Global analysis of depletion and recovery of seabed biota following bottom trawling disturbance

Hiddink, Jan; Jennings, Simon; Sciberras, Marija; Szostek, Claire; Hughes, Kathryn; Ellis, Nick; Rijnsdorp, Adriaan D.; McConnaughey, Robert A.; Mazor, Tessa; Hilborn, R.; Collie, J.S.; Pitcher, Roland; Amoroso, R.O.; Parma, A.M.; Suuronen, Petri; Kaiser, Michel

Proceedings of the National Academy of Sciences of the United States of America

DOI: 10.1073/pnas.1618858114

Published: 01/08/2017

Peer reviewed version

Citation for published version (APA):

Hawliau Cyffredinol / General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Global analysis of depletion and recovery of seabed biota following bottom trawling disturbance

Running title: Effects of bottom trawling on seabed biota

Hiddink, J.G.\(^a\), Jennings, S.\(^{b,c}\), Sciberras, M.\(^a\), Szostek, C.L.\(^a\), Hughes, K.M.\(^a\), Ellis, N.\(^d\), Rijnsdorp, A.D.\(^e\), McConnaughey, R.A.\(^f\), Mazor, T.\(^g\), Hilborn, R.\(^h\), Collie, J.S.\(^i\), Pitcher, R.\(^d\), Amoroso, R.O.\(^h\), Parma, A.M.\(^i\), P. Suuronen\(^j\), Kaiser, M.J.\(^a\)

\(^a\)School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, United Kingdom, +44 (0)1248 382864, email: j.hiddink@bangor.ac.uk

\(^b\)Centre for the Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft, Suffolk, NR33 0HT, United Kingdom

\(^c\)School of Environmental Sciences, University of East Anglia, Norwich Research Park, NR4 6TPF, United Kingdom. Present address: International Council for the Exploration of the Sea, H. C. Andersens Boulevard 44-46, 1553 Copenhagen V, Denmark

\(^d\)CSIRO Oceans & Atmosphere, EcoSciences Precinct 41, Boggo Road, Dutton Park, QLD 4102, GPO Box 2583, Brisbane, QLD 4001, Australia.

\(^e\)IMARES, Wageningen UR, PO Box 68, 1970 AB Ijmuiden, The Netherlands.

\(^f\)RACE Division, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, 7600 Sand Point Way NE, Seattle, WA 98115, USA.

\(^g\)School of Aquatic and Fishery Sciences, University of Washington, Box 355020, Seattle, WA, 98195, USA
Statement of authorship: All authors contributed to data-collation. RH, MJK and SJ initiated the study. JGH and SJ developed the analysis and modelling framework. JGH analysed data. JGH, MJK and SJ wrote the first draft of the manuscript, and all authors contributed substantially to revisions.

Data accessibility statement: All data supporting the results is available in the SI appendix.

Keywords: beam trawl, benthic invertebrate communities, impacts, meta-analysis, logistic recovery model, otter trawl, penetration depth, scallop dredge, systematic review
Abstract

Bottom trawling is the most widespread human activity affecting seabed habitats. Here, we collate all available data for experimental and comparative studies of trawling impacts on whole communities of seabed macro-invertebrates on sedimentary habitats and develop novel and widely applicable methods to estimate depletion and recovery rates of biota following trawling. Depletion of biota and trawl penetration into the seabed are highly correlated. Otter trawls caused the least depletion, removing 6% of biota per pass and penetrating the seabed on average down to 2.4 cm, while hydraulic dredges caused the most depletion, removing 41% of biota and penetrating the seabed on average 16.1 cm. Median recovery times post-trawling (from 50% to 95% of unimpacted biomass) ranged between 1.9 and 6.4 y. By accounting for the effects of penetration depth, environmental variation and uncertainty, the models explained much of the variability of depletion and recovery estimates from single studies. Coupled with large-scale, high-resolution maps of trawling frequency and habitat, our estimates of depletion and recovery rates enable the assessment of trawling impacts on unprecedented spatial scales.
Significance statement

Bottom trawling is the most widespread source of physical disturbance to the world’s seabed. Predictions of trawling impacts are needed to underpin risk assessment, and are relevant for the fishing industry, conservation, management and certification bodies. We estimate depletion and recovery of seabed biota after trawling, by fitting novel models to data from a new global data compilation. Trawl gears removed 6% to 41% of faunal biomass per pass and recovery times post-trawling were 1.9 to 6.4 y depending on fisheries and environmental context. These results allow the estimation of trawling impacts on unprecedented spatial scales and for data poor fisheries, and enables an objective analysis of trade-offs between harvesting fish and the wider ecosystem effects of such activities.
INTRODUCTION

