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ABSTRACT 

Neuroscientific investigations interested in questions of person perception and impression 

formation traditionally asked their participants to observe and evaluate isolated individuals. In 

recent years, however, there has been a surge of studies presenting third-party encounters 

between two (or more) individuals as stimuli. Due to this subtle methodological change, the 

brain’s capacity to understand other people’s interactions and relationships from limited 

visual information – also known as people-watching – has become a distinct topic of inquiry. 

Though initial evidence indicates this capacity relies on several well-known networks of the 

social brain (including the person perception network, the action observation network, and 

the mentalizing network), a comprehensive framework of people-watching must overcome 

three major challenges. First, it must develop a taxonomy of judgments people habitually 

make when witnessing the encounters of others. Second, it must clarify which visual cues 

give rise to these encounter-based judgments. Third, it must elucidate how and why several 

brain networks work together to accomplish these judgments. To advance all three lines of 

research, the current article summarizes what is currently known, but also what remains to 

be studied about the neuroscience of people-watching. 

 

Keywords: person perception; social cognition; social interaction; social neuroscience; third-

person perspective  



According to the social intelligence hypothesis, the ability to quickly detect and understand 

intricate social relations between other people may have facilitated the evolutionary 

development of unusually large brains in humans.1 Despite this fascinating claim, cognitive 

neuroscientists have rarely studied the brain’s response to relations between people. 

Instead, much of their work has focused on the perception and evaluation of isolated 

individuals or their parts, such as a human face or body. Without doubt, this approach has 

resulted in numerous seminal insights. It has revealed, for instance, that brain regions such 

as the fusiform face area (FFA) or the extrastriate body area (EBA) are specifically tuned for 

encoding the visual appearance of human faces and bodies.2,3 But it has not examined how 

the human brain analyzes scenarios involving multiple individuals, including their social 

interactions and relationships. 

 This lack of systematic inquiry may seem surprising, considering that making sense of 

other people’s encounters signifies a fascinating human capacity.4 As any avid people-

watcher can attest, observing strangers in each other’s company rapidly prompts numerous 

social judgments about how and why they have come together.5,6 In acknowledgement of 

this phenomenon, psychologists have long studied social impressions from so-called third-

party encounters (TPEs). By contrast, neuroscientific research on the perception and 

interpretation of TPEs has largely been absent. During the last five years, however, 

photographs and video clips of social scenarios including two or more individuals (see Figure 

1) have begun to feature regularly in studies using event-related potential7,8 (ERP), functional 

magnetic resonance imaging9,10 (fMRI), and transcranial magnetic stimulation11,12 (TMS). But 

which innovative insights, if any, has this new approach uncovered?  

To address this question, the current article reflects on a growing body of work that 

explores the neural substrates of forming impressions from other people’s encounters. In so 

doing, the article examines the human brain’s ability to analyze and interpret the appearance 

and actions of multiple individuals simultaneously in order to understand the social 

interactions and relation between them. The reader is first introduced to encounter-based 

impressions from a psychological perspective. Subsequently, experimental studies that have 

traced neural responses to TPEs in various well-known brain networks are discussed. 

Finally, initial attempts to understand neural variation in response to TPEs in clinical 

populations will be summarized. By providing an overview of recent theoretical and empirical 

approaches on the neural substrates of encounter-based impressions, this article aims to 

highlight their influential role in human social cognition. 



 

Figure 1. Portrayals of person dyads as used in recent neuroscientific studies, ranging from 
static A) drawings (Source: ref 67. Copyright 2010 Elsevier) and B) photographs (Source: ref 
10. Copyright 2015 Elsevier) to dynamic C) point-light displays (Source: ref 9. Copyright 
2014 John Wiley & Sons Ltd) and D) stick figures (Source: ref 71. Copyright 2014 John 
Wiley & Sons Ltd). All images reprinted with permission.  

 

In close adherence to its agenda, the article does not cover the formation of 

encounter-based impressions in response to hearsay (i.e., in response to verbal descriptions 

of human encounters received from other people13,14), nor the formation of anthropomorphic 

impressions in response to non-human entities (such as geometric shapes) purposefully 

made to ‘interact’ in a human-like manner.15-18 Although both lines of research probe 

important variants of encounter-based impressions, they necessarily skip the role played by 

basic perceptual operations dedicated towards face and body encoding and how these 

operations determine the course and products of the impression formation process – a 

question that lies very much at the heart of the phenomenon known as people-watching.19,20  

 



People-Watching: A Psychological Perspective 

Over fifty years ago, psychologists began to study how the human mind makes sense of 

encounters between multiple individuals from a third-person perspective.5,21,22 This early 

work focused primarily on the perception and evaluation of person dyads as it had been 

noticed that humans gather primarily in sets of two in public places23 and spend about half of 

their social time in the company of just one other person.24,25 Besides acknowledging the 

importance of person dyads in human life, early research on encounter-based impressions 

was fueled by the realization that these impressions could directly affect observers’ own 

behavior. It was demonstrated, for instance, that in busy streets most individuals refrain from 

penetrating the space between two people whom they consider a meaningful social unit.26,27 

What was less clear at the time, and what remains a topic of contemporary debate, is the 

question of what exactly constitutes such a unit from an observer’s point of view?  

