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Abstract 

Objective: To determine whether prospective testing for HLA-B*58:01, as a strategy to 

prevent serious adverse reactions to allopurinol in patients with gout, is cost-effective from 

the perspective of the National Health Service in the UK. 

Methods: A systematic review and meta-analysis for the association of HLA-B*58:01 with 

cutaneous and hypersensitivity adverse drug reactions (ADRs) informed a decision analytic 

and Markov model to estimate lifetime costs and outcomes associated with testing versus 

standard care (with febuxostat prescribed for patients who test positive). Scenario analyses 

assessed alternative treatment assumptions and patient populations. 

Results: The number of patients needed to test to prevent one case of ADR was 11,286 (95% 

Central Range, CR 2,573, 53,594). Cost and quality-adjusted life-year (QALY) gains were 

small £103 (95% CR £98, £106) and 0.0023 (95% CR -0.0006, 0.0055), resulting in an 

incremental cost-effectiveness ratio (ICER) of £44,954 per QALY gained. The probability of 

testing being cost-effective at a threshold of £30,000 per QALY was 0.25. Reduced costs of 

testing or febuxostat resulted in an ICER below £30,000 per QALY gained. The ICER for 

patients with chronic renal insufficiency was £38,478 per QALY gained.  

Conclusion: Routine testing for HLA-B*58:01 in order to reduce the incidence of adverse 

drug reactions in patients being prescribed allopurinol for gout is unlikely to be cost-

effective in the UK; however testing is expected to become cost-effective with reductions in 

the cost of genotyping, and with the future availability of cheaper, generic febuxostat. 

KEY WORDS: Allopurinol, Pharmacogenetics, Cutaneous adverse drug reaction, Cost-

effectiveness analysis, HLA-B*58:01. 
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Introduction 

Gout is a common inflammatory condition characterised by acute attacks (flares) which are 

episodes of severe joint pain, usually with redness, swelling, and tenderness of the joint; 

and is associated with increased risk of cardiovascular disease [1, 2]. Gout affects 

approximately 2.5% of the population and is most prevalent in older men [3]. 

Standard treatment for the long term management of gout includes urate lowering agents, 

with allopurinol accounting for 89% of prescriptions in the UK between 2000 and 2005 [4].  

Allopurinol is generally well tolerated, but is associated with rare but severe cutaneous 

adverse drug reactions (SCARs) including Steven-Johnson syndrome (SJS) and toxic 

epidermal necrolysis (TEN), affecting approximately 7 in 10,000 patients [5]. SCARs are 

associated with high mortality – up to 30% in the case of TEN [6]. Allopurinol is also 

associated with hypersensitivity adverse drug reactions (ADRs) (hereafter referred to as 

drug reaction with eosinophilia and systematic symptoms (DRESS)), including drug induced 

hypersensitivity syndrome (DIHS), also sometimes called allopurinol hypersensitivity 

syndrome (AHS) or hypersensitivity syndrome (HSS) [7]. 

Genetic association studies have identified the presence of the HLA-B*58:01 allele to be an 

important risk factor for allopurinol-induced SJS or TEN, with an odds ratio of 96.6 (95%CI 

24.5, 381.0) [8]. HLA-B*58:01 is present in 15% to 18% of certain Asian populations but is 

less common (1% to 2%) in European populations [9]. Other risk factors for allopurinol 

hypersensitivity include high dose, renal impairment and concomitant use of diuretics [10]. 

While routine testing is not currently recommended by the Food and Drug Administration or 

the European Medicines Agency [11], the American College of Rheumatology guidelines 

note that genotyping should be considered in selected patients at elevated risk of ADRs, 
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including those with chronic renal insufficiency [12]. There are no randomised controlled 

trials of routine testing; however prospective cohort studies have suggested effectiveness in 

Taiwanese populations [13], and Korean patients with chronic renal insufficiency [14]. In 

both studies, patients who tested positive for HLA-B*58:01 either avoided allopurinol or 

were administered allopurinol on a 28-day induction programme. No cases of SCAR 

occurred in either study, compared with expected rates of 0.3% [13] and 18% [14]. 

Many healthcare systems require evidence of efficiency for broader adoption of health 

technologies, including pharmacogenetics tests. Existing economic analyses have indicated 

that genotyping for HLA-B*58:01 may be cost-effective in both Thailand and Korea [15, 16], 

but not in Singapore [17].  

The aim of the present analysis is to estimate the cost-effectiveness of HLA-B*58:01 

genotyping prior to prescription of allopurinol in the UK healthcare setting. 