Fisheries using bottom trawls are the most widespread source of anthropogenic physical disturbance to global seabed habitats (1, 2). Almost one quarter of global seafood landings from 2011–2013 were caught by bottom trawls (3). Development of fisheries, conservation and ecosystem-based management strategies requires assessments of the distribution and impact of bottom trawling and the relative status of benthic biota and habitats. There are many drivers for such assessments including (i) policy commitments to an ecosystem approach to fisheries, (ii) requirements to take account of trawling impacts in fisheries and environmental management plans, (iii) demands from certification bodies to assess fisheries’ environmental impacts and (iv) the need to evaluate the effects of alternate management measures to meet conservation and management objectives (4, 5, 6). These assessments are used to assess the sustainability of bottom trawl fisheries and formulate priorities for habitat protection and ultimately to achieve a balance between fisheries production and environmental protection. The distribution of bottom trawling is increasingly well characterised by vessel tracking and other monitoring systems (7), but impacts depend on the magnitude of trawling-induced mortality and recovery rates of biota, for which the current evidence base is incomplete, dispersed and often contested (4, 8).

Bottom trawls, (here defined as any towed bottom fishing gear, including otter trawls, beam trawls, scallop dredges and hydraulic dredges) are used to catch fish, crustaceans and bivalves living in, on, or above the seabed (9). Bottom trawling resuspends sediments (10, 11), reduces topographic complexity and biogenic structures (12, 13, 14), reduces faunal biomass, numbers and diversity (15, 16), selects for communities dominated by fauna with faster life histories (17) and produces energy
subsidies in the form of carrion (18). These effects lead to changes in community production, trophic
structure and function (19, 20). Given the patchy and dynamic distribution of bottom fishing (21),
fished seabeds comprise a mosaic of undisturbed, recently impacted and recovering benthic
communities and habitats (22). The state of each patch within this mosaic depends on the history
and frequency of past trawling impacts and the recovery rates of the biota present (23).

Recovery rates following trawling depend on recruitment of new individuals, growth of surviving
biota and active immigration from adjacent habitat. Most existing estimates of recovery rates come
from experimental studies, with changes in abundance recorded before and after experimental
trawling (15, 16). While these experiments provide reliable estimates of immediate mortality, their
small scale is likely to underestimate recovery time, in particular for mobile fauna. This is because
immigration makes a greater contribution to recovery when biota are relatively more abundant
around the impacted site, and because most experiments have been conducted in infrequently and
untrawled areas (16). On fishing grounds, impacts occur on larger scales such that untrawled and
infrequently trawled areas become scarce when there is more trawling activity. Furthermore,
experiments typically focus on recovery following single trawling events, rather than recovery from
successive events typical of fishing grounds.

The development of satellite-based vessel monitoring systems has enabled scientists to map
commercial fishing activity at high resolution (7). Such maps have been used to design studies of the
comparative impacts of towed bottom-fishing gears across gradients of commercial fishing
frequency (herein = comparative studies). In contrast to experimental studies, these studies account
for the spatial extent, frequency and temporal variability in fishing activity, and are expected to
provide more representative estimates of recovery rates. When these estimates are coupled with
estimates of the mortality of biota from experimental studies, they can be used to assess status of
impacted biota on fishing grounds. Presently there are too few studies to adopt the alternative approach of analysing large-scale studies directly recording recovery from trawling (24).

We used the logistic growth equation (25) to describe recovery of benthic fauna because it provides an effective abstraction of the complex recovery dynamics of populations and communities and can be fitted to available data (e.g. 26, 23, 22). This model is identical to the Schaefer models commonly used in fisheries management when the data to implement full age or size-structured models are not available (27). If we assume the recovery of biomass or numbers (hereafter abundance) of biota B following trawling is described by the logistic growth equation, then the equilibrium solution can be used to estimate B as a fraction of carrying capacity K in an environment subject to chronic fishing disturbance (28):

