Disturbance alters ecosystem engineering by a canopy-forming alga

Pocklington, Jacqueline ; Jenkins, Stuart; Bellgrove, Alecia ; Keough, Michael ; O'Hara, Tom; Masterson Algar, Patricia; Hawkins, Stephen J.

Journal of the Marine Biological Association of the United Kingdom

DOI: 10.1017/S0025315416002009

Published: 01/06/2018

Peer reviewed version

Dyfnyiad o'r fersiwn a gyhoeddwyd / Citation for published version (APA):

Hawliau Cyffredinol / General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Disturbance alters ecosystem engineering by a canopy-forming alga.

Jacqueline B. Pocklington1,2,3,4, Stuart R. Jenkins4,5, Alecia Bellgrove6, Michael J. Keough3, Tim D. O’Hara1, Patricia E. Masterson-Algar 4,7, Stephen J. Hawkins4,8

1Department of Marine Invertebrates, Museum Victoria, Carlton, Victoria 3053, Australia

2Present address: School of Marine Science and Technology, Newcastle University, Dove Marine Laboratory, Cullercoats, Tyne & Wear NE30 4PZ, United Kingdom

3School of BioSciences, University of Melbourne, Victoria Australia 3010

4The Marine Biological Association of the United Kingdom, Plymouth, Devon PL12PB, United Kingdom

5Present address: School of Ocean Sciences, University of Wales Bangor, Menai Bridge, Anglesey LL59 5AB, United Kingdom

6Deakin University, Geelong, Australia. School of Life and Environmental Sciences, Centre for Integrative Ecology, Warrnambool Campus, PO Box 423, Warrnambool, Victoria 3280, Australia

7Present address: School of Healthcare Sciences, University of Wales Bangor, Menai Bridge, Anglesey LL59 5AB, United Kingdom

8Present address: Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, United Kingdom

*Corresponding Author email: jpocklington@museum.vic.gov.au
Canopy-forming fucoid algae have an important role as ecosystem engineers on rocky intertidal shores, where they increase the abundance of species otherwise limited by exposure during low tide. The facilitative relationship between Ascophyllum nodosum and associated organisms was explored using a frond breakage experiment (100%, 50%, 25%, 0% frond density) in southern England, to assess the consequences of disturbance. Understorey substratum temperature was on average 3°C higher in 0% and 25% treatments than in intact plots and 50% treatments. An increase of more than 200% light (as PAR during low tide) was recorded in 0% treatments in comparison to other treatments and intact plots (which had similar light levels). Mobile invertebrate species richness declined by on average 1 species per m² in the treatments with only 25% and 0% intact fronds, and the abundance of Littorina obtusata declined by 2.4-4.2 individuals per m² in the treatments with 25% and 0% intact fronds. Sessile species, including Osmundea pinnatifida and encrusting coralline algae, declined by on average half in the 0% frond treatments. These results suggest that the ability of Ascophyllum to mediate environmental conditions to the understorey is the mechanism responsible for species distributed in the understorey (autogenic ecosystem engineering). The results of this study imply that a pulse disturbance resulting in a 50% breakage of Ascophyllum fronds significantly increases temperature and decreases the abundance of mobile invertebrates usually associated with Ascophyllum. Sessile species associated with Ascophyllum can, however, withstand a breakage to 75% of Ascophyllum fronds.

KEYWORDS: algae, *Ascophyllum nodosum*, community, marine, intertidal.
INTRODUCTION

Canopy-forming algae play important roles in habitat provision and primary production in temperate coastal ecosystems worldwide (Littler & Murray, 1974; Thompson et al., 2002). They are, however, under threat from a variety of impacts at local and regional scales including eutrophication (Bonsdorff et al., 1997; Rönnberg & Bonsdorff, 2004), siltation resulting from urbanisation (Schiel et al. 2006; Airoldi & Hawkins, 2007), harvesting (Ang et al., 1996; Zemke-White & Masao, 1999; Ugarte et al., 2006), trampling (Povey & Keough, 1991; Keough & Quinn, 1998; Schiel & Taylor, 1999; Araújo et al., 2009) and point source pollution (Bellgrove et al., 1997; Keser et al., 2005). Canopy species are being influenced by the overarching effects of climate change interacting with local impacts, including rising and stormier seas (Underwood, 1998, 1999; Hawkins et al., 2009) and more frequent extreme high temperatures (Thompson et al., 2002; Keser et al., 2005, Wernberg et al., 2016), perhaps exacerbated by greater grazing pressure (Davies et al., 2007; Menge & Olson, 1990). Depending on the frequency of recurrence, these perturbations could act as either pulse disturbances (e.g. unusual spike in grazing pressure Cervin & Åberg, 1997), or long-term press disturbance (e.g. rising seas). Here we focus on the community consequences of a pulse disturbance that reduced the density of fronds (simulating breakage by herbivory or storm activity) of *Ascophyllum nodosum* (hereafter referred to as *Ascophyllum*), the major long-lived, canopy-forming macroalga dominating intertidal shores of the Northern Atlantic (Stephenson & Stephenson, 1972; Jenkins et al., 2008). Observational (Davies et al., 2007; Gollety et al., 2011) and modelling studies (Hawkins et al., 2009) suggests *Ascophyllum* is likely to be increasingly disturbed over the coming decades in response to climate change and local anthropogenic impacts.
Individual *Ascophyllum* plants proliferate vegetatively from long-lived holdfasts, and stands are thought to last for centuries, with individual fronds lasting tens of years, creating a perennial habitat for epiphytic and understorey organisms (Araújo *et al*., 2009). *Ascophyllum* communities recover slowly after experimental manipulation (Jenkins *et al*., 2004; Ingolfson & Hawkins, 2005) or harvesting (Ang *et al*., 1996; Zemke-White & Masao, 1999; Ugarte *et al*., 2006), taking more than a decade to return to their original state (Ingólfsson & Hawkins, 2008).

In contrast to previous studies that examined the impacts of complete canopy removal (Bertness & Leonard, 1997; Jenkins *et al*., 1999a; b; c; Petraitis & Dudgeon, 1999; Jenkins *et al*., 2004), we were interested in the impacts of partial frond loss, as might result from a pulse disturbance such as overgrazing, or an extreme weather event (e.g. heat wave, storm). The impacts of pulse disturbances resulting in partial canopy loss have been investigated for the fucoids *Hormosira banksii* (Schiel and Lilley 2007) and *Fucus gardneri* (Speidel *et al*., 2001), though have not previously been undertaken on *Ascophyllum* canopies or fronds.