According to numerous behavioral studies, meaningful social units are usually 

detected on the basis of overt markers of interpersonal involvement between people, ranging 

from shared eye gaze, posture mimicry, close physical proximity, and movement synchrony 

to direct communicative gestures and speech acts.28,29 Yet this prevalent approach of 

studying the observation and interpretation of human encounters has prioritized the 

assessment of momentary social interactions over other types of social relations. As a case 

in point, imagine two people who are waiting at the same bus stop, but who are not currently 

interacting with, or attending towards, one another. Despite this lack of direct involvement, 

witnessing both individuals together can elicit unique relational social insights. Both 

individuals may, for instance, look like they share a family resemblance, have a similar racial 

background, and/or support the same sports team.30 The similarity of their actions (e.g., 

waiting) may further reveal that they share a common goal or destiny (i.e., catching the bus). 

In short, observing people in each other’s company can prompt numerous inferences that go 

beyond mere judgments of direct interpersonal involvement.31  

In acknowledgement of this circumstance, contemporary psychologists describe and 

investigate encounter-based impressions as a multifaceted phenomenon that entails a wide 

range of perceptual, action, and social appraisals.4 In terms of perceptual appraisals, for 

instance, observers of TPEs seem to quickly assess whether co-occurring individuals display 

salient visual markers of social relatedness, such as mutual smiles, coordinated movement 

patterns, or shared social group memberships.29,32,33 In terms of action appraisals, they 

regularly examine whether TPEs entail individuals who engage in independent or joint 



actions34 (e.g., reading vs. chatting), in goal-compatible or incompatible actions35 (e.g., 

collaborating vs. competing), and/or in positive or negative actions36 (e.g., kissing vs. 

pushing someone). In terms of social appraisals, finally, observers often speculate about a 

TPE’s momentary level of formality, intimacy, rapport, and subordination/domination5,37,38 as 

well as about people’s overarching type of acquaintance39,40 (e.g., whether co-occurring 

individuals are strangers, colleagues, friends etc.).  

Although it remains uncertain why TPEs prompt such a wide range of inferences in 

uninvolved bystanders, it has previously been argued that the human inclination to analyze 

TPEs in elaborate detail may have profited from evolutionary pressures.41,42 Considering that 

humans must interact with both kin and non-kin individuals to survive in the face of 

adversity43, the careful analysis of TPEs may have helped individuals to decide whom to 

choose as their own interaction partners44 (e.g., someone with a history of mutually 

beneficial social exchanges). Additionally or alternatively, TPEs may have offered (and 

remain to offer) a unique opportunity for observational learning, allowing those who witness 

them to widen their own behavioral repertoire without taking personal risks while doing so.45-

48 Yet regardless of which factors may ultimately have facilitated the emergence of 

encounter-based impressions in humans, their unique scope and nature makes these 

impressions undoubtedly a prevalent aspect of social cognition in present-day life. But what 

do we understand at this point about how the human brain implements these impressions? 

Have recent neuroscientific insights on encounter-based impressions helped to falsify or 

refine existing psychological theories about them?49 Or have such insights inspired a novel 

framework on how the human brain encodes and analyses visual information about other 

people’s encounters?  

 

People-Watching: Towards A Neuroscientific Perspective 

According to traditional neuroscientific investigations, three brain networks play a pivotal role 

when people observe and evaluate each other:19,50 the person perception network (PPN), 

the action observation network (AON), and the mentalizing network (MTN). When watching 

isolated individuals, the PPN is believed to accomplish the visual analysis of other people’s 

faces and bodies51,52, the AON is considered to decipher and predict other people’s 

actions53,54, and the MTN is understood to infer other people’s invisible mental states 

(including their beliefs, desires, motives, or attitudes) and personality traits.55,56 Although 

numerous studies indicate that all three networks also play a pivotal role during the 



observation and interpretation of TPEs57-60, their functional significance in the context of 

encounter-based impressions is less well understood.  

This lack of understanding is largely due to the fact that existing neuroscientific 

studies on TPE processing vary substantially in their methods. In terms of stimuli, for 

instance, researchers have used various types of media to present TPEs over the years, 

ranging from still images60,61 to brief sequences of still images62,63 to dynamic video clips.57,64 