Methods 

Overview 

A cohort model was used to track patients with chronic gout over a lifetime. Patients either 

receive allopurinol, or are first genotyped for HLA-B*58:01 before being prescribed either 

allopurinol or febuxostat, conditional on test result. Febuxostat is recommended by the 

National Institute for Health and Care Excellence (NICE) in the UK as a second line treatment 

if allopurinol is not tolerated or is contraindicated. The analysis adopts the costing 

perspective of the National Health Service (NHS) in the UK assuming cost year 2014. Health 

outcomes were measured as quality-adjusted life-years (QALYs). Costs and QALYs were 

discounted after 1 year at a rate of 3.5% per annum. The base-case population was chosen 
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to be representative of the gout population in the UK, 81% male, with a mean age at 

diagnosis of 61.6 years [4]. 

The model, which is depicted in Figure 1, was adapted from the decision analysis of Beard et 

al [18] (2014), incorporating 3-month decision trees to capture the time during which the 

majority of serious ADRs are likely to occur [5, 19]. A Markov model, with a cycle length of 3 

months and with half-cycle correction, captured the lifetime sequelae of SJS,TEN and DRESS, 

and the long term differences in costs and effectiveness of alternative urate lowering 

agents. States within the model were defined according to: (i) serum uric acid (sUA) 

concentration < 360µmol/l, (ii) 360µmol/l < sUA < 475µmol/l, (iii) 475µmol/l < sUA < 

595µmol/l and (iv) sUA > 595µmol/l, and reflect whether patients had experienced SJS, TEN 

or DRESS, with an option for (v) acute flares, and (vi) death (Figure 1). We assumed sUA to 

remain constant for individual patients, based on data from the EXCEL study, which 

indicated that 75% to 100% of patients who achieved sUA < 360µmol/l maintained this over 

the remainder of the study [20]. 

*insert figure 1 here* 

Treatment pathway 

For standard care, all patients are prescribed allopurinol, titrated to 300mg/day during the 

first 3 months. Patients who are genotyped for HLA-B*58:01 or who experience a serious 

ADR with allopurinol switch to febuxostat 80mg/day, given there is no evidence of cross-

reactivity [21, 22]. Patients experiencing a serious ADR with febuxostat (which are far less 

likely) [23], discontinue urate lowering therapy altogether.  
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The clinical effectiveness for allopurinol, febuxostat and symptomatic flare management 

was considered in terms of the endpoint of reducing sUA to < 360µmol/l; consistent with 

existing clinical guidelines for the management of gout [12, 24, 25], and in terms of 

prevention (or in the prophylaxis period, provocation) of gout flares.  Prophylactic treatment 

with colchicine (500μg twice daily) was modelled for 3 months following initiation of 

allopurinol, or for 6 months following initiation of febuxostat [26]. The use of NSAIDs is 

assumed for all patients; but not probenecid, which is not listed in the British National 

Formulary. 

Model parameters 

Parameter estimates were obtained from purposive reviews of the literature and are listed 

in Table 1.  

*table 1 here* 

Clinical effectiveness 

The risk-ratios for sUA < 360µmol/l with febuxostat 80mg/day and allopurinol 300mg/day 

were taken from the Cochrane review and meta-analysis based on data from the FACT [30], 

APEX [30], and CONFIRMS [31] trials. The risk-ratio for achieving sUA to < 360µmol/l with no 

treatment was taken from the Cochrane review and meta-analysis of studies comparing 

allopurinol 300mg/day and placebo [27]. 

For patients who did not achieve sUA < 360µmol/l, the distribution of patients across the  

‘non-response’ sUA categories was allocated according to those indicated in Beard et al [18], 

taken from the FACT and APEX studies [29, 30].The distribution of patients across sUA 

categories for no treatment was assumed to be the same as for allopurinol. 
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The probability of experiencing a flare during prophylaxis  was taken from a pooled analysis 

of 8-week data from the FACT [29], APEX [30], and CONFIRMS trials [31] for allopurinol; and 

from a Cochrane review for febuxostat [28]. For subsequent model cycles, and for patients 

who were not prescribed urate lowering treatment, the probability of flares was determined 

by sUA concentration, as in Beard et al [18]. 

Prevalence of allopurinol induced SJS, TEN or DRESS 

With a background population incidence of SJS/TEN of between 0.4 and 6 persons per 

million per year [15], and a risk ratio for allopurinol-induced SJS/TEN within the first 2 of 

initiation of 52 [19], the incidence of allopurinol induced SJS/TEN was calculated as being 

between 0.2 and 3 cases per 10,000 patients. Within the model we use a mean point 

estimate of 1.6 cases per 10,000 patients. 

Data for DRESS were taken from a study of 1835 patients who were prescribed allopurinol, 

while monitored in a drug surveillance program [37]. 