Much attention has been given to press disturbances such as increased temperature due to climate change (Keser *et al*., 2005; Mieszkowska *et al*., 2007), increases in grazing pressure (Pavia & Toth, 2000; Davies *et al*., 2007), and trampling (Araújo *et al*., 2009), but a single pulse disturbance in full canopies can have long-term consequences at a local scale (Ingólfsson & Hawkins, 2008; Wernberg *et al*., 2016).

Whilst full canopies of *Ascophyllum* can play an autogenic ecosystem engineering (*sensu* Jones *et al*., 1994) role, we were interested in assessing the conditions under which this role breaks down, or the threshold frond density beyond which *Ascophyllum* ceases to be an effective ecosystem engineer. Specifically we tested the following hypotheses: (1) Temperature and light on the substratum will increase in proportion to
frond reduction; (2) Changes in community composition will be proportional to frond reduction. Alternatively, (3) there is a threshold density of intact fronds below which *Ascophyllum* ceases to modulate temperature and light, with community composition showing a similar threshold.

MATERIALS AND METHODS

Spatial variation in assemblages associated with *Ascophyllum nodosum*

Three sites in southern England were initially surveyed in summer 2006: Batten Bay (Turnchapel) within Plymouth Sound (50°21’27”N 4°07’38”W), and two sites near the township of Looe (50°20’41”N, 4°27’08”W), hereafter referred to as ‘Looe’ and ‘Hannafore Point’. All sites consisted of gently sloping wave-sheltered sedimentary rock platforms dominated at the mid-shore level by extensive canopies of *Ascophyllum*, inter-dispersed with patches of *Fucus serratus* and *Fucus vesiculosus*.

To assess the spatial variation in assemblages associated with a full canopy of *Ascophyllum*, all three sites were surveyed. Thirty replicate, haphazardly-placed quadrats (0.3 x 0.3 m, appropriate to the scale of the macrofauna) with > 95 % *Ascophyllum* canopy cover (naturally lower cover canopies did not occur), were quantitatively sampled at each site for percentage cover of algae and sessile animals (using 49 point-intercepts, see Jenkins *et al.*, 2005) and the abundance of individual mobile macroinvertebrates (defined as those > 5 mm length), which were counted directly. Where algae and sessile animals occurred in quadrats but not under point-intercepts, they were recorded as present to account for rare species. In contrast to previous work that only examined a limited suite of species (Boaden & Dring, 1980; Bertness & Leonard, 1997; Jenkins *et al.*, 1999a; 1999c; Leonard, 1999; Petraitis & Dudgeon, 1999, Speidel *et al.*, 2001) or took a functional group response (e.g. 'understorey species' Araújo *et al.*, 2009), a complete inventory of the macrofauna and
understorey algae of *Ascophyllum* stands was made and whole community responses measured (see also: Gollety *et al.*, 2011). The percentage covers of algal taxa were recorded as two separate layers: the canopy layer, and the understorey layer, which was revealed by gently moving the canopy aside. Effects of a pulse disturbance reducing densities of *Ascophyllum* fronds on the physical environment and associated assemblages

A manipulative field experiment was conducted to simultaneously test the hypotheses that: (1) temperature and light on the substratum will increase in proportion to frond reduction; (2) changes in community composition will be proportional to frond reduction; or alternatively, (3) there is a threshold density of intact fronds below which *Ascophyllum* ceases to modulate temperature and light, with community composition showing a similar threshold. Hannafore Point was selected as the best site for experimental manipulation as it had an extensive bed of *Ascophyllum*, allowing good separation between sample plots, and it was easily accessible during low tide. Twenty, haphazardly-placed, fixed 4-m² plots were established within a reef area of approximately 2000 m², and labelled with plastic tags fixed with stainless steel screws into bedrock. All plots initially had > 95% *Ascophyllum* cover and five replicates (all replicates are at the plot level) were assigned randomly to three frond reduction treatments and one unmanipulated control. The *Ascophyllum* holdfast occurs as a perennial basal disc from which multiple fronds arise directly in a clump, and can regrow after disturbance (Ugarte *et al.*, 2006). The fronds are often very long (≥ 80 cm at our sites) and can create different amounts of canopy cover during low tide depending on where they have fallen on the receding tide. Therefore to allow a consistent disturbance to be applied between plots (mimicking frond breakage e.g. due to herbivory or storm activity) the frond density near the holdfast (rather than the
percentage canopy cover) was manipulated. In July 2006, fronds in each holdfast clump were trimmed and removed to create the following treatments: 0% intact fronds (all fronds were removed), 25% intact fronds (75% of fronds were removed), 50% intact fronds (50% of fronds were removed) and 100% intact fronds (a control with unmanipulated frond densities). It is important to emphasise that the treatments represent the densities of intact fronds relative to the original frond densities and do not necessarily correspond to a linear relationship with canopy percentage cover. For each removal treatment, the fronds were cut at the base with garden secateurs to no more than 10 cm above the rock surface, to reduce frond density whilst still allowing for vegetative regeneration. Although these short fronds remained in all treatments throughout the experiment, they did not grow above 10 cm in length and no macroinvertebrates were recorded (unpublished data) using it as habitat. Any fronds able to sweep into the treatment plots from outside plants were trimmed back to prevent edge effects.

EFFECTS ON PHYSICAL ENVIRONMENT: TEMPERATURE AND LIGHT

Temperature was recorded on the substratum (under any canopy algae) of each experimental plot using a standard waterproof aquarium thermometer to the nearest 0.1°C on all sampling visits. Underwater TidBit Stowaway temperature data loggers (Onset, Bourne, Massachusetts, USA) were attached by bolts to the rock in 6 plots (6 loggers unevenly spread over 4 treatments, n = 1-2 due to limited availability) to establish minimum and maximum temperatures within canopy treatments; these were set to record every 10 minutes over a 3-week period (2/8/06-23/8/06, summer). Light was recorded in all plots at sampling visits 7, 21 and 36 days as Photosynthetically Active Radiation (PAR) under the canopy (or simply on the substratum in 0% intact-frond plots) using a LI-COR-250 (LI-COR, Lincoln, Nebraska, USA) meter with a
waterproof sensor. All sampling was undertaken during daylight hours at low tide
(summer sampling predominantly around midday). Further physical measurements were
not taken on other sampling dates due to logistical constraints.

Effects on associated assemblages: mobile and sessile macroinvertebrates and macroalgae

The macroinvertebrate and macroalgal assemblages in each treatment were
sampled using two 0.3 x 0.3 m sub-quadrats placed in the centre of the plot (fixed
position, marked with a screw; randomised positioning was not possible without
introducing inconsistencies in substratum complexity). Abundances of macroalgae,
(sessile and mobile macroinvertebrates in experimental plots were sampled 4 days before
the manipulation (half of the plots were sampled on one day, half the following day due
to logistical constraints, 19-20/6/2006) and 7, 21, 36, 69 and 272 days thereafter. Data
from sub-quadrats were averaged to give one value per plot (n = 5 per treatment) to
avoid pseudoreplication.