Furthermore, still images have included color photographs6,10 , grayscale photographs65,66, 

and black-and-white schematic drawings.67,68 Video clips, in addition, have comprised 

realistic depictions of social interactions69,70, digital animations of human-like avatars59,62, 

and point-light displays as well as stick-figure displays of human movements.9,71 Finally, 

whereas many stimuli portrayed target individuals from head/neck to toe10,12 , others showed 

only people’s upper bodies57,66, facial expressions72, or hand movements.11,73  

Each of these different sets of stimuli comes with its own limitation(s). Generally 

speaking, when forming impressions from static full body photographs (see Figure 1B), 

observers can learn whether two (or more) target individuals look alike, are in close physical 

proximity, mimic each other’s expressions and postures, and engage in shared eye contact, 

interpersonal touch, or direct communication via gestures or speech. But only from dynamic 

portrayals can they extract the frequency, duration, and coordination of various nonverbal 

events (e.g., reciprocated smiles) and the degree of motion synchrony and turn-taking 

between people. Given the diversity of stimuli used, it may not come as a surprise to learn 

that there has been little overlap in terms of brain activity during TPE exposure across 

studies. This lack of overlap suggests, however, that the presence (or absence) of certain 

visual markers fundamentally affects the impression formation process and its corresponding 

neural signature. In further support of this claim, it has also been shown that the exact same 

social interactions can prompt rather different patterns of brain activity depending on whether 

the agents’ eye gaze is visible or not.66. In light of these findings, both neuroscientific as well 

as psychological theories on encounter-based impressions should strive to define more 

clearly how various face, body, and motion cues that commonly characterize TPEs can 

affect the course and outcome of perceivers’ inferences.32 

Aside from using various types of stimuli, existing neuroscientific studies on TPE 

processing have also differed substantially in terms of their experimental conditions of 

interest, including their so-called “baseline” condition. Whereas some scientists have 

compared the neural effects of TPEs with those elicited by non-social control displays61,74,75, 



others have contrasted TPEs and depictions of single individuals11,12,76,77 or TPEs of jointly 

acting individuals with TPEs of independently acting individuals.58,69,78 Beyond these three 

major lines of research, various subtypes of joint actions (i.e., interactions) have been 

pitched against each other. Neural responses have been measured, for example, for 

interactions characterized by contingent or non-contingent movements between interaction 

partners71, for interactions of positive or negative valence70,79, and for interactions serving 

primarily instrumental or affiliative goals.6,7 Again, this varied approach has somewhat 

hindered accumulative insights on how the brain creates encounter-based impressions. Yet 

by trying to understand the neural effects of different kinds of TPEs, neuroscientists have 

begun to examine common properties of human encounters (e.g., their degree of 

instrumentality) that have gone largely unstudied by psychologists. As such, their work 

indicates that an inclusive theory on TPE processing must integrate both psychological and 

neuroscientific lines of research to derive a truly comprehensive taxonomy of encounter-

based impressions.  

In this context, it is also worth noting that the importance of perceivers’ processing 

goals during TPE observation has attracted more attention in recent neuroscientific studies 

than in traditional psychological studies. Specifically, neuroscientific studies have prompted 

their participants to judge TPEs along various different dimensions of relevance, such as 

their perceptual attributes (e.g., Do both individuals have the same gender?10 Which 

individual looks heavier than the other?65), their action properties (e.g., Do both individuals 

act jointly or independently?58,66), or their social qualities (e.g., Is one individual threatening 

the other?80 Is one individual helping the other?81). They have further asked participants to 

simply view TPEs without specific instructions57,60,64,78 or to complete TPE-unrelated tasks 

(e.g., using a standard one-back detection task9 or a counting paradigm82). Most importantly, 

there have even been initial attempts to directly compare the effects of different impression 

formation tasks in the same study. In consequence, it has been shown that explicit social 

judgments relative to basic perceptual tasks or TPE-unrelated tasks produce systematically 

enhanced activity in the PPN, AON, as well as the MTN.65,68,80 Additionally, judgments about 

how an encounter unfolds (e.g., about which actions it entails) seem to result in stronger 

AON activation than judgments about why it unfolds (e.g., what types of motives or intentions 

people have). Vice versa, why-related judgments appear to recruit the MTN more strongly 

than how-related judgments.79,83 In combination, these findings suggest that not only 



variations in people’s actual observations, but also in the goals that guide these observations 

shape the impression formation process. 

In summary, neuroscientific research on TPEs has progressed in many directions 

during the last 5 years. This progress has raised several important issues overlooked by 

prior psychological theorizing, but has not yet inspired a coherent neuroscientific framework 

instead. In particular, the diversity of stimuli used and impressions probed by contemporary 

neuroscientists make it hard to determine to which extent the latest neuroscientific findings 

can be compared with one another and/or generalize to people-watching in the real world. In 

consequence, further work is required to understand how people-watchers integrate a wide 

range of visual cues during naturalistic observations of human encounters to form far-

reaching impressions about them. To encourage more systematic research in the field, the 

effects of people-watching on neural activity in the PPN, AON, and MTN are discussed in 

further detail below. By looking at the neural effects of TPE processing in well-established 

brain networks, we aim to discover initial patterns of converging evidence that can form a 

promising starting point for future investigations.  

 

TPE Processing in the Person Perception Network 

Decades of neuroimaging research have revealed that simply looking at another person 

recruits a specific set of brain regions widely known as the PPN.84,85 The PPN generally 

allows humans to detect, encode, and analyze the complex visual information that 

constitutes a person’s idiosyncratic appearance and way of movement. The network’s key 

nodes (see Figure 2A) are primarily found in the brain’s ventral visual processing stream and 

respond selectively to human faces86, human bodies87, and human motion.88 Depending on 

which aspect of a person is visible at any given time (i.e., a person’s face and/or body at rest 

or in motion), activity increases in the PPN may be observed in the occipital face area (OFA), 

fusiform face area (FFA), fusiform body area (FBA), extrastriate body area (EBA), and/or the 

posterior superior temporal sulcus (pSTS; a region sensitive to dynamic facial and bodily 

input).  