Association between HLA-B*58:01 and allopurinol induced SJS, TEN or DRESS 

The systematic review by Somkura et al [8] was updated using PubMed (from inception up 

until August 2016) using the search terms (“HLA-B” OR “Human leukocyte antigen”) AND 

“allopurinol” AND (“Stevens Johnson Syndrome” OR “Toxic Epidermal Necrolysis” OR “Drug 

Reaction with Eosinophilia and Systematic Symptoms” OR “Drug Induced Hypersensitivity 

Syndrome” OR “Hypersensitivity Syndrome” OR “Allopurinol Hypersensitivity Syndrome”) or 

their acronyms. Search results were cross-referenced against the allelefrequencies database 

of studies of the association between HLA-B*58:01 and allopurinol-induced ADR [9]. Studies 

were eligible for meta-analysis if they included an allopurinol tolerant control.  
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Meta-analysis was conducted using the metandi hierarchical logistic regression package in 

STATA (version 13; StataCorp LP, College Station, TX) [38] to determine the pooled 

sensitivity and specificity of the presence of HLA-B*58:01 in predicting allopurinol induced 

SJS, TEN and DRESS. 

Thirteen articles qualified for the meta-analysis (Appendix 1, 2). The pooled sensitivity of the 

13 SJS/TEN studies was 0.95 (95% CI 0.90, 0.97), with specificity 0.88 (95% CI 0.84, 0.91). 

Meta-analysis of data from 10 DRESS studies resulted in a pooled sensitivity of 0.93 (95% CI 

0.84, 0.98) and specificity 0.85 (95% CI 0.65, 0.94).  

Based on the prevalence of allopurinol induced SJS/TEN and DRESS, the positive predictive 

value (PPV) of genotyping for SJS/TEN is 0.0013, whilst the negative predictive value (NPV) 

of genotyping for SJS/TEN is 1.000. The corresponding values for DRESS are 0.0067 and 

0.9999, respectively. 

Allele prevalence 

Pooled data for European populations (not restricted by ethnicity) resulted in an allele 

prevalence of 1.13% (95% CI 1.08%, 1.19%) [9].  

Health state utilities  

There is limited evidence linking health state utility with sUA concentrations or incidence of 

flares [39]. To date, all EQ-5D data reported in published economic evaluations have been 

sourced from an unpublished study of 417 patients from the UK, Germany and France [4, 

18]. In the absence of alternative data, we assumed the same relationship of health utility 

and sUA, with an additional decrement in utility of 0.0097 applied for episodes of acute 

flares [18]. 
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Utility decrements corresponding to SJS/TEN and DRESS were assigned as for severe burns 

[33] and sepsis [35], respectively, consistent with other economic evaluations [17, 36, 40]. 

Longer term disutilities to capture long term sequelae for SJS, TEN and DRESS (applied to the 

model from 3-months post ADR onwards) were taken from patient-level data for survivors 

of TEN [34].  

Mortality 

All-cause mortality was taken from UK life tables [32], adjusted by age and gender, whilst 3-

month mortality for SJS/TEN and for DRESS were modelled at 26.5% (95% CI 18%, 24%) [6] 

and 10% (95% CI 5%, 15%) [7], respectively. 

Costs 

The total cost of gout maintenance treatment (£97.40 for 3 months) included consultation 

with General Practitioner, diagnostic tests (including sUA, serum creatinine and renal 

function), procedures (X-rays and joint aspiration) and hospitalisation due to complications 

of gout such as urinary tract infections or renal stones [18]. The total cost of flare 

management (£321.62 for the immediate treatment and management of an acute flare) 

included the costs of inpatient hospitalisation and outpatient clinic visits. The cost of 

allopurinol, febuxostat and colchicine were based on daily doses of 300mg (titrated over the 

course of the first cycle), 80mg and 1mg, respectively [26].   

The costs of the acute management of SJS/TEN and DRESS reactions were based on a 

previous economic evaluation [36], in which data on healthcare resource use (e.g. 

treatments, procedures, length of hospitalisation according to intensity of care) were 

identified from a systematic review of the literature, and costed using NHS unit costs. We 
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found no evidence for the cost of long term management of SJS/TEN and so assumed that 

patients would require follow-up consultant appointments, which were costed based on 1 

hour per annum. We further assumed there would be no cost incurred for managing 

sequelae of DRESS.  

The cost of genotyping was based on a 2-stage process; an initial screen for HLA-B*58 

(£54.29) and, in patients who test positive, a second high resolution test for the specific 

HLA-A*58:01 allele (£94.91) [36]. 

Analysis 

Costs and QALYs were summed for genotyping prior to initiation of the urate lowering 

therapy, and for standard care (prescription of allopurinol without genotyping). The 

incremental cost-effectiveness ratio (ICER) was calculated as: 

ICER =
Costwith test - Coststandard care: no test

Outcomewith test - Outcomestandard care: no test
 

The economic evaluation was analysed in Microsoft Excel 2013, and reported according to 

the Consolidated Health Economic Evaluation Reporting Standards [41]. 