Data analysis

Multivariate analyses on species abundance and cover data (analysed separately)
were used to compare 1) assemblages across sites (> 95 % *Ascophyllum* cover quadrats)
at Hannafore Point (experiment site), Looe and Batten Bay; and 2) assemblages among
experimental treatments at Hannafore Point. Differences between groups were
visualised with nMDS based on Bray-Curtis similarities and ANOSIM identified the
relative range of dissimilarities between groups (Bonferroni correction was applied,
Quinn & Keough, 2002). SIMPER was applied to identify which taxa contributed most
to the patterns identified in the ANOSIM and nMDS (contributions > 10 % are
reported). All multivariate statistics were performed using Primer v7.
Univariate analyses comparing abundances of individual taxa in quadrats with naturally < 95% canopy-cover of *Ascophyllum* between sites involved a single-factor ANOVA (Quinn & Keough, 2002) with Site as a random factor (Hannafore Point, Looe, and Batten Bay). To determine which taxa and abiotic factors were affected by an experimental reduction of *Ascophyllum* fronds, differences among experimental treatments were analysed using a single-factor repeated-measures ANOVA (hereafter rmANOVA) (Quinn & Keough, 2002) with Treatment as a fixed factor. Response variables included species/taxon richness, individual species abundances, light and temperature. Where treatment x time interactions were significant, a one-way ANOVA and Tukey's test was undertaken for each sampling date to explain the differences between canopy controls and treatments (Quinn & Keough, 2002). All univariate tests were performed using SYSTAT v13.

Probability distribution plots were examined to visually test for normality of data, and residual plots were examined for homogeneity of variance (Quinn & Keough, 2002). Data were transformed (invertebrate counts: square root; percentage cover: log (x +1)) where necessary to meet these assumptions. Where sphericity was not met in repeated-measures ANOVA, the Greenhouse-Geisser adjusted P-values were used (Quinn & Keough, 2002).

RESULTS

Spatial variation in assemblages associated with *Ascophyllum nodosum*

The assemblages of mobile invertebrates (ANOSIM, Global $R = 0.155$, $P = 0.001$) and sessile invertebrates and algae (Global $R = 0.463$, $P = 0.001$) differed amongst sites and all three sites were distinct ($P = 0.001$ for all pairwise comparisons). However, while statistically significant, the differences in the mobile invertebrate assemblages among sites were only slight (indicated by Global R and pairwise R-values...
The periwinkles *Littorina littorea* and *Littorina obtusata*, and the topshell *Phorcus lineatus* differed amongst sites (ANOVA; $F_{2,87} = 15.991$, $P < 0.001$; $F_{2,87} = 5.469$, $P = 0.006$; $F_{2,87} = 11.310$, $P < 0.001$; respectively). *Littorina littorea* accounted for 19-23% of the variation in mobile invertebrate assemblages among sites (mean ±SEM: 1.94 ±0.12, 14.4 ±0.35, 11.1 ±0.40 per m2 at each of Hannafore Point, Looe and Batten Bay, respectively; SIMPER). *Littorina obtusata* accounted for 18-19% of the variation in mobile invertebrate assemblages among sites (mean ±SEM: 13.3 ±0.30, 13.7 ±0.28, 7.8 ±0.21 per m2 at each of Hannafore Point, Looe and Batten Bay, respectively; SIMPER). *Phorcus lineatus* accounted for 11-12% of the variation in mobile invertebrate assemblages when comparing Hannafore Point and Looe with Batten Bay (mean ±SEM: 0.56 ±0.12, 0.78 ±0.10, 5.9 ±0.25 per m2 at each of Hannafore Point, Looe and Batten Bay, respectively; SIMPER). Variability in the abundances of *Patella* spp., *Gibbula cinerera* and *Actinia equina* accounted for a further 13-19% of the variation in mobile invertebrate assemblages (SIMPER) but there were no differences in their mean abundances among sites (ANOVA; $F_{2,87} = 0.329$, $P = 0.720$; $F_{2,87} = 0.841$, $P = 0.435$; $F_{2,87} = 0.602$, $P = 0.550$; respectively). The differences in sessile invertebrate and algal assemblages among sites were stronger than those for mobile invertebrates (indicated by Global R and pairwise R-values between 0.3-0.6 for sessile species). Univariate analyses confirmed differences in the abundances of these species among sites, with Hannafore Point having the highest cover of *Spirobis spirorbis* (ANOVA; $F_{2,87} = 17.3$, $P < 0.001$, mean 2.7% ±0.75) compared with Looe (mean 2% ±0.70) and Batten Bay (mean 0.5% ±0.30). *Osmundea pinnatifida*, encrusting coralline algae and bare rock were less abundant at Hannafore Point (mean 0.1% ±0.12, < 0.1% ±0.03 and < 0.25% ±0.12, respectively) compared with both Looe (mean 2.7% ±0.39, 4.8% ±0.42 and 2.8% ±0.45, respectively) and
Effects of a pulse disturbance reducing densities of *Ascophyllum* fronds on the physical environment and associated assemblages

EFFECTS ON PHYSICAL ENVIRONMENT: TEMPERATURE AND LIGHT

Temperatures recorded in the 50% intact-frond treatment did not differ from those found in control 100% intact-frond plots (mean 20°C ±0.7 and 19°C ±0.5 respectively, Table 1: $P > 0.05$, Figure 1). The 25% intact-frond treatment had increased mean temperatures, at least 1°C above that recorded in the 100% intact-frond control (Table 1: $P < 0.05$, Figure 1). The 0% and 25% intact-frond treatments did not differ from each other with respect to temperature ($P > 0.05$) but both had increased mean temperatures, at least 1°C above that recorded in the 100% intact-frond control. The differences in average temperatures among treatments appear of a smaller magnitude in autumn and winter, but this was not supported statistically (time*treatment term Table 1, Figure 1). The variation in temperatures among treatments was consistent over time with the maximum daily temperatures recorded in plots over a three-week period (maximum, minimum and average temperatures are illustrated in Appendix C; no analysis possible due to low replication). Maximum daily temperatures recorded over this same period were lowest in 50% and 100% intact-frond treatments, and highest in both the 0% and 25% intact-frond treatments (Appendix C).

