
soil (P < 0.01 for white roots and P < 0.001 for pigmented
roots). Following this (24–96 h), the rate of CO2 efflux be-
came similar in both the soil and soil-free ruptured root treat-
ments. Following this, a major difference was seen between
CO2 efflux in the soil and soil-free treatments but only in the
ruptured white root treatment (P < 0.05; Fig. 2). A two-way
ANOVA showed no significant interaction of soil presence
and root type on the total amount of CO2 produced over the
course of the experiment (F = 0.23, P = 0.874).

Discussion

As expected, tissue chemistry varied substantially with root
age. Our findings are consistent with previous studies in which
the concentration of low molecular weight solutes (e.g. amino
acids, organic acids and sugars), and their rate of turnover in-
side root tissues was greatest in the most actively growing root
regions (Jones and Darrah 1996). The higher major nutrient
concentrations (N, P, K) in young white roots in comparison

to pigmented roots reported here are also consistent with earlier
studies showing nutrient translocation from older roots towards
more physiologically active parts of the plant (Goldfarb et al.
1990; Volder et al. 2005). Our study also indicated that older
pigmented roots had much greater structural, cell wall-
associated C in comparison to younger roots. This brown pig-
mentation of older roots is concurrent with but not caused by
suberisation and has been taken as an indicator of a general
decline in root function (Comas et al. 2000; Cruz et al. 2004).
Our results indicate that young roots should turnover much
faster than older roots, and their lower C:N:P ratio should lead
to the more rapid release of nutrients back into the soil.

Our data demonstrated that severed roots exhibited high
rates of CO2 efflux from soil. Almost all the additional CO2

released from the severed roots immediately after burial in
soil, however, could be attributed CO2 loss from the roots
themselves, rather than by breakdown of the roots by the soil
microbial community. This is consistent with visual observa-
tion of root integrity by James et al. (1993) and Bingham and
Rees (2008) who showed that excised roots continue to respire
for up to 30 days after excision. Initially, respiration is fuelled
by stored sugars (e.g. glucose, starch and sucrose; 0–12 h),
after which point-free amino acids reserves get catabolised
and used in respiration. When these labile C pools are deplet-
ed, a general rise in autoproteolytic activity is observed.
Although the roots are undergoing progressive autophagy, ev-
idence suggests that plasma membrane integrity is maintained
for weeks after excision and that no large exudative flux of
organic C and N solutes occurs during this time (Saglio and
Pradet 1980; Fig. S2). In contrast to Bingham and Rees
(2008), however, we showed a significant loss of NH4

+ into
the soil from the severed roots after excision (Fig. S2). We
ascribe this to the excess production of NH4

+ during proteol-
ysis and the need to remove it from the cytosol to prevent it
reaching toxic levels (Brouquisse et al. 1992, 1998). No such
loss of amino acids or NO3

− into the soil was observed.
In contrast to roots which can remain alive after excision,

roots exposed to low freezing temperatures undergo a cata-
strophic and immediate death as a result of ice crystal growth
and disruption of the cell’s membranes and cytoskeleton
(Wesley-Smith et al. 2015). At this point, CO2 efflux can only
occur due to a residual loss of HCO3

− from the cells and CO2

produced by the rhizosphere microbial community. Our re-
sults showed that CO2 efflux from the ruptured roots in the
absence of soil was initially very low; however, this rapidly
increased over 12 h suggesting that this was due to the growth
or activation of microbes present on the rhizoplane and
endorhizosphere. When buried in soil, this pulse of CO2 re-
lease from the ruptured roots was immediate, consistent with
the rapid loss of low molecular weight solutes from the roots
into the soil by passive diffusion and their rapid consumption
and mineralization by a C-limited microbial community (Hill
et al. 2008).
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The roots used here were grown in hydroponic culture and
consequently nomycorrhizal symbionts were present. Further,
the experiments were undertaken with fresh bulk soil which
may have possessed a different microbial community from
that naturally present in the Cistus rhizosphere. Under natural
conditions, both of these represent additional factors that can
influence the rate of root senescence and C loss from soil,
particularly for older roots (Eissenstat et al. 2000).
Theoretically, the addition of labile root C may induce either
negative or positive priming of soil organic matter turnover.
Based on our previous measurements of priming in the same
soil using 14C-labelled organic matter and a range of organic
materials (e.g. biochar, wood ash, compost, manure and shoot
residues), however, these responses are normally very much
lower (ca. −10 to +15% changes in basal respiration) than the
large positive CO2 responses observed here (Fig. 1; Jones
et al. 2011; Reed et al. unpubl.). We therefore expect that the
contribution of priming to the overall CO2 fluxes observed
here will be very low.

Conclusions

This study clearly shows that root age and mode of death
results in very different temporal patterns of C release from
soil. Contrary to expectation, the rapid release of CO2 from
soil after root excision could not be attributed to the micro-
bial breakdown of root tissues. Our evidence, alongside that
of others, suggests that this pulse of CO2 release is more
related to root-induced autophagy in which the root attempts
futilely to keep itself metabolically active. Similarly, roots
which underwent an immediate death by freezing also re-
sulted in a rapid loss of CO2 from soil. In this case, howev-
er, we ascribe this loss to the diffusion of solutes from rup-
tured cells into the soil which are subsequently mineralized
by the soil microbial community. Surprisingly, the rate of C
loss from soil was greater from the senescing excised root
tips than those that died immediately. This suggests a flow
of C out of the soil which largely bypasses the soil microbial
community. Severed older roots were much less metaboli-
cally active and more resistant to microbial degradation than
either young roots or older ruptured roots, leading to a great-
er persistence of C in the soil. From our findings, it is clear
that more work is needed to characterise and quantify the
different ways in which roots die and turnover in soil and
how this subsequently impacts upon long-term soil C stor-
age and nutrient cycling. In addition, a greater attention
should be paid to the role of mycorrhizal symbionts and
endorhizosphere microbial communities in the root decom-
position process. Finally, more long-term studies under field
conditions are needed to complement laboratory experiments
such as those performed here.
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