 

Sensitivity analysis 

Parameter uncertainty was assessed by varying each parameter within its 95% confidence 

interval or, if unavailable, within a plausible range which, in the case of costs, was based on 

a standard deviation of 25% of the mean (Table 1).  

A probabilistic sensitivity analysis was performed using a Monte Carlo simulation with 

10,000 replications, and a cost-effectiveness acceptability curve (CEAC) constructed to 
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depict the probability of genotyping being cost-effective for a range of cost-effectiveness 

thresholds [42].  

Scenario analysis 

A scenario reflecting a single stage testing process was considered, at a cost of £20 per test. 

In order to simulate future price reduction of febuxostat, as may result following patent 

expiry, we explored the impact of equating the cost of febuxostat to that of allopurinol. We 

also present results from the first six months, corresponding with the time period where 

adverse events are most likely to occur. 

We developed a scenario analysis which considered the case where patients experiencing 

SJS/TEN or DRESS with either allopurinol of febuxostat are treated symptomatically, which 

may reflect patients’ reluctance to take further medicines following a serious adverse drug 

reaction [43].  

We also assessed alternative scenarios for patients who test positive for HLA-B*58:01. 

Firstly, we considered such patients to be treated symptomatically, without maintenance 

uric acid lowering treatment, which may reflect a patient preference to discontinue 

treatment [44]. Secondly, we considered the scenario in which allopurinol would continue 

to be prescribed but that patients would be monitored closely. In this scenario, we assumed 

monitoring would also take place in patients prescribed febuxostat or symptomatic 

treatment, following experience of SJS/TEN or DRESS. Whilst the incidence of SJS/TEN or 

DRESS will not be affected by increased monitoring, early discontinuation of causative drug 

has been shown to improve mortality outcomes, with odds ratio 0.69 per day [45]. The cost 

of the monitoring service was based on 20 minutes of a pharmacist’s time, costed at £71 per 
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hour, to allow for additional information at initiation, and two follow up phone calls during 

the first 6 months [46].  

A scenario analysis which limits testing to patients with chronic renal insufficiency was 

assessed given this being an independent risk factor for SJS/TEN and DRESS in patients 

prescribed allopurinol, (relative risk compared with no chronic renal insufficiency 3.79; 95% 

CI 2.43, 5.92) [30]. Patients with chronic renal insufficiency (eGFR 15-29 mL/min/1.73m2) 

have a standardised mortality ratio of 3.2 (95% CI 3.1, 3.4) [25], and SJS/TEN is associated 

with increased mortality in this patient group (67% of patients experiencing SJS/TEN do not 

survive the ADR) [30]. The increased prevalence of SJS/TEN and associated mortality were 

modelled alongside reduced dose of allopurinol (100mg per day) and reduced dose 

colchicine (0.5mg per day) as recommended for this population [26].  

As being female is associated with a higher risk of allopurinol induced SJS/TEN or DRESS (OR 

1.45; 95% CI, 1.35-1.56) [9, 47], and that SJS/TEN and DRESS mortality is higher in females 

(OR 1.63; 95% CI, 1.28-2.08) [47] we conducted an analysis for a female population 

subgroup, aged 62.  

Whilst the primary analysis is for a European population, the population of the UK is 

ethnically diverse. We conducted an analysis which considered an increased prevalence of 

HLA-B*58:01, based on a pooled analysis of populations of Asian ethnic origin, at 4.24% [9]. 

A further analysis was considered for the population with greatest prevalence of HLA-

B*58:01, at 17% (the China Guangdong Province Meizhou Han population) [9]. 

Finally, as the long term impact of alternative treatments and the long term consequences 

of SJS/TEN or DRESS will have a greater lifetime impact on younger populations, we tested 

the cost-effectiveness of testing in a population of 35 year old males.  
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Results 

The modelled rate of ADRs in the test group was 0.95 (95% central range [CR] (0.16, 3.04)) 

per 10,000 patients, compared with 1.83 (95% CR 0.40, 6.00) in the standard care group. 

The number needed to screen in order to prevent one ADR (either SJS/TEN or DRESS) is 

11,286 (95% CR 2,573, 53,594). 

There is a small, but significant, incremental cost of £103 (95% CR £98, £106) associated 

with testing (Table 2). Cost differences are mainly attributable to drug costs and the cost of 

genotyping. There is also a very small QALY gain from testing, of 0.0023 (95% CR -0.0006, 

0.0055), however this is not significant. QALY gains predominantly derive from better 

management of gout as febuxostat is more efficacious than allopurinol. The resulting ICER 

for HLA-B*58:01 genotyping was £44,954 per QALY gained.  