Available light (as PAR) in plots only increased after complete frond removal (0% intact fronds) when compared with the 100% intact-fronds control (Table 1, Figure 2). A trend towards increased light in the 25% intact-fronds treatment (Figure 2)
relative to 100% intact-fronds control was evident when examining the means, but was not statistically significant \((P > 0.05)\). Consistent with the patterns of variability in temperature among treatments, there was greater variability in available light amongst low frond-density treatments (0% and 25% intact fronds) compared to higher frond-density treatments (50% and 100% intact fronds) that had consistently low light levels (Figure 2).

Effects of Associated Assemblages: Mobile and Sessile Macroinvertebrates and Macroalgae

Manipulation of the density of *Ascophyllum* fronds resulted in variable levels of canopy cover at low tide over time and the degree of disturbance to the fronds did not directly correspond with percentage cover (Table 1, Figure 3). The 50% and 100% intact-fronds treatments had similar *Ascophyllum* cover throughout the experiment (Table 1, Figure 3). From 7 to 36 days post-thinning, the 50% and 100% intact-fronds treatments had an average 85% *Ascophyllum* cover (Figure 3). Sixty-nine days post-thinning *Ascophyllum* declined to an average 77% cover in both treatments. The 25% intact-fronds treatment had lower *Ascophyllum* cover than both the 50% and 100% intact-fronds treatments, except at day 272 when a decline of *Ascophyllum* in the control and 50% intact-fronds treatment resulted in similar percentage cover (Table 1, Figure 3). The 25% intact-fronds treatment had much higher (mean ~60% throughout) *Ascophyllum* cover than the 0% intact-fronds treatment which had the lowest *Ascophyllum* cover (0%) of all treatments (Table 1, Figure 3).

The assemblages of mobile and sessile taxa found in all plots were similar prior to experimental reductions of *Ascophyllum* (ANOSIM; Global R < 0, P > 0.6). Between 21 and 69 days after manipulation, assemblages of mobile or sessile taxa in the 50% intact-fronds treatment did not differ from those in the 100% intact-fronds control.
(Tables 2 & 3, Appendices A, B, D & E). Up to 70 days post-removal, the 25 % and 0 % intact-fronds treatments had different assemblages of mobile and sessile taxa compared with controls (Tables 2 & 3, Appendices A, B, D & E). On the final sampling visit (Day 272, approximately 9 months after the pulse disturbance, 16th April 2007, spring) the mobile invertebrate species assemblages were not different among treatments (Table 3). This reflected partial recovery of *Ascophyllum* in the 0 % intact-fronds treatments (to approximately 25 % canopy cover, Figure 3), and an increase in the percentage cover of the mid-canopy species *Fucus serratus* across all plots (approximately 50% canopy cover, Figure 5C). There were, however, still significant differences after 9 months in the assemblages of sessile taxa in the 0 % intact-fronds treatment compared to both the 25 % and 100 % intact-fronds treatments but the assemblages of sessile taxa in the 50 % intact-fronds treatment did not differ from any other treatments (Appendix A).

All of the ten mobile invertebrate species recorded (for full list see Appendix D) were found to contribute to differences identified in the ANOSIM analysis between the treatment types, although average abundances among treatment types and at different visits varied (further explained by univariate analyses below). Of all the sessile taxa (and/or cover components) sampled, *Fucus serratus*, encrusting corallines, bare rock, *Spirorbis spirorbis*, *Osmundea pinnatifida*, sand-covered rock, *Mastocarpus stellatus*, *Ulva* spp., *Cladophora rupestris*, *Lomentaria articulata*, unidentified red turf and the barnacle *Perforatus perforatus*, were found to contribute to the differences identified between canopy treatments (SIMPER). These individual species and habitat types were analysed using univariate techniques (when they occurred in sufficient abundances) to further identify responses to reduction of *Ascophyllum* (Table 1, Figures 4 & 5).
Invertebrate species richness in the 50 % and 100 % intact-fronds treatments were similar on day 7 and 21, with higher average species richness than both the 25 % and 0 % intact-fronds treatments (Table 1, Figure 4A, Tukey’s $P < 0.05$). On day 36 only the 50 % intact-fronds treatment differed from other treatments, with higher species richness (Table 1, Figure 4A, Tukey’s $P < 0.05$). On day 69, the 100 %, 50 % and 25 % intact-fronds treatments had similar average species richness, all higher than the 0 % intact-fronds treatment (Table 1, Figure 4A, Tukey’s $P < 0.05$). At the end of the experiment, the 0 % intact-fronds treatment had lower species richness than the 50 % and 100 % intact-fronds treatments (Table 1, Figure 4A, Tukey’s $P < 0.05$), but did not differ from the 25 % intact-fronds treatment. The 25 % intact-fronds treatment had similar species richness to the 50 % intact-fronds treatment, but remained lower than the 100% intact-frond control (Table 1, Figure 4A, Tukey’s $P < 0.05$).

Species-specific responses to disturbance

The abundance of the periwinkle *Littorina obtusata* differed among treatments throughout the study (Table 1, Figure 4B). On day 7 the 25 % and 0 % intact-fronds treatments had less than half the abundance (~1/0.09 m2 c.f. ~4/0.09 m2) of *L. obtusata* found in the 50 % intact treatments and less than a quarter of that found in the 100 % intact-fronds control (~10/0.09 m2, Figure 4B, Tukey’s $P < 0.05$). On days 21 and 69, the 50 % and 100 % intact-fronds treatments had similar abundances of *L. obtusata*, which were higher than those recorded in both the 0 % and 25 % intact-fronds treatments (Figure 4B, Tukey’s $P < 0.05$). The same pattern was evident on day 36, although not statistically significant (Table 1, Figure 4B). *Littorina obtusata* was more commonly observed on the fronds and holdfasts of *Ascophyllum* than under the canopy on the rock surface. In contrast, the abundance of the congeneric, largely rock-surface-dwelling, *Littorina littorea* did not respond to frond reductions but varied over time.
The top shell *Phorcus lineatus* differed in abundance among treatments at different times throughout the study (Table 1, Figure 4D). The abundance of *P. lineatus* in the 0% intact-fronds treatment was higher than in the 100% intact-fronds control on days 21 and 36 and higher than that in all other treatments on day 69 (Figure 4D, Tukey’s *P* < 0.05). The abundance of the top shell *Gibbula umbilicalis* varied among treatments on different sampling visits (Table 1, Figure 4E). On days 7 and 21 there were fewer *G. umbilicalis* in the 0% intact-fronds treatment compared to other treatments; although no differences were identified on other sampling visits (Table 1, Figure 4E, Tukey’s *P* < 0.05).