Despite abundant neuroimaging work on how the PPN extracts and recognizes a 

person’s idiosyncratic appearance89,90, very little work has explored the network’s 

contribution to processing encounters between multiple people. Indeed, in comparison to the 

other two networks discussed in this review, the PPN may have received the least scrutiny in 

the context of TPEs. This is hardly surprising, considering that researchers interested in this 



network have just begun to explore how it integrates visual input extracted from different 

body parts (e.g., how it combines facial and bodily information91,92). Under these 

circumstances, aiming to understand how visual information is integrated across multiple 

individuals (if at all) makes for a daunting prospect. At the same time, however, behavioral 

findings strongly suggest that detecting the presence of a person is facilitated when s/he is 

engaged in a meaningful interaction with another.29,34 These data indicate that even very 

basic aspects of person perception may be altered when multiple individuals are observed 

simultaneously.  

 

 

Figure 2. A schematic depiction of brain regions forming the core person perception network 
(A), the action observation network (B), and the mentalizing network (C) as discussed in this 
article. 

 

This possibility raises a number of important questions. For instance, do the same 

brain regions that implement the visual analysis of isolated individuals also contribute to the 

perception of encounters between individuals? If so, to which degree (if at all) is their activity 



affected by pivotal perceptual, action, and/or social attributes of the encounter itself (e.g., its 

degree of movement coordination, goal compatibility, and/or level of rapport?). Finally, do 

regions of the PPN process information from distinct individuals separately and require 

‘higher-order’ networks to combine this information or does the PPN itself show signs of 

integration of visual information across individuals? Although most of these questions remain 

unanswered to date, their relevance becomes apparent in light of findings showing that 

observing TPEs reliably activates the PPN.10,58-60,64,67,77,80,93 

Yet very few of the studies which found PPN activity in response to TPEs in the past 

were explicitly designed to measure it. As a result, several of them compared the processing 

of scenes with multiple individuals to the processing of scenes without people at all, making 

it difficult to determine whether the obtained results reflect the observation of human 

encounters or of people per se93. In addition, of those studies that explicitly contrasted 

portrayals of TPEs with portrayals of isolated individuals, none actually identified regions of 

the PPN with an independent localizer task.64,67 As such, it remains somewhat speculative 

whether the activations reported (e.g., in the fusiform gyrus or the superior temporal sulcus) 

are actually part of the traditional PPN or not. Despite these challenges, converging 

evidence begins to indicate that the observation of TPEs compared to the observation of 

isolated individuals enhances activity in two well-defined regions of the PPN, namely the 

EBA59,73,78, and the pSTS.59,64,67 Further evidence suggests that observing multiple 

individuals who engage in joint actions (compared to individuals who engage in independent 

actions) also elicits an enhanced response in these two regions.57,58 In comparison, these 

types of contrasts have rarely resulted in modulations of activity in other regions of the PPN, 

such as the OFA, FFA, or FBA (but see ref 58 for fusiform activity towards joint actions).  

For many neuroscientists, the prominent role of the pSTS during the observation of 

TPEs does not come as a surprise. The region is often described as part of the PPN, as well 

as the AON and MTN, and has been declared a “hub” of the social brain that implements not 

only the visual analysis of conspecifics, but also contributes to interpreting their actions and 

internal mental states.50,90,94 Further support for the region’s involvement in TPE processing 

comes from one very recent study that looked at brain activity in response to a 30 minute 

movie excerpt. This study adopted a data-driven “reverse correlation” analysis approach and 

found that, along with other regions, cortex in and around both the left and the right pSTS 

showed a preference for portrayals of multiple individuals over single-person scenes.95 

Importantly, these findings closely resemble earlier results obtained with static line 



drawings67 and artificial avatars.59 Together, they support the notion that the pSTS directly 

contributes to the analysis of scenarios that comprise multiple individuals. 

What is less certain is whether activity in the pSTS is mainly sensitive to the number 

of people visible or to the actual interactions and relations between them. At least one study 

that localized the pSTS, for instance, did not manage to observe differential activity in this 

region for still pictures of person dyads that showed people either facing towards or away 

from each10 (but see ref 60 for counter-evidence). Yet there is initial evidence that the pSTS 

distinguishes between dynamic portrayals of person dyads that comprise two people who 

engage in joint versus independent actions.57,58 Further work has revealed that interactions 

characterized by contingent rather than non-contingent actions elicit stronger pSTS activity71 

and that pSTS responses may be increased in response to negative rather than neutral 

interactions.63,67 According to additional data, however, comparing negative and positive 

encounters does not necessarily result in differential pSTS activity61,79, suggesting that the 

region may respond to valenced actions per se rather than negativity in particular. To better 

understand the functional significance of the pSTS in future, however, the type of variations 

in TPEs that can modulate its activity require further investigation. Such work should also 

begin to contrast the effects of dynamic and static TPE portrayals. Given that the pSTS is 

generally much more engaged by dynamic than static stimuli90,96, its full sensitivity towards 

different types of TPEs may only become apparent when videos rather than still images are 

used for investigation. 