*insert table 2 here* 

Parameter and structural sensitivity analysis 

A tornado plot illustrating the sensitivity of the ICER to the 10 most influential parameters is 

shown in Figure 2. Univariately, the efficacy of febuxostat (risk ratio for achieving sUA < 

360µmol/l versus allopurinol) and the cost of genotyping were most influential. The ICER 

was stable to variation in all other parameters within their 95% confidence interval. 

Figure 3 presents the CEAC for the base case analysis, which indicates that the probabilities 

of genotyping being cost effective at ceiling ratios of £20,000 and £30,000 per QALY are 0.05 

and 0.25, respectively.  

*insert figures 2 and 3 here* 
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Scenario analyses (Table 3), indicate testing to be cost-effective within populations with a 

higher prevalence of HLA-B*58:01 (at £27,218 and £22,359 per QALY gained, for 4.24% and 

17% prevalence, respectively) where the number needed to screen to prevent one ADR 

reduces to 3,018 and 753; and when the cost of febuxostat is reduced to that of allopurinol, 

resulting in an ICER of £23,679 per QALY gained. A less expensive, single-stage test, reduces 

the ICER to £29,469 per QALY gained. In the case of both reduced price febuxostat and 

cheaper testing, the ICER is £8,195 per QALY gained.  

*insert table 3 here* 

Blanket prescription of allopurinol with only symptomatic treatment following ADR resulted 

in a reduction in both costs and QALYs. For other scenarios, and alternative modelling 

assumptions, ICERs remained higher than £30,000 per QALY. While the number needed to 

screen to prevent one case of SJS/TEN in patients with chronic renal insufficiency reduced to 

2,964, testing remained not cost-effective at £38,478 per QALY gained. Based on a 12-

month time horizon of analysis, the QALY gain, being almost solely attributable to the 

reduction in cases of SJS/TEN and DRESS, is very small, which inflates the ICER.  

  



17 
 

Discussion 

Our model suggests that from a UK NHS perspective, routine genotyping for HLA-B*58:01 is 

not cost-effective for preventing SJS/TEN and DRESS associated with allopurinol in patients 

with gout. The small QALY gain, equivalent to less than one quality-adjusted day, is 

commonplace in pharmacogenetic testing due to the low allele prevalence and rarity of the 

adverse event leading to a low PPV [48]. In scenario analyses, genotyping was modelled to 

be cost-effective when the price of testing reduced to ≤£21 per patient, or when the cost of 

febuxostat is reduced, such as might be expected once available generically, expected in 

2019. The model was robust to the alternative assumption of no uric acid lowering 

treatment being prescribed following a serious ADR, which may reflect patient or prescriber 

preference [43]. 

We are aware of three existing economic evaluations of HLA-B*58:01 screening for 

preventing allopurinol induced SCAR, with mixed results of cost-effectiveness [15, 16, 17]. 

Differences among these studies can be attributed to differences in populations but also 

methodological limitations which are addressed in our analysis. 

Firstly, our analysis has strength in the use of febuxostat as a realistic and licensed 

comparator to allopurinol for a UK setting. Of the previously conducted economic 

evaluations, only Park [16] considered febuxostat as a comparator; both other studies 

consider probenecid as the comparator [15, 17], which has very limited use in the UK.  

Secondly, previous economic evaluations made no consideration of the relative 

effectiveness of urate lowering drugs, and focused exclusively on differences in the rates of 

SCAR. The Thai analysis, for instance, assumed a single health utility applied to all patients 

regardless of treatment received [15]. This represents a major limitation, as febuxostat may 
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be more effective than allopurinol in lowering serum urate, if not in reducing the incidence 

of gout flares or tophus area [40]. By adopting a lifetime horizon of analysis that captured 

the differences in efficacy and costs between treatments, our analysis reduces this bias 

while also taking fully into account the long term sequelae of SJS/TEN and DRESS. 

Only one previous economic evaluation has considered hypersensitivity reactions other than 

SJS/TEN [17], and we are the first to consider SJS/TEN and DRESS separately.  

Our analysis also benefited from having modelled a number of potential patient 

populations, to reflect different clinical circumstances where genotyping may be cost-

effective, as well as different scenarios of drug sequences in patients who experience ADRs 

and future decreases in the cost of testing and febuxostat.  

As with any economic model, however, we were reliant on disparate sources of evidence 

and some assumptions were necessary. Firstly, we relied on unpublished data on utilities in 

gout. Alternative, published data of EQ-5D utilities in 110 patients, did not present utility by 

drug, disease severity or response to treatment, and were therefore unsuitable for 

populating the model [49]. However the mean utility value of 0.74 (SD 0.23) is consistent 

with the data used in our analysis.  