Encrusting coralline algae did not differ (*P* = 0.066) in cover among treatments, though varied temporally, with a decline occurring on days 69 and 272 in all treatments (Table 1, Figure 5A). Although not quantified, a decline of the integrity of the encrusting coralline algae was observed in the 0% intact-fronds treatment, with a loss of pigment and surface peeling. Similarly, the cover of the turf-forming alga *Osmundea pinnatifida* did not vary among treatments, but varied over time, increasing in abundance on day 272 in the 100%, 50% and 25% intact-fronds treatments (Table 1, Figure 5B). The differences in abundance of the fucoid alga, *Fucus serratus*, among treatments and the control were not consistent over time (Table 1, Figure 5C). *Fucus serratus* had a higher percentage cover in the 100% intact-fronds control during day 7 compared to all other treatments; but no difference in percentage cover among treatments on other days (Table 1, Figure 5C, Tukey’s *P* < 0.05). On day 272 a decline in abundance of *F. serratus* occurred in the control and 25% intact-fronds treatment and an increase occurred in the 0% intact-frond treatment (Table 1, Figure 5C). The percentage cover of the algae *Ulva* spp. only differed among treatments and the control plots on day 69 (Table 1, Figure 5D), with greater cover in the 100% intact-fronds
control (average 33 %) compared with the 50 % and 25 % intact-fronds treatments (both average 16 %, Tukey’s $P < 0.05$), *Ulva* spp. were not recorded in the control plots. *Ulva* spp. remained below 5 % cover throughout the rest of the study. Univariate analyses of additional taxa found during the study were not possible due to low abundances.

DISCUSSION

Theory predicts that the importance or role of a species as an ecosystem engineer will depend on interactions and thresholds between environmental stress and a suite of morphological and ecological traits (Bruno and Bertness, 2001, Crain and Bertness, 2006, Jones et al. 1994, 1997). Thus whilst a species may be considered to be an autogenic ecosystem engineer under one set of conditions (e.g. full canopy cover), it may cease to do so if these conditions break down. Intertidal rocky shores are particularly stressful environments with tidal cycles of emersion and gradients in physiological stress (e.g. desiccation, temperature, UV). Whilst full canopies of *Ascophyllum* have been demonstrated to act as autogenic ecosystem engineers and facilitate understorey biodiversity (Jenkins et al. 1999a; b; c; Jenkins & Hawkins 2003; Jenkins et al. 2004), we have demonstrated that this engineering role can be compromised by a pulse disturbance that reduces frond density and the ability of the canopy to modulate the physical environment. For *Ascophyllum* to act effectively as an autogenic ecosystem engineer at Hannaford Point, we found that at least 50 % of the fronds (corresponding with 70-98 % *Ascophyllum* cover) need to remain in order for temperature to remain cooler and for the associated invertebrate community to persist. With only 25 % intact-fronds remaining (corresponding with 50-70 % *Ascophyllum* cover), macroalgae and sessile invertebrates could persist at Hannaford Point but at reduced abundances.
Ascophyllum altered the physical environment by reducing light and temperature within the understorey, but the effect varied amongst pulse disturbance treatments and was not proportional to frond densities. Ascophyllum reduced temperature in the 50 % and 100 % intact-fronds treatments. The maximum temperatures recorded using the continuous data loggers also suggest that the canopy may buffer from temperature extremes since the 50 % and 100 % intact-fronds treatments had the least variation in temperature. This more stable temperature is likely to exert less physical stress on species associating with the canopy and improve survival (Crisp 1964). Ascophyllum also filtered light to the understorey in all plots except those in which fronds were completely removed (0 % intact-fronds treatment). Even the 25 % intact-fronds treatment had an average light intensity six times lower than in the 0 % intact-fronds treatment. Unexpectedly, percentage cover of Ascophyllum was not directly proportional to the density of fronds, and declined in all treatments with intact fronds over time. Throughout the experiment the percentage cover of Ascophyllum in the 50 % and 100 % intact-fronds treatments were similarly high, suggesting that Ascophyllum can withstand high levels of frond breakage whilst still maintaining a high canopy percentage cover and its ecosystem engineering function. This pattern tracked an ongoing decline in canopy cover in 100 % intact-frond controls, suggesting additional natural influences on canopy cover occurring at this site, which may influence ecosystem engineering function.

A marked short-term disturbance effect was observed seven days after the treatments were applied with species assemblages varying between all treatments and the control. Changes in species assemblages related to stable temperatures in controls compared with increased temperatures in all treatments. Light intensity to the understorey increased as fronds were reduced, although the 50 % and 25 % intact-
fronds treatments had similar light intensities, and the 0% intact-fronds treatment had the highest light intensity (more than double the highest recorded in the 25-50% treatments). This short-term response for all data suggests the assemblage needs somewhere between 7 and 21 days to recover from a single disturbance. This contrasts with the findings of Speidel et al. (2001) in Washington where abundances of littorinids, limpets and ephemeral algae did not differ among canopy reductions of Fucus gardneri despite rock temperatures being reduced by up to 7°C in all plots containing canopy algae. The differences in responses amongst these studies (Speidel et al. 2001 & this study) suggest that either particular species in Washington and the UK respond differently to canopy presence and/or rock temperature, or that rock temperature is not the driver of macroinvertebrate species patterns.

Our investigation found general similarities in responses of the community to those in Ascophyllum complete canopy-removal studies undertaken by Jenkins et al. on the Isle of Man (Jenkins et al. 1999a; b; c; Jenkins et al. 2004). In addition, we found that taxon richness was higher in the 100% and 50% intact-fronds treatments when compared with the 25% and 0% intact-fronds treatments. This pattern may also be related to differences in temperature amongst treatments. The algal turfs (e.g. Osmundea pinnatifida, Chondrus crispus) in the understorey of removed canopies on the Isle of Man (Jenkins et al., 1999b) were found to degrade once the canopy was lost. We also found this at Hannafore Point (Lomentaria sp. and Cladophora sp), but the species differed. Ingolfsson and Hawkins (2008) also found Cladophora sp. was lost following Ascophyllum removal in Iceland, and this loss persisted for 17 years despite canopy recovery. These studies in multiple locations suggest that a decline of turf-forming algae is a common response to Ascophyllum canopy loss and is likely a response to increased light and temperature when the canopy is removed (this study).
Although differences in abundance of *Littorina obtusata* occurred immediately after removal, subsequently abundances did not differ between the 50% and 100% intact-fronds treatments, but *L. obtusata* was much less common in the 25% and 0% intact-fronds treatments. *L. obtusata* occurs on the *Ascophyllum* canopy (Watson & Norton, 1987; Williams, 1992) and even displays a facilitative relationship with its ‘host’, as its grazing of tissue causes the alga to produce phlorotannins, reducing its susceptibility to grazing by other invertebrates (Pavia & Toth, 2000). Observations at all sites sampled in this study found a high number of *L. obtusata* attached to the fronds of *Ascophyllum* and since thinning and removal directly reduced fronds, this may explain lower abundances in the 25% and 0% intact-fronds treatments, especially at the beginning of the experiment.