$$\frac{B}{K} = 1 - F \frac{d}{r} \quad \text{(eq. 1)}$$

where F is trawling frequency, d is the depletion of biota caused by each trawl pass (expressed as a proportion) and r is rate of increase, interpreted here as the recovery rate. Equation (1) only requires estimates of F, d and r to estimate relative abundance B/K (28). Eq. 1 suggests that r is constant, but in communities composed of species with a range of r values, trawling selects for species with faster life histories that are more resilient and therefore r can be expected to increase with F. We found that the relationship between community B/K and F for communities is well approximated by a log-linear relationship (SI appendix, Text S3). We therefore estimated r at $F = 0$ and assuming a log-linear relationship between B/K and F (eq. 2). More sophisticated models of recovery can account for differential responses of groups with contrasting life histories and other aspects of community dynamics, and thus provide a better description of underlying processes (19, 29), but higher parameter demands limit their application to systems with a substantial amount of available data. Conversely, if d and r can be estimated and associated uncertainties quantified, the logistic model would facilitate assessment of trawling impacts in most marine systems. Different
gears and substrata will have different levels of seabed contact or penetration and these factors will
influence \(d \). Penetration depth is however largely independent of the towing speed (6). If a strong
relationship exists between the penetration depth and \(d \), this can be used to obtain estimates of
depletion for trawl gears for which no empirical depletion estimates are available. Trawling
frequency \(F \) is defined as the swept area ratio, which is the area trawled annually divided by the
studied area (\(\text{km}^2 \text{ km}^{-2} \text{ y}^{-1} \), simplified to \(\text{y}^{-1} \)), which should ideally be calculated for small cells (ca.
1 \(\text{km}^2 \)) because trawling tends to be spatially clustered at larger scales.

Here, we conduct a meta-analysis of experimental studies of trawling impacts to estimate depletion
of biota following trawling. We report the effect on the abundance of whole benthic macro-
invertebrates communities, including infauna and epifauna. We combine this with the first meta-
analysis of results from large-scale comparative studies of trawling effects on fishing grounds, to
estimate recovery rates of seabed biota, and describe how they vary with gear characteristics and
environment. All data were collated from studies that were quality assured following systematic
review methodology, thereby avoiding selection bias (30).

RESULTS

Twenty-four comparative and 46 experimental studies met the criteria for inclusion in our analyses
(SI Appendix, Table S1-S3). Studies were mostly temperate and concentrated in NW Europe and NE
USA (Figure 1). None of the studies that met the criteria examined the effect of trawling on biogenic
habitats, but there were sufficient studies in other habitats. Many gear-habitat combinations were
not represented in the studies reviewed because many fishing gears are only suitable for fishing on
particular seabed types or species associated with those habitats (SI Appendix, Table S1) and
because some habitats are less widespread than others (7).
Depletion rates estimated from the experimental studies for biomass and numbers were not significantly different. Thus the pooled estimates of d (SI Appendix, Table S4) apply to both biomass and numbers. Estimates of depletion d and penetration depth P by gear-type were very closely correlated (Figure 2, Pearson’s $r = 0.980$, $p = 0.020$). Otter trawls (OT) had the smallest impact, removing on average 6% of organisms per trawl pass and penetrating on average 2.4cm into the sediment. Median penetration depths were 2.7cm and 5.5cm for beam trawls (BT) and toothed dredges (TD) respectively and the corresponding median depletions per trawl pass were 14% and 20%. Hydraulic dredges (HD) had the largest impact, removing on average 41% of organisms per pass and penetrating 16.1cm.

The effect of trawling frequency on relative biomass estimated from the comparative studies showed a log-linear relationship and with each unit increase in swept-area ratio linked to a mean fall in biomass of 15.5% (Figure 3a). None of the other environmental variables significantly affected this response (Table 1). The effect of sediment composition on community biomass depletion was not significant (Table 1A, SI Appendix, Table S5) but the model estimates for gravel are nevertheless shown in the Table 1a to allow comparison with the significant effects of gravel found for community numbers (Table 1B, SI Appendix, Table S5). Mean community r (estimated using equation S4.1 and S4.2 from d and b) increased with trawling frequency, from 0.82 y^{-1} when there was no trawling (5-95% uncertainty intervals 0.42 – 1.53) to 1.73 (0.89 – 3.23) y^{-1} when the trawling frequency was 10 y^{-1} (using the mean estimated d across gears OT, BT and TD, $d = 0.13$, SI Appendix, Figure S1, Table S6). The increase in r, which results from changes in community composition to favour biota with faster life histories, is therefore relatively slight across ranges of trawling frequencies that dominate those on real fishing grounds, e.g. 0 to 1 y^{-1} (e.g. 31, 7, 32). The r estimate of 0.82 y^{-1} enables estimates of median time to recovery (T) to 0.95K for a range of levels of depletion (Figure 3b). For
example, if the fraction depleted $D = 0.5K$ then recovery time is 3.6 years (5-95% uncertainty intervals: 1.9 - 6.4 years).