Secondly, our analysis did not capture any adverse events other than SJS/TEN or DRESS, 

which may have implications, especially in chronic renal populations. Neither were other 

common comorbidities, such as cardiovascular disease and diabetes taken into account 

explicitly. However, with the assumption that the populations from which costs and utilities 

were sourced, were representative of a general gout population, such comorbidities would 

have been captured implicitly. 
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Thirdly, the scenario representing patients with chronic renal insufficiency did not account 

for costs or QALYs associated with the condition, but only the impact of the condition on 

SJS/TEN and DRESS, mortality and prescription costs. Moreover, there was no evidence as to 

whether the rate of SJS/TEN or DRESS in febuxostat treated patients with chronic renal 

insufficiency would be any higher than in the general population. 

Fourthly, in the absence of data, we assumed that the probability of an increase in flares 

during the prophylaxis period is independent of the probability of achieving sUA < 

360µmol/l.  

Finally, we assumed that sUA remains constant after 12 weeks provided that treatment 

does not change. This is consistent with other economic evaluations [17, 18], and with 

results from the EXCEL study [20], but requires patients to be fully adherent, which may not 

be the case in practice [44].  The EXCEL study noted that after 24 months, 76% of patients 

prescribed febuxostat remained on treatment, whilst only 40% of patients persisted with 

allopurinol [20]. 

In conclusion, our analysis suggests that routine, prospective genotyping for HLA-B*58:01 

prior to the prescription of allopurinol for gout is not cost-effective in a UK NHS setting. 

There are, however, subpopulations where testing is more likely to be cost effective, 

including patients with chronic renal insufficiency, and populations with a higher HLA-

B*58:01 prevalence. Testing is expected to become cost-effective with reductions in the 

cost of genotyping, and with the future availability of cheaper, generic febuxostat.  

Key messages 



20 
 

 HLA-B*58:01 is associated with severe adverse drug reactions to allopurinol in patients 

with gout. 

 Routine testing of gout patients for HLA-B*58:01 is currently not cost-effective in the UK. 

 HLA-B*58:01 genotyping of gout patents is cost-effectiveness if the price of testing and 

febuxostat reduces. 
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Table 1: Model inputs: Transition probabilities, costs and utilities 

Parameter Mean Distribution for probabilistic 

sensitivity analysis 

Univariate sensitivity 

analysis 

Reference 

Lower 

range 

Upper 

range 

Transition probabilities 

 Prevalence of HLA-B*58:01 (European 

mean) 

0.0113 Beta(27340, 202446) 0.0108 0.0119 [9]  

 P(SJS/TEN|allopurinol) within 3 months 

of initiation 

0.0002 Normal(0.0002, 0.00007) 0.00002 0.0003 [15, 19]  

 P(DRESS|allopurinol) within 3 months 0.0011 Beta(2, 1835) 0.0001 0.0030 [26]  

 P(SJS/TEN| febuxostat) within 3 months 

of initiation 

0.00010 Beta(1, 9999) 0.00000 0.00037 [23]  

 P(DRESS| febuxostat) within 3 months of 

initiation 

0.00010 Beta(1, 9999) 0.00000 0.00037 [23] 
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 Sensitivity of test (SJS/TEN) 0.9285 Beta(144.64, 8.07) 0.8984 0.9732 Meta analysis 

 Specificity of test (SJS/TEN) 0.8907 Beta(311.64, 42.01) 0.8432 0.9110 Meta analysis 

 Sensitivity of test (DRESS) 0.9348 Beta(56.34, 3.93) 0.8387 0.9753 Meta analysis 

 Specificity of test (DRESS) 0.8470 Beta(20.51, 3.63) 0.6544 0.9441 Meta analysis 

 P(360µmol/l | allopurinol) 0.3800 Beta(497.8, 812.2) 0.3539 0.4064 [27]  

 Proportion of non-responders with  

(360µmol/l < sUA < 475µmol/l| 

allopurinol) 

0.7900 Beta(641.638, 170.562) 0.7613 0.8173 [18]  

 Proportion of non-responders with  

(475µmol/l < sUA < 595µmol/l | 

allopurinol) 

0.1750 Beta(142.135, 670.065) 0.1497 0.2019 [18] 

 Proportion of non-responders with  (sUA 

> 595µmol/l | allopurinol) 

0.0350 Beta(28.247, 783.773) 0.0235 0.0487 [18] 

 Risk ratio UA febuxostat vs allopurinol 1.8182 Gamma(208.2823, 0.0088) 1.5873 2.0833 [28]  

 P(360µmol/l| febuxostat) 0.6909    RR*allopurinol  
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 Proportion of non-responders with  

(360µmol/l < sUA < 475µmol/l | 

febuxostat)  