Many of the taxa with reduced abundances in the 0% intact-fronds treatment were algae, suggesting that either higher light levels (Wiencke & Davenport, 1988; see Kubler & Raven, 1994; Irving *et al*., 2004), or increased herbivory by grazers such as *Phorbus lineatus* (Mieszkowska *et al*., 2007), impacted their survival in areas where the density of fronds was greatly reduced. Figueiredo *et al*. (2000) reported that crustose corallines are common under algal canopies on rocky shores and in our study encrusting corallines bleached and peeled away from the surface in the 0% intact-fronds treatment, suggesting they are sensitive to high light, drying, temperature exposure or a combination.

Disturbances that may result in thinning of *Ascophyllum* canopy include increased grazing intensity (species introductions or range shifts, Davies *et al*., 2007), climate change (reduced growth and recruitment), and trampling and harvesting (Boaden & Dring, 1980; Keser *et al*., 2005; Araújo *et al*., 2009; Hawkins *et al*., 2009).

Climate change is likely to affect *Ascophyllum* (Davies *et al*., 2007) and shore
communities in a multitude of ways such as increased sea and air temperatures stressing its physiological processes (Svensson et al., 2009), increased storm activity causing physical damage, and the immigration and emigration of species that may compete or alter species interactions as local conditions change (e.g. increased grazer diversity and abundance, Hawkins et al., 2009). The only published studies to examine thinning of *Ascophyllum* canopies were undertaken in Portugal and examined press disturbances by human trampling (Araújo et al., 2009; Bertocci et al., 2011; Araújo et al., 2012). Araújo et al. (2009) found trampling (at disturbance levels resulting in similar *Ascophyllum* cover to our 25 % intact-fronds treatment) negatively impacted the community associated with *Ascophyllum*. Consistent with these studies (Araújo et al., 2009; Bertocci et al., 2011, Araújo et al., 2012), we found a decreased abundance of some understorey species, but did not find increased *Ulva* spp. recruiting into 0 % intact-fronds plots as seen in Portugal (Araújo et al., 2009). In contrast, *Ulva* spp. were in low abundance throughout the study at Hannafore Point with the exception of September 2006 (summer) where abundance spiked in all treatments except the 0 % intact-fronds treatment. This is likely to be due to differences between sites and times of disturbance. Thinning of perennial intertidal fucoid algae was also investigated in New Zealand by Schiel and Lilley (2007) on the Australasian species *Hormosira banksii*. Schiel and Lilley (2007) found significant stepwise responses when comparing 0 %, 25 % and 50 % canopy cover treatments to the 75 % canopy and unmanipulated control plots. This matches with our findings at Hannafore Point where the macroinvertebrate assemblages found in our 100 % and 50 % intact-fronds treatments (which correspond, in terms of *Ascophyllum* canopy cover, with their 0 % reduction) differed from those found in the 25 % and 0 % intact-fronds treatments (which correspond, in terms of *Ascophyllum* canopy cover, with their 75 % and 100 % reductions). Given the similarities between
our findings and other studies, management (e.g. restricted site access for sensitive
locations) may be necessary to maintain the ecosystem engineering function of
Ascophyllum, especially as frond breakage due to multiple climate change impacts (e.g.
increased desiccation/grazing pressure/storms) is predicted to increase (Hawkins _et al._
2009).

Despite the spatial variation in species assemblages from undisturbed canopies
detected between our study sites, other thinning studies with spatially variable
assemblages have shown similar general patterns within the understorey including the
loss of sensitive algae (e.g. non-geniculate corallines, Lilley, 2004), a decline in species
richness (Araújo _et al._, 2009), and replacement with other species (Jenkins _et al._, 1999c;
Araújo _et al._, 2009).

The results of this study support the general findings of other studies
investigating the consequence of _Ascophyllum_ canopy disturbance to shore ecology
(Jenkins _et al._ 1999a; b; c; Jenkins & Hawkins 2003; Jenkins _et al._ 2004; Ingólfsson &
Hawkins 2008), but additionally demonstrate that there is a threshold of disturbance
beyond which the autogenic engineering role of _Ascophyllum_ is compromised.

Reduction of more than 50 % of fronds near the holdfast will reduce its ability to
modulate temperature, light and support the understorey community assemblage. Given
that intact _Ascophyllum_ canopies have been shown to support high levels of biodiversity
elsewhere (Black & Miller, 1991; Jenkins _et al._, 1999b; Jenkins _et al._, 2004; Keser _et
al._, 2005; Davies _et al._, 2008; Ingólfsson & Hawkins, 2008; Watt & Scrosati, 2013)
disturbance resulting in frond loss is likely to have widespread consequences, with slow
recovery times when less than 50 % of fronds remain intact. Our work demonstrates the
values of investigating the conditions under which habitat-forming species may
modulate the physical environment and act as autogenic ecosystem engineers to better
manage the assemblages and biodiversity that they facilitate.

ACKNOWLEDGEMENTS

Thanks are given to several field assistants particularly Kate de la Haye and technical
assistants from The Marine Biological Association of the United Kingdom. In kind
support was provided by The Marine Biological Association of the United Kingdom.
Feedback from two anonymous reviewers improved this manuscript.

FINANCIAL SUPPORT

Funding was provided by the Ecological Society of Australia (student research award to
JB Pocklington), Melbourne University (PORES and Drummond awards to JB
Pocklington) and Museum Victoria (NHT grant to TD O’Hara). Additional funds were
provided by The Marine Biological Association of the United Kingdom.

REFERENCES

Åberg P. (1992) Size-based demography of the seaweed Ascophyllum nodosum in

Airoldi L. and Hawkins S.J. (2007) Negative effects of sediment deposition on
grazing activity and survival of the limpet Patella vulgata. Marine Ecology Progress
Series 332, 235-240.

populations of Ascophyllum nodosum (Fucales, Phaeophyta) at sites with different

Oikos, 69, 373-386.

Fig. 1. Average temperature ± SE recorded on substratum beneath canopy layer (where present) within plots through time, n = 5. ● 100 % intact-fronds, ○ 50 % intact-fronds, □ 25 % intact-fronds, ■ 0 % intact-fronds.

Fig. 2. Average Photosynthetically Active Radiation (PAR) ± SE recorded on substratum beneath canopy layer (where present) within plots through time, n = 5. ● 100 % intact-fronds, ○ 50 % intact-fronds, □ 25 % intact-fronds, ■ 0 % intact-fronds.