The effect of trawling on community numbers, estimated from the comparative studies, increased significantly with the gravel content of the sediment (Figure 3c, Table 1B, SI Appendix, Table S5) and this effect persisted when examined among gears. The reduction in benthic community numbers for each unit increase in trawling frequency was 3.1% at 0% gravel content (typical for BT studies), 5.5% at 1% gravel content (typical for OT studies), and 72% at 45% gravel content (typical for TD studies).

The estimates of r for community abundance range from $0.18 \, y^{-1}$ for TD on 45% gravel to $4.47 \, y^{-1}$ for BT on 0% gravel, with high uncertainty. These r estimates result in a median recovery time T from $0.5K$ to $0.95K$ of 0.7 to 16.6 y (Figure 3d). Beside gravel content, the inclusion of the ratio of d over primary production also resulted in reduced AIC compared to the model with no additional explanatory variables, with the effect of trawling on numbers increasing with d and decreasing at higher levels of primary production (Table 1B, SI Appendix, Table S5).

DISCUSSION

This is the first attempt to quantify the impacts of bottom trawling and recovery of seabed biota by synthesizing data from trawling studies following a systematic review of the available evidence-base. We developed a novel method to derive the recovery rates of benthic macrofaunal invertebrate communities from trawling by combining results from experimental and comparative studies, and provide new estimates of depletion and recovery including a quantification of uncertainty based on all available data. The method for estimating the recovery rate from comparative studies is novel. Given that realistic and robust r estimates have been largely unavailable previously, this work is critically important. Recovery rates were estimated from changes in the biomass and numbers of biota across fishing grounds, so estimates are likely applicable to trawled shelf-seas in general (at least in temperate waters where most of the studies were carried out). Our new estimates of
depletion and recovery enable the parameterisation of models to predict the state of the benthic biota as a function of trawling frequency and levels of primary production and % gravel (28). Coupled with the emergence of large-scale estimates of trawling frequency (7) these models will support assessment of trawling impacts on unprecedented spatial scales, because our approach provides a quantitative estimate of status with minimal data requirements (28). The method is widely applicable because it requires relatively few data inputs and could be applied world-wide, including fisheries where trawl impacts remain unassessed. The r and d values that we estimate here with a broad geographic basis are based on the full body of available evidence and are therefore the most robust estimates available. The generality of our approach means that the outputs of assessments are accurate when averaging over larger scales, but that biases may exist when used for local assessments. These results have global policy relevance for conservation and food security policy development as it enables an objective analysis of the efficacy of different methods of harvesting food from the ocean to be considered in the light of the wider ecosystem effects of such activities on the marine environment. The results enable managers to understand the variable resilience of benthic systems to trawl fisheries and to set limits of fishing accordingly.

Most continental shelves consist of relatively small intensively trawled areas where the trawling frequency is in the range of 1 to 10 y^{-1} and extensive infrequently trawled areas where the trawling frequency is $<$1 y^{-1} and predominantly $<$0.25 y^{-1} (7). Our results show that trawling frequencies of 1 y^{-1} cause average declines of 15.5% in the biomass of benthic biota. Communities on gravel may be more sensitive to trawling because they on average have a larger proportion of larger, long-lived and sessile epifauna (33) that are particularly sensitive to trawling (34). Effects were greater for gears that kill a larger fraction of the biota (larger d) because they penetrate the sediment more deeply, and weaker in areas of higher primary production where higher food supply to the benthos may result in a higher recovery rate.
The ranking of different fishing gears with respect to their magnitude of impact reported here is similar to the ranking in previous meta-analyses of small-scale experimental studies (15, 16), although our estimates of d are smaller, probably because we adjusted for the number of trawl passes while previous analyses did not. The use of depletion to primary production ratio as a proxy for community resilience to trawling has the advantage of being easily understandable and easy to estimate for new areas and fisheries. The ratio of depletion over primary production might support rapid preliminary large-scale risk assessments of potential trawling impacts on community abundance to guide more region-specific studies. The close relationship between penetration depth and depletion can be used to estimate depletion resulting from the pass of a given trawl gear when no direct depletion estimate is available. Accurate estimates of penetration depth are much easier and cheaper to obtain than estimates of depletion, would support preliminary impact assessments by gear type, and can even be generated using numerical models (11).