0.7410 Beta(299.5796, 104.7113) 0.6973 0.7825 [18]  

 Proportion of non-responders with  

(475µmol/l < sUA < 595µmol/l | 

febuxostat)  

0.2130 Beta(86.114, 318.177) 0.1745 0.2542 [18] 

 Proportion of non-responders with  (sUA 

> 595µmol/l | febuxostat)  

0.0460 Beta(18.597, 385.694) 0.0278 0.0684 [18] 

 Risk risk sUA none vs allopurinol 0.0203 Gamma(0.0898, 0.1586) 0.0029 0.1439 [27]  

 Proportion of non-responders with  

(360µmol/l < sUA < 475µmol/l| no 

treatment)  

0.7900 Beta(641.638, 170.562) 0.7613 0.8173 As for allopurinol 

 Proportion of non-responders with  

(475µmol/l < sUA < 595µmol/l | no 

treatment)  

0.1750 Beta(142.135, 670.065) 0.1497 0.2019 As for allopurinol 
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 Proportion of non-responders with  (sUA 

> 595µmol/l | no treatment)  

0.0350 Beta(28.247, 783.773) 0.0235 0.0487 As for allopurinol 

 P(initial flares | allopurinol) 0.1402 Beta(166, 1184) 0.1210 0.1605 [29, 30, 31]  

 Risk ratio of initial flare, febuxostat vs 

allopurinol 

1.3130 Gamma(43.2461, 0.0311) 0.9730 1.7720 [28]  

 P(acute flares | sUA < 360µmol/l) 0.0874 Beta(311.5008,3252.5819) 0.0784 0.0969 [18]  

 P(acute flares | 360µmol/l < sUA < 

475µmol/l) 

0.0989 Beta(307.8354,2804.7567) 0.0887 0.1096 [18] 

 P(acute flares | 475µmol/l < sUA < 

595µmol/l) 

0.1085 Beta(304.4738, 2501.7361) 0.0973 0.1203 [18] 

 P(acute flares  | sUA > 595µmol/l) 0.1161 Beta(301.9822, 2299.0704) 0.1041 0.1287 [18] 

 Mortality *  Assumed fixed as based on entire population [32]  

 Mortality: SJS/TEN 0.2652 Beta(122, 338) 0.2259 0.3065 [6]  

 Mortality: DRESS 0.1000 Beta(13.73, 123.57) 0.0558 0.1552 [7]  

Utilities 
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 *Gout with sUA < 360µmol/l 0.7463 1-Beta(98.9914, 291.1993) 0.7020 0.7882 [18]  

 *Gout with 360µmol/l < sUA < 475µmol/l 0.7120 1-

Beta(121.7288,300.9406) 

0.6680 0.7541 [18] 

 *Gout with 475µmol/l < sUA < 595µmol/l 0.6777 1-

Beta(145.1274,305.1592) 

0.6339 0.7200 [18] 

 *Gout with sUA > 595µmol/l 0.6435 1-

Beta(168.6184,304.3645) 

0.5998 0.6860 [18] 

 Disutility: Gout flare 0.0097 Beta(15.8351, 1616.6494) 0.0055 0.0150 [18]  

 Disutility: SJS/TEN – acute 0.1400 Gamma(3.7867, 0.1901) 0.1869 1.6054 [33]  

 Disutility: SJS/TEN – long term 0.1149 Gamma(0.4423, 0.2597) 0.0000 0.6102 [34]  

 Disutility: DRESS - acute 0.1430 Gamma(0.9086, 0.1574) 0.0026 0.0121 [35]  

 Disutility: DRESS – long term 0.1149 Gamma(0.4423, 0.2597) 0.0000 0.6102 [34]  

Resource use and costs 

 Cost: Gout flare 321.62 Gamma(16, 20.1011) 183.83 497.31 [18]  

 Cost: Gout maintenance 97.40 Gamma(16, 6.0874) 55.67 150.60 [18] 
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 Cost: Allopurinol 300mg 3.77 Fixed 3.41 4.15 [26]  

 Cost: Febuxostat 80mg 79.17 Fixed 71.60 87.11 [26] 

 Cost: Colchicine 1mg (500 microgram 

BID) 

65.92 Fixed 59.62 72.54 [26] 

 Cost: SJS/TEN – acute 31,232.00 Gamma(1.18, 25262.51)  1,626.72 103,207.86 [36]  

 Cost: SJS/TEN – long term 140.00 Gamma(3.84, 42.17) 0.00 280.00 Expert opinion 

 Cost: DRESS - acute £11,209.03 Gamma(7.44, 1507.13)) £4658.78 £20,585.50 [36]  

 Cost of HLA-B*58 screen 54.29 Fixed 10.00 90.00 [36]  

 Cost of HLA-B*58:01 94.91 Fixed 30.00 150.00 [36] 