Equally deserving of further examination are the conditions under which the EBA 

responds to human encounters. At least three studies have suggested increases in this 

region whenever two people engage in actions that are incompatible with one another.9,10,80 

For example, bilateral increases in the EBA have been reported in response to scenarios 

that involve one individual intending to take hold of another who, in turn, is trying to take 

flight.80 A similar data pattern has been reported in response to interactions that involve 

mismatching actions between people10 (e.g., one person trying to high-five another who 

intends to shake hands). These findings tentatively suggest that the EBA may generate 

perceptual predictions about compatible body postures and movements between people that 

result in enhanced processing when these predictions are violated. Interestingly, such an 

interpretation challenges the notion that the EBA simply encodes the configuration of human 

bodies in order to enable other cortical systems to interpret this information in its social 



context97 and argues instead that the region closely interacts with other systems to structure 

incoming percepts based on prior experience and stored social knowledge.98,99  

 In conclusion, although initial findings suggest that at least some nodes of the PPN 

are vitally involved in processing TPEs, work investigating this phenomenon is still in its 

infancy. To draw stronger conclusions about whether and how specific nodes in the PPN are 

involved in the analysis of other people’s encounters, future work should aim to identify these 

regions in each participant’s brain using standardized localizer tasks before testing their 

response to various kinds of TPEs. These TPEs should be carefully controlled for low-level 

visual differences across experimental conditions (e.g., the visibility of facial expressions, 

full-body shapes, and the level of implied or actually portrayed motion) and participants 

should be prompted to process each encounter with a standardized processing goal in mind. 

Finally, researchers should begin to investigate whether the PPN response to various kinds 

of human encounters can be predicted by an unweighted or weighted sum of the response to 

the constituent individuals and/or whether it shows non-additive properties.100,101 

 

TPE Processing in the Action Observation Network (AON) 

When observing a person in action (i.e., during the exhibition of intentional motor behavior) 

rather than at rest, not only the PPN gets recruited, but also the AON.102-105 The AON is 

widely considered a brain network dedicated towards action understanding and its key nodes 

include the inferior parietal lobule (IPL), the inferior frontal gyrus (IFG), and the ventral 

premotor cortex adjacent to the IFG106-108 (Figure 2B). Though the network’s role during TPE 

processing also requires further examination, there is initial evidence that dynamic portrayals 

of TPEs compared to equivalent portrayals of isolated individuals enhance activity in the right 

IFG and the right premotor cortex.59,64,78 As such, there is reason to believe that the AON 

distinguishes systematically between human actions that involve one or multiple actors. 

 There is further evidence that watching TPEs of multiple individuals who engage in 

joint actions recruits the IFG more strongly than observing TPEs of independently acting 

individuals57,58,66 (see Figure 3). These data support the assumption that the IFG is 

particularly involved in understanding the coordination of actions between individuals. 

Additional findings substantiating this claim have revealed that the IFG carefully tracks 

changes in people’s motor behavior in the context of TPEs62 and responds particularly 

strongly whenever two people display directly contingent rather than non-contingent 

movements.71 Initial data even suggest that the IFG analyzes joint actions in terms of their 



overarching goals. Activity increases in the region have been reported, for instance, 

whenever joint actions serve the completion of an explicit instrumental goal (e.g., carrying a 

heavy box together) rather than mere affiliation (e.g., hugging each other).6 

 In contrast to the IFG, the role of the IPL during TPE processing is less well 

understood. Though some studies have reported increased IPL activity in response to TPEs 

of negative compared to neutral67 or positive valence79, others have found no effect of 

valence70 or reported the opposite result61 (i.e., enhanced IPL activity towards positive 

relative to negative interactions). Interestingly, these conflicting findings may be related to 

another intriguing observation. At least two studies suggest that IPL activity systematically 

increases whenever two people enter each other’s personal space.59,82 In other words, the 

IPL may analyze whether two people get physically so close that they could directly touch 

(i.e., caress or hit) each other. Given that prior work on valenced TPEs has rarely accounted 

for potential variations in interpersonal distance across experimental conditions, future 

investigations are needed to disentangle the relative contributions of variations in valence 

and interpersonal space on IPL responses. 

Future work should also examine the dominant view that the AON enables action 

understanding through simulation.54 According to this theory, observers make sense of 

others’ actions by mapping these actions onto their own motor system. This simulation of 

other people’s actions is often declared a hallmark of human social cognition.109 Yet when 

observing scenarios that involve two (or more) individuals it is uncertain whose actions (if 

any) observers would map onto their own motor systems. Initial work on the topic suggests 

that simulation does not disappear in the face of TPEs (as could be intuitively assumed). 