Our analyses did not identify any variables other than trawling frequency that affected community biomass. This is surprising given the contrasting results for numbers and that some comparative studies and past meta-analyses of experimental studies have shown interaction effects between gear type and habitat type (e.g. 29, 16). The relatively small number of studies included in the biomass analysis and the high variability associated with benthic sampling, which cannot be fully controlled in a meta-analysis, may have contributed to this discrepancy. Our results for biomass imply that a single estimate of recovery rate r is appropriate when assessing impacts on the different habitat types studied here. They also suggest that differences in time to recovery and expected biomass (B/K) will be driven primarily by gear type (and hence d) and trawling frequency (F).
Our estimates of biomass recovery times are similar to empirical measurements of recovery taken in three areas where commercial trawling was stopped (4-5 years, 24), but are longer than estimates from small-scale experimental studies, which are in the order of 25–500 days (15, 16). The scale-dependency of recovery times has important implications for management because recovery will be faster when trawled areas are closer to less impacted areas from which individuals can recruit or migrate (as also shown by 22). We found that biomass recovery rates were slower and recovery times longer than those for numbers. This result is expected based on the population dynamics of seabed biota. Recovery in numbers is driven more strongly by recruitment than recovery of biomass, which is driven by increases in the size and age structure of the population through growth of individuals. We recommend the use of recovery rates for community biomass when modelling trawl impacts and their consequences. This will give due weight to recovery of body-size and age structure as well as numbers and take account of energy flow through food webs and other ecosystem processes that are linked closely to biomass. Recovery times as estimated from the logistic model nevertheless do not imply that the communities will recover over these times to the species, size and age composition that existed before trawling, but they do imply the recovery of total biomass or numbers and related cross-species ecosystem processes such as aggregate secondary production.

Uncertainties around mean/median estimates of penetration depth, recovery and depletion were high, despite the careful screening of included data (but which also decreased the sample size and potentially power to detect effects, 30). However, our approach allows us to address directly some aspects of uncertainty, and the broad distribution of resulting depletion and recovery estimates show that large site-specific differences in the response of seabed communities to trawling are expected. The advantage of characterising uncertainty is that it can be propagated in future risk and impact analyses. Given the unexplained variance in r, percentiles from the distribution of plausible values might be selected to reflect the degree of risk aversion in the management system. The
extent of risk aversion is a non-scientific decision (although it would be informed by science) that
would likely be made by managers and other stakeholders. Risk aversion would likely depend on the
perceived value of a habitat type. A risk-averse approach might adopt a value of r from a lower
percentile of the distribution (e.g. the 10% or 25%) rather than the median (see SI Appendix, Table
S6 for a selection of values).

Our use of comparative studies provides improved estimates of recovery compared with those from
previous small-scale experiments studies because they are based on larger scale measurements
from fishing grounds. Comparative studies may however be affected by ‘shifting baselines’ (35),
where historical trawling has removed the most sensitive organisms and only resilient organisms
remain. Since trawling selects for species with faster life histories that are more resilient, recovery
time will increase with trawling frequency. Our finding that mean community r increases with F
conforms with previous observations of shifts towards species with faster life-histories in disturbed
communities (e.g. 36). This effect is apparent across a range of plausible trawling frequencies from
>0 to 10 y^{-1} but would be small for the great proportion of most fishing grounds where swept area
ratio is less than 1 y^{-1} (7). Although this shift means that previously trawled communities may be
more resilient to further trawling, it does not mean that they will recover any faster to the original,
pre-trawling state. For this reason we used the r estimate of untrawled communities for estimating
recovery times. Selective effects linked to trawling history are likely to be strongest for long-lived
sessile epifauna that build biogenic reefs, such as sponges and corals. The estimates of r and T
presented here are applicable to invertebrate communities living in sedimentary habitats, but not
biogenic habitats as no studies of trawling impacts on biogenic habitats met the rigorous selection
criteria imposed by the systematic review.
In summary, we apply novel and widely applicable methods to estimate depletion and recovery rates of benthic invertebrate communities following trawling. By accounting for the effects of gear type and penetration, environmental variation and uncertainty, our analysis explained much of the variability of depletion and recovery estimates from single studies. Coupled with large-scale, high-resolution maps of trawling frequency and habitat, our estimates of depletion and recovery rates will enable analysis of trawling impacts on unprecedented spatial scales to inform best-practices to achieve sustainable fishing, and will be of use to policy makers, conservation planners and fisheries managers for risk assessment and the evaluation of management strategies.