Fig. 3. Average percentage cover ± SE of *Ascophyllum* canopy through time (not including holdfast fronds < 10 cm), n = 5. ● 100 % intact-fronds, ○ 50 % intact-fronds, □ 25 % intact-fronds, ■ 0 % intact-fronds.

Fig. 4. Average abundances of invertebrates ± SE found in treatment plots through time (per m²), n = 5: (A) species richness; (B) *Littorina obtusata*; (C) *Littorina littorea*; (D) *Phorcus lineatus*; (E) *Gibbula umbilicalis*. ● 100 % intact-fronds, ○ 50 % intact-fronds, □ 25 % intact-fronds, ■ 0 % intact-fronds.

Fig. 5. Average percentage cover of associated algae ± SE found in treatment plots through time, n = 5: (A) encrusting coralline algae; (B) *Osmondea pinnatifida*; (C) *Fucus serratus*; (D) *Ulva* spp. ● 100 % intact-fronds, ○ 50 % intact-fronds, □ 25 % intact-fronds, ■ 0 % intact-fronds.
TABLES

Table 1. Repeated measures ANOVA comparing changes following disturbance to *Ascophyllum* canopy at Hannafore Point for time, treatment and time x treatment, n = 5. All df are: Treatment = 3(16), Time = 4, Treatment*Time = 12(64); unless indicated beside p-value.

Only Factors with significant p-values are shown. MS\textsubscript{Residual} and degrees of freedom are provided to allow reconstruction of the full ANOVA table. Statistical significance is indicated in bold, * indicates p-values adjusted to Greenhouse-Geisser Epsilon, a indicates significant Tukey’s test (pairwise details described in results text). Algal data are Log \((x+1)\) transformed and Invertebrate data are square root transformed to meet assumptions of normality where necessary.

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>MS\textsubscript{Residual}</th>
<th>Treatment</th>
<th>Time</th>
<th>P-value</th>
<th>MS\textsubscript{Residual}</th>
<th>Treatment</th>
<th>Time x Treat</th>
<th>Treatment</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascophyllum canopy cover</td>
<td>293.193</td>
<td>95.897</td>
<td></td>
<td>0.0001; df = 15(80)</td>
<td>139.083</td>
<td>9.996</td>
<td>0.189</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>Number of Invertebrate Species</td>
<td>1.231</td>
<td>0.727</td>
<td></td>
<td>0.750</td>
<td>1.231</td>
<td>0.727</td>
<td>0.002a</td>
<td>0.008</td>
<td></td>
</tr>
<tr>
<td>Littorina obtusata</td>
<td>9.996</td>
<td>4.194</td>
<td></td>
<td>0.008</td>
<td>0.318</td>
<td>0.084</td>
<td>0.234</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Littorina littorea</td>
<td>0.318</td>
<td>0.084</td>
<td></td>
<td>0.234</td>
<td>0.044</td>
<td>0.107</td>
<td>0.003a</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>Phorocaps lineatus</td>
<td>0.044</td>
<td>0.107</td>
<td></td>
<td>0.003a</td>
<td>0.044</td>
<td>0.107</td>
<td>0.003a</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>Gibbula umbilicalis</td>
<td>0.240</td>
<td>0.165</td>
<td></td>
<td>0.0001*</td>
<td>0.240</td>
<td>0.165</td>
<td>0.001a</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>Encrusting Coralline Algae</td>
<td>417.910</td>
<td>144.874</td>
<td></td>
<td>0.001</td>
<td>417.910</td>
<td>144.874</td>
<td>0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osmundea pinnatifida</td>
<td>139.083</td>
<td>37.906</td>
<td></td>
<td>0.0001*</td>
<td>139.083</td>
<td>37.906</td>
<td>0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fucus serratus</td>
<td>7.832</td>
<td>2.029</td>
<td></td>
<td>0.001</td>
<td>7.832</td>
<td>2.029</td>
<td>0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ulva spp.</td>
<td>11.390</td>
<td>133.680</td>
<td></td>
<td>0.0001*</td>
<td>11.390</td>
<td>133.680</td>
<td>0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>2.736</td>
<td>3.182</td>
<td></td>
<td>0.0001*</td>
<td>2.736</td>
<td>3.182</td>
<td>0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAR (µmol m-2s-1)</td>
<td>75555.481</td>
<td>37660.959</td>
<td></td>
<td>0.311; df=6</td>
<td>75555.481</td>
<td>37660.959</td>
<td>0.002a; df = 3</td>
<td>0.252; df = 2</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Pairwise ANOSIM comparing assemblages of sessile taxa (as percentage cover) among treatments (average for 2 sub plots in each treatment area) at each sampling date, n = 5. Data log (x+1) transformed. Statistical significance (indicated by *) adjustment of alpha (Bonferonni correction) to 0.008, relative difference using R is indicated in bold.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Day 7</th>
<th>Day 21</th>
<th>Day 36</th>
<th>Day 69</th>
<th>Day 272</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>P</td>
<td>R</td>
<td>P</td>
<td>R</td>
</tr>
<tr>
<td>control, F50</td>
<td>0.332</td>
<td>0.024</td>
<td>0</td>
<td>0.460</td>
<td>0.036</td>
</tr>
<tr>
<td>control, F25</td>
<td>0.316</td>
<td>0.048</td>
<td>0.096</td>
<td>0.239</td>
<td>0.196</td>
</tr>
<tr>
<td>control, F0</td>
<td>0.556</td>
<td>0.016</td>
<td>0.396</td>
<td>0.024</td>
<td>0.340</td>
</tr>
<tr>
<td>F50, F25</td>
<td>0.012</td>
<td>0.429</td>
<td>-0.228</td>
<td>0.960</td>
<td>-0.012</td>
</tr>
<tr>
<td>F50, F0</td>
<td>0.092</td>
<td>0.246</td>
<td>0.052</td>
<td>0.286</td>
<td>0.052</td>
</tr>
<tr>
<td>F25, F0</td>
<td>0.492</td>
<td>0.016</td>
<td>0.26</td>
<td>0.079</td>
<td>0.20</td>
</tr>
<tr>
<td>GLOBAL R</td>
<td>0.271</td>
<td>0.001</td>
<td>0.1</td>
<td>0.132</td>
<td>0.131</td>
</tr>
</tbody>
</table>
Table 3. Pairwise ANOSIM comparing assemblages of mobile invertebrate species (invertebrate assemblage) among treatments (average for 2 sub plots in each treatment area) at each sampling date, n = 5. Data square root transformed. Statistical significance (indicated by*) adjustment of alpha (Bonferonni correction) to 0.008, relative difference using R is indicated in bold.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Day 7</th>
<th>Day 21</th>
<th>Day 36</th>
<th>Day 69</th>
<th>Day 272</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>P</td>
<td>R</td>
<td>P</td>
<td>R</td>
</tr>
<tr>
<td>control, F50</td>
<td>-0.056</td>
<td>0.611</td>
<td>-0.072</td>
<td>0.651</td>
<td>-0.048</td>
</tr>
<tr>
<td>control, F25</td>
<td>0.34</td>
<td>0.008*</td>
<td>0.312</td>
<td>0.024</td>
<td>0.608</td>
</tr>
<tr>
<td>control, F0</td>
<td>0.628</td>
<td>0.008*</td>
<td>0.648</td>
<td>0.008*</td>
<td>0.368</td>
</tr>
<tr>
<td>F50, F25</td>
<td>0.184</td>
<td>0.063</td>
<td>0.264</td>
<td>0.056</td>
<td>0.452</td>
</tr>
<tr>
<td>F50, F0</td>
<td>0.656</td>
<td>0.008*</td>
<td>0.708</td>
<td>0.008*</td>
<td>0.24</td>
</tr>
<tr>
<td>F25, F0</td>
<td>-0.004</td>
<td>0.556</td>
<td>0.396</td>
<td>0.016</td>
<td>-0.06</td>
</tr>
<tr>
<td>GLOBAL R</td>
<td>0.294</td>
<td>0.005</td>
<td>0.369</td>
<td>0.001</td>
<td>0.256</td>
</tr>
</tbody>
</table>
Fig. 1. Average temperature ±SEM recorded on substratum beneath canopy layer (where present) within plots through time, $n = 5$.