Instead, motor evoked potentials (MEPs) indicative of motor stimulation have been found to 

increase whenever people observe joint rather than individual actions in others11,12 (e.g., a 

person throwing a ball to a partner vs. throwing a ball against a wall). However, the work 

tracking MEPs in response to TPEs has generally portrayed asymmetric encounters 

between two people in which one (active) individual acts upon another (passive) individual. 

Given that observers may intuitively take the perspective of the active agent when witnessing 

such types of TPEs, further research is needed to clarify motor simulation(s) in response to 

encounters that involve two active partners (e.g., two people greeting each other, carrying a 

box etc.110). 

In summary, though the role of the AON during TPE processing requires further 

investigation, initial findings indicate that the network is highly responsive towards 



coordinated actions between multiple individuals, in particular if these actions unfold 

between people who are in close physical proximity to each other. What seems unclear, at 

this point, is whether and how TPE processing in the pSTS and the IFG differ from each 

other. Though these two regions are traditionally discussed in the context of different 

networks of the social brain, initial findings suggest they may show rather similar response 

patterns in the context of TPEs (see also Figure 3). Thus, future work is needed to describe 

commonalities as well as differences between the two in order to enhance our understanding 

of their unique functional contributions during TPE processing. 

 

 

Figure 3. Point-light displays showing person dyads that engage in joint actions (Panel A) 
versus independent actions (B). To help to distinguish the human form in this illustration, the 
dots have been linked by full lines. Panel C shows significant activations in response to 
watching dyads that engage in joint rather than independent actions in the bilateral inferior 
frontal gyrus (IFG), the right premotor cortex (PM), the right anterior superior temporal sulcus 
(aSTS), the left posterior superior temporal sulcus (pSTS) and the left temporoparietal 
junction (TPJ). (Source: ref 58. Image distributed under the Creative Commons Attribution 
License). 
 



TPE processing in the Mentalizing Network (MTN) 

When trying to understand the actions of others, humans frequently rely on attributing 

invisible mental states (such as desires, motives, intentions, or beliefs) to them. These 

attributions are widely referred to as ‘mentalizing’ and hundreds of neuroimaging studies 

have explored their underlying neural substrates56. Collectively, this work supports the notion 

of a core network for mentalizing that is activated across a wide range of stimuli and tasks.111 

Its key nodes (see Figure 2C) include the ventral and dorsal medial prefrontal cortex 

(VMPFC and dMPFC), the temporoparietal junction (TPJ), the precuneus (PrC), and the 

anterior temporal lobe (aTL). For some researchers, also the amygdala – a brain region that 

is structurally and functionally connected with many nodes of the MTN – forms part of the 

network (but see ref 112 for counter-evidence).  

Importantly, in the context of TPE processing, the MTN (including the amygdala) is 

certainly the network that has attracted most scientific attention. Numerous studies indicate 

enhanced activity across all nodes of the MTN towards TPEs compared to non-social 

controls74-76,95 as well as compared to portrayals of isolated individuals.59,64,67,77,78,95 Based 

on these findings, there remains little doubt that the MTN is particularly tuned towards 

analyzing the mental states that underlie encounters between multiple individuals. There is 

further evidence that activity in the network is strongly modulated by variations in TPEs that 

concern people’s actions and/or social relationships. The PrC, in particular, but also the 

DMPFC and the aTL, have repeatedly been found to distinguish between person dyads that 

engage in joint rather than in independent actions.57,58,66,69,78 Further findings that emerge 

across different studies are less common. For example, comparing TPEs of positive and 

negative valence has mainly revealed contradictory results. Even though at least three 

studies have found enhanced DMPFC activity in response to negative compared to neutral67 

or positive61,70 encounters, others have reported null-findings79 or the opposite113 result. Very 

recent work on the detection of intentional harm in human encounters indicates, however, 

that simply distinguishing between positive and negative encounters may not suffice to 

decipher meaningful neural responses. Specifically, converging evidence from fMRI 

studies63,80 and intracranial recordings114 suggests that the amygdala rapidly responds to the 

occurrence of intentional harm in interpersonal encounters. Importantly, this change in 

activity is found even when different types of harmful interactions get contrasted, suggesting 

that it does not reflect a simple valence effect, but the detection of harm that was 

intentionally caused.114  



The finding reminds us that the MTN is generally believed to analyze other people’s 

actions in terms of their intentions, desires, and beliefs. Yet very few studies have explicitly 

manipulated these mental states in the context of TPEs. Furthermore, of those that tried 

several may be affected by confounds as their experimental conditions have rarely been 

matched in terms of lower-level perceptual attributes (e.g., the frequency of direct touch 

between individuals) and/or action properties (e.g., behavior valence). Nevertheless, we 

want to briefly mention some of the work in order to highlight pivotal dimensions along which 

TPEs can differ once internal mental states are taken into consideration. For instance, early 

work on human encounters revealed that interactions between people who differ in terms of 

their authority (e.g., between a boss and an employee) compared to encounters in which 

such a difference is absent (e.g., between lovers or siblings) elicited enhanced activity in the 

aTL.64 Further work indicates that encounters that primarily serve people’s affiliative needs, 

rather than a well-defined instrumental goal, elicit enhanced activity in the VMPFC and 