Abbreviations: SJS Steven-Johnson syndrome, TEN toxic epidermal necrolysis, DRESS drug reaction with eosinophilia and symptomatic 

symptoms, P probability, sUA serum uric acid concentration, RR risk ratio, BID twice a day 

*Tested simultaneously as ‘Utility of gout’ in univariate sensitivity analysis to preserve natural ordering 
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Table 2: Results of the base-case analysis 

 Test Standard care Incremental 

 Cost QALYs Costs QALYs Costs QALYs 

Gout management £5,597 10.3400 £5,596 10.3378 £0.06 0.0022 

Gout flare management (prophylaxis) £45.26 -0.0003 £45.10 -0.0003 £0.16 0.0000 

Gout flare management (non-

prophylaxis) £1,741 -0.0131 £1,742 -0.0131 -£0.82 0.0000 

Treatment of SJS/TEN and DRESS £1.27 -0.000004 £2.53 -0.000012 -£1.26 0.0000 

Managing sequelae of SJS/TEN and 

DRESS £0.06 -0.0001 £0.14 -0.0003 £-0.08 0.0001 

Genotyping £55.50  £0  £55.50  

Drug cost £333.79  £284.30  £49.49  

Total £7,773 10.3264 £7,671 10.3241 £103.05 0.0023 

Abbreviations: SJS Steven-Johnson syndrome, TEN toxic epidermal necrolysis, DRESS drug reaction with eosinophilia and symptomatic 

symptoms, QALY quality-adjusted life-year   
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Table 3: Results of scenario analyses 

 Incremental 

Cost (per 

patient) 

Incremental 

QALY (per 

patient) 

Number needed 

to screen to 

prevent one ADR  

ICER 

(Cost/QALY) 

Base case £103.05 0.0023 11,286 £44,954 

Results at 6 months £56.81 0.0001 11,286 £706,624 

35 year old male £128.68 0.0035 11,286 £36,571 

62 year old female £107.06 0.0026 10,437 £41,176 

Chronic renal insufficiency* £84.46 0.0022 2,964 £38,478 

Prevalence of HLA-B*58:01 4.24% £233.34 0.0086 3,018 £27,218 

Prevalence of HLA-B*58:01 17% £768.55 0.0344 753 £22,359 

Set comparator ULA cost equal to allopurinol** £54.28 0.0023 11,286 £23,679 

Single stage test, cost £20 £67.55 0.0023 11,286 £29,469 

All prescribed allopurinol. No ULA in case of 

ADR 

-£0.72 -0.0001 ***  £11,081^  
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Test negative: Allopurinol; Test positive: 

Febuxostat; No ULA in case of ADR 

£102.69 0.0023 11,284  £45,456 

Test negative: Allopurinol; Test positive: No 

ULA; No ULA in case of ADR 

£51.18 -0.0024 11,003 Dominated 

Test negative: Allopurinol; Test positive: 

Allopurinol with increased monitoring; 

Febuxostat in case of ADR 

£55.82 0.0000 *** £1,783,994 

Abbreviations: QALY quality-adjusted life-year, ICER incremental cost effectiveness ratio, ADR adverse drug reaction, ULA urate lowering agent, 

PPV positive predictive value, NPV negative predictive value 

*Chronic renal insufficiency: SJS/TEN PPV 0.0048; SJS/TEN NPV 1.0000; DRESS PPV 0.0251; DRESS NPV 0.9997. 

**Colchicine maintained for 6 months due to prophylaxis flare rate 

***In excess of the number of people with gout in the UK 

^Less costly and less effective 
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Figure 1: Schematic representation of the decision analytic model. Patients in the ‘no test’ 

scenario all enter the model at A, whilst patients in the ‘test’ scenario enter the model in 

either A or B dependent upon test result. Patient flow between each 3-month model is 

represented at the leaf nodes. Where patients reach the Markov model (model D) before 

the end of 12-months, the first cycles (up until 12-months) are treated as the run in period. 
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Abbreviations: SJS Steven-Johnson syndrome, TEN toxic epidermal necrolysis, DRESS drug 

reaction with eosinophilia and symptomatic symptoms, sUA serum uric acid concentration 
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Figure 2: Tornado plot illustrating univariate sensitivity analysis. (L,H) and (H,L) indicate 

whether the range tested is displayed as low-high or high-low, respectively. The vertical line 

at £44,954 per QALY gained represents the ICER corresponding to the base case analysis. 

Abbreviations: sUA serum uric acid concentration, ICER incremental cost effectiveness ratio, 

QALY quality-adjusted life-year 
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Figure 3: Cost effectiveness acceptability curve indicating the probability of testing being 

cost-effective for a range of threshold values.  

Abbreviations: QALY quality-adjusted life-year 

 