Fig. 2. Average Photosynthetically Active Radiation (PAR) ±SEM recorded on substratum beneath canopy layer (where present) within plots through time, $n = 5$.
Fig. 3. Average percentage cover ±SEM of *Ascophyllum* canopy found in plots through time (per 0.09 m²), n = 5.
Fig. 4. Average abundances of invertebrates ±SEM found in plots through time (per 0.09 m2), n = 5.
Fig. 5. Average abundances of algae ±SEM found in plots through time (per 0.09 m²), n = 5.
APPENDICES
Day 272

A. Ordination plots of sessile species assemblages associated with canopy cover (legend shows treatment) treatments at each visit since the manipulation of the canopy.
B. Ordination plots of mobile invertebrate species assemblages associated with canopy cover treatments (legend shows treatment) at each visit since the manipulation of the canopy
C. Average temperatures recorded over a three-week period (in summer) within plots (Canopy Cover), error bars indicate maximum and minimum temperatures, n=1 (0%, 100%), n=2 (25%, 50%).
D. Full species list from Hannafore Point.

Algae/Sessile species:

Fucoid algae
- Ascophyllum nodosum
- Fucus serratus
- Fucus vesiculosus

Barnacles
- Balanus perforatus
- Semibalanus balanoides

Polychaete
- Spirorbis spirorbis

Sponges
- Halichondria panicea
- Hymeniacidon perleve

Foliose algae
- Ceramium rubrum
- Chondrus crispus
- Cladophora rupestris
- Corallina officinalis
- Lomentaria articulata
- Mastocarpus stellatus
- Osmundea pinnatifida
- Plumaria elegans
- Ulva intestinalis
- Ulva lactuca
- Unidentified red turf

Epiphyte
- Vertebrata lanosa

Encrusting algae
- Hildenbrandia rubra
- Encrusting coralline (e.g. Lithothamnion spp. and Lithophyllum)
- Ralfsia verrucosa

Mobile invertebrates:

Anemones
- Actinia equina
- Anemonia viridis

Crabs
- Carcinus maenas

Gastropods
- Gibbula umbilicalis
- Littorina littorea
- Littorina obtusata
- Nucella lapillus
- Patella vulgata
- Phorcus lineatus
APPENDIX LABELS

Appendix A. Ordination plots of assemblages of sessile taxa associated with treatments at each visit since the manipulation of the canopy, n = 5. ● 100 % intact-fronds, ○ 50 % intact-fronds, □ 25 % intact-fronds, ■ 0 % intact-fronds.

Appendix B. Ordination plots of assemblages of mobile invertebrate species associated with canopy cover treatments at each visit since the manipulation of the canopy, n = 5. ● 100 % intact-fronds, ○ 50 % intact-fronds, □ 25 % intact-fronds, ■ 0 % intact-fronds.

Appendix C. Average temperatures recorded over a three-week period (in summer) within plots, error bars indicate maximum and minimum temperatures, n = 1 (100 %, 0 % intact-fronds), n = 2 (50 % fronds, 25 % intact fronds). ■ average temperature.

Appendix D. Full species list from Hannaford Point.
Algae/Sessile taxa:
Fucoid algae
- *Ascophyllum nodosum* (Linnaeus) Le Jolis
- *Fucus serratus* Linnaeus
- *Fucus vesiculosus* Linnaeus

Barnacles
- *Perforatus perforatus* (Bruguière, 1789)
- *Semibalanus balanoides* (Linnaeus, 1767)

Polychaete
- *Spirorbis spirorbis* (Linnaeus, 1758)

Sponges
- *Halichondria panacea* (Pallas, 1766)
- *Hymeniacidon perlevis* (Montagu, 1814)

Foliose algae
- *Ceramium virgatum* Roth
- *Chondrus crispus* Stackhouse
- *Cladophora rupestris* (Linnaeus) Kützing
- *Corallina officinalis* Linnaeus
- *Lomentaria articulata* (Hudson) Lyngbye
- *Mastocarpus stellatus* (Stackhouse) Guiry
- *Osmunda pinnatifida* (Hudson) Stackhouse
- *Plumaria elegans* (Bonnemaison) F.Schmitz
- *Ulva intestinalis* Linnaeus
- *Ulva lactuca* Linnaeus
- Unidentified red turf

Epiphyte
- *Vertebrata lanosa* (Linnaeus) T.A.Christensen

Encrusting algae
- *Hildenbrandia rubra* (Sommerfelt) Meneghini
- Encrusting coralline (e.g. *Lithothamnion* spp. Heydrich, and *Lithophyllum* spp. Philippi)
- *Ralfsia verrucosa* (Areschoug) Areschoug

Mobile invertebrates:

Anemones
- *Actinia equina* (Linnaeus, 1758)
- *Anemonia viridis* (Forskål, 1775)

Crabs
- *Carcinus maenas* (Linnaeus, 1758)

Gastropods
- *Gibbula umbilicalis* (da Costa, 1778)
- *Littorina littorea* (Linnaeus, 1758)
- *Littorina obtusata* (Linnaeus, 1758)
- *Nucella lapillus* (Linnaeus, 1758)
- *Patella vulgata* Linnaeus, 1758
- *Phorcus lineatus* (da Costa, 1778)