DMPFC.6 Additionally, there is initial evidence that witnessing changes in a person’s body 

posture that are accompanied by mental changes (e.g., a dad looking up from his newspaper 

to learn that his son got a bad grade) enhances activity in the aTL, DMPFC and bilateral 

TPJ.62  

The latter result deserves particular attention. It has previously been proposed that 

only the right TPJ is selectively recruited for the attribution of mental states.115 In context of 

TPEs, however, TPJ recruitment is often observed bilaterally and/or specifically in the left 

hemisphere.57,58,62,76,95 In consequence, it has been proposed that the left TPJ is particularly 

involved in understanding multiple intentions simultaneously.76 In support of this idea, a 

recent study81 which compared neural responses towards human-human interactions (HHI) 

with interactions that involved only a single intentional agent (i.e., human-robot interactions, 

HRI) revealed significantly enhanced activity towards HHI in exactly one region of the MTN – 

the left TPJ (see Figure 4). This finding strongly confirms the region’s pivotal role in 

analyzing interacting minds. Intriguingly, the reverse contrast revealed enhanced activity in 

the VMPFC and the precuneus, illustrating that various nodes of the MTN can respond very 

differently to the same set of TPEs. 

Taken together, as is the case for the PPN and AON, the role of the MTN during TPE 

processing requires further scientific scrutiny. Initial findings indicate, however, that several 

nodes of the MTN are particularly responsive towards the mental states of co-occurring 

individuals. To examine this claim more systematically, future work should manipulate 



observers’ impressions about the mental states of interaction partners more directly in order 

to understand their neural consequences.62,69 

 

 

Figure 4. Static color images showing human-human interactions (Panel A) and comparable 
human-robot interactions (Panel B). Panel C shows brain activity throughout the mentalizing 
network in response to these two different types of interactions. The network, as localized in 
this study, includes in the VMPFC (ventromedial prefrontal cortex), DMPFC (dorsomedial 
prefrontal cortex), aTL (anterior temporal lobe), TPJ (temporoparietal junction), and PrC 
(precuneus). Intriguingly, only the left TPJ shows a selective activity increase for human-
human interactions (Source: ref 81. Copyright 2015 Elsevier, reprinted with permission).  
 



Findings in Clinical Populations 

Accumulating evidence indicates that people with disorders that affect social cognition, such 

as autism116 and amyotrophic lateral sclerosis117 are less accurate at forming encounter-

based impressions than typical participants. These findings suggest that differences in 

people’s encounter-based impressions may capture socio-cognitive deficits that accompany 

various psychological and neurological disorders. Such findings are noteworthy, considering 

there has been little progress to capture these deficits with traditional person perception 

tasks. Despite twenty years of research, for instance, it remains uncertain which aspects of 

face perception (if any) are altered in autism118, including whether the recognition of basic 

facial expressions of emotions is disturbed.119. As such, probing typical and atypical social-

cognitive functioning with TPEs promises to provide a particularly fertile avenue for future 

research.120 

 Indeed, behavioral paradigms which asked participants to view and assess both static 

and dynamic encounters between others have already been used to better define the nature 

of socio-cognitive differences in neurodevelopmental disorders such as autism spectrum 

disorder116,121,122, Fragile X syndrome123, Williams Syndrome124,125, and schizophrenia.126 

Such paradigms have also proven their utility in helping to demonstrate specific social 

perception and cognition deficits in a few neurodegenerative disorders, including 

Amyotrophic Lateral Sclerosis117 as well as Alzheimer’s Disease and Frontotemporal 

Dementia.127 In combination, these studies suggest that our understanding of a wide range 

of clinical disorders may ultimately improve by being able to test disorder-specific variations 

in people-watching.  

 Despite this potential clinical benefit, few neuroimaging studies have studied TPE 

processing in clinical populations. Those that have, however, have generally focused on 

differences between the clinical group and a control group in the MTN. Changes in MTN 

activity during TPE exposure, for instance, have been demonstrated in schizophrenia57,78, 

forensic psychopathy113, and post-traumatic stress disorder.70 Most recently, however, it has 

been shown that idiosyncratic patterns of brain activity during TPE processing throughout the 

brain can signal substantial deficits in social-cognitive functioning. Specifically, participants 

with autism spectrum disorder as well as age- and IQ-matched controls were asked to freely 

watch a TV episode that depicted “constant social interactions that often required perceiving 

and interpreting subtle, rapidly changing, nuances of facial expressions, body language, and 

dialogue” (p. 5839) while undergoing fMRI.128 This task revealed less consistent correlations 



in neural activity patterns during TV consumption across individuals of the autism group, an 

effect that depended mainly on the activity seen in five individuals in this group. Additional 

analyses demonstrated that these five individuals also struggled more so than the remaining 

participants with understanding the interpersonal motives and intentions of the depicted TV 

characters.  

To the best of our knowledge, the above finding is the first to directly link neural 

abnormalities during TPE processing to specific socio-cognitive deficits. Based on this 

seminal result, it seems rather uncontroversial to assume that gaining a better understanding 

of the brain regions involved in perceiving and understanding TPEs will aid researchers in 

their attempt to understand common socio-cognitive deficits that characterize numerous 

clinical disorders. At the same time, pinpointing differences in brain activity and/or structure 

that accompany deficits (or strengths!) in social perception and cognition promise to also 

directly inform our learning about the typical structure and function of the social brain. 

 

Concluding remarks and future directions 

To conclude, people-watching entails the continuous analysis of multiple human faces, 

bodies, and movements in order to understand the course and purpose of social interactions 

and relations. By describing what is currently known about the neural effects of people-

watching in three central networks of the social brain, we aimed to emphasize that making 

sense of multiple individuals frequently differs and goes beyond forming impressions about 

isolated individuals. While studying lots of different portrayals of human encounters in the 

past has elucidated the wide range of visual signals observers can use to form impressions 

about others, we advocate for a more systematic (i.e., theory-driven and data-driven) 

approach in future research.  

Moving forward, we believe, the field must aspire to use naturalistic portrayals of 

human encounters more frequently in order to understand the relevance and interplay of 

various visual markers that determine the type of impressions observers form when 

witnessing others95. At the same time, however, the field should also carefully manipulate 

these markers in order to learn how exactly they affect observers’ psychological and neural 

responses towards TPEs66 and control the tasks that people perform during TPE exposure65 

in order to delineate which patterns of neural activity generalize across, or depend on, 

certain kinds of perceptual, action, or social judgments. 



We are further convinced that future research could profit strongly from the use of 

well-established localizer tasks to better understand how various types of TPEs recruit 

previously defined brain networks (such as the PPN, AON, and MTN). By localizing brain 

regions of prior theoretical relevance, neuroscientists could not only determine to which 

degree the observation and evaluation of TPEs relies on well-known neural structures, but 

also whether their processing engages additional neutral substrates.81 For instance, 

numerous papers as discussed in this review seem to have come across unexpected, yet 

prevalent activation of the middle temporal gyrus during TPE exposure.10,58,67,68,78,79 This 

finding acts as an important reminder that observing and understanding human encounters 

may recruit neural substrates which the current review has failed to address. 

In acknowledgement of this concern, the development of new localizer tasks which 

capture the most common brain activity during TPE processing in a standardized manner 

may also be helpful. Bespoke localizer tasks can certainly facilitate the comparison of 

neuroscientific findings across individuals and studies129, yet their purpose must be clearly 

defined. For those interested in learning more about the perceptual encoding of TPEs, for 

instance, a simple n-back detection task resembling a standard face-localizer130, but 

presenting images of isolated person targets and images of (interacting and non-interacting) 

person dyads and their scrambled controls, may be a good starting point. By contrast, for 

those interested in examining encounter-based inferences (e.g., social impressions) a 

categorization task that prompts participants to explicitly classify the same set of person 

dyads according to their social qualities (e.g., low vs. high dyadic intimacy) as well as action 

properties (e.g., joint vs. independent actions) may be more fitting.83 As such, the 

development of useful TPE localizers poses an interesting challenge for the field. 

Equally relevant is the challenge of applying ongoing methodological advances in the 

neurosciences to the study of encounter-based impressions.131 In terms of fMRI-based 

research, for example, it seems crucial to expand the repertoire of analyses beyond standard 

approaches (such as univariate whole-brain contrasts). Additional methods, such as effective 

connectivity analysis120 or multivariate pattern analysis92 are likely to reveal not only which 

brain regions are co-active during a given task, but also which of these regions form 

functional networks by directly aligning their activity and/or representations over time. 

Furthermore, inter-subject correlation methods promise to be particularly important in 

discovering developmental or clinical changes in encounter-based impressions. By being 

able to assess how idiosyncratic an individual’s brain response during TPE exposure actually 



is128, such methods promise to lend themselves well to answering pressing questions like 

“how adult-like is a person’s brain response at a specific age”, “how typical is a person’s 

brain response compared to a relevant control group” and “how predictive of specific social 

skills is a person’s brain response”.  

Finally, it is important to keep in mind that much prior work on TPEs, as well as this 

review, has focused almost exclusively on the processing of human encounters between two 

individuals. While we believe that understanding the psychological and neural processes 

involved in the processing of person dyads is of particular importance in the context of 

human social cognition132, forming impressions of even larger human gatherings also 

deserves further investigation.133-135 By establishing whether systematic differences in brain 

activity exist based on observing social units of different sizes, important boundary 

conditions for the different neural networks (or their interplay) may be discovered. 

In conclusion, this review suggests that by learning more about how the human brain 

transforms mere perceptual signals of multiple individuals into far-reaching impressions 

about them, we may not only develop a neuroscientific framework of people-watching that 

helps to advance psychological insights on the topic, but also improve our ability to assess 

and predict social-cognitive deficits in numerous psychological and neurological disorders. It 

is this promise, after all, that turns a seemingly mundane everyday activity like people-

watching into a fascinating topic of multidisciplinary inquiry. 
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