METHODS

We present analyses for whole community biomass and numbers of benthic invertebrates. Changes in the abundance of seabed biota following trawling depend on the mortality caused by each pass of a trawl and the rate of recovery of the biota between trawl passes. We estimated the immediate depletion of biota \((d)\) caused by a trawl pass from a meta-analysis of experimental studies of trawling impacts. We estimated the recovery rates \((r)\) of biota from a meta-analysis of comparative studies of trawling impacts. The analyses were structured to assess the effects of gear type, penetration depth and environmental variables (e.g. depth, sediment composition) on depletion and recovery.

Depletion

Depletion was estimated using data collated from experimental studies of trawling impacts identified using systematic review methodology. A comprehensive literature search of journal papers, book chapters and grey literature reports was carried out. Details of literature search terms and databases, study inclusion criteria are provided in the systematic review protocol by Hughes et
al. (30). All included studies quantified the immediate mortality of biota following one or multiple trawling events. Each identified study had to pass quality assurance criteria before data from the study were included in the collated dataset.

We classified gear types as otter trawls, beam trawls, towed dredges or hydraulic dredges (SI Appendix, Text S1). The reduction in abundance of biota resulting from one pass of a trawling gear depends on the characteristics and operation mode of the gear. Different gears are designed to have different levels of seabed contact or penetration, depending on the target species and seabed type, and these factors will influence mortality (37). Consequently, we assessed the relationship between mortality and penetration depth of the gear. Some of these studies were conducted in previously trawled areas with a lowered abundance of biota, but as we are estimating the fraction of organisms removed rather than the absolute amount we expect that this will have had little effect on our estimates of d. Depletion d was estimated using a generalized linear mixed model (GLMM) implemented in the package nlme in R (38, 39), with $lnRR$ (the log of the ratio of the biomass or abundance in trawled over untrawled areas) as the response variable, and $\log_2(t)$ (time t in days since trawling) and gear type as fixed factors, and the study as a random effect assuming a Gaussian error distribution. We weighted $lnRR$ values by the inverse of their variance as is normal practice in meta-analyses. We estimated d as the intercept for the different gears at $t = 0$.

Predicted penetration depth of each gear type into the seabed was estimated from values in the literature by averaging the reported penetration depths of the individual components of the gear (e.g. doors, sweeps, and bridles of an OT) weighted by the width of these components (details in SI Appendix, Text S2).
Recovery rates were estimated using data collated from comparative studies of trawling impacts. All studies sampled the biomass or numbers of whole communities of benthic invertebrates at two or more sites subject to different trawling intensities on commercial fishing grounds. Contributing studies were identified following the same procedure as for experimental studies (SI Appendix, Text S1). In the analyses of the comparative studies we assume that both K and observed gradients of trawling effort were unrelated to other environmental drivers, and that the observed state of the biota is in equilibrium with the reported trawling effort. Gradients in trawling effort may be driven by regulation and seabed obstructions, but are also observed in areas of homogenous habitat (e.g. 29). Spatial patterns of trawling effort are also shown to be relatively stable over time in the few fisheries where high-resolution time series have been analyzed (40). K could vary across the trawl grounds because of environmental variations and this will increase the uncertainty around relationships between B and F.

In the comparative studies, conversions between units of abundance were not always possible (e.g. biomass per unit sediment volume could not be converted to biomass per unit sediment area, given sampling gears with different, but unknown, efficiencies), so absolute B or K could not be estimated. We normalized the data by expressing relative biomass or numbers as the B/K ratio and used a log-linear approximation for the relationship between community B/K and F where

$$\log_{10}(B/K) \sim b F \quad \text{(eq. 2)}$$

where b is the slope of the relationship (derivation taking account of the log-linear relationship between B/K and F and the distribution of trawling in SI Appendix, Text S3 and S4). After fitting a linear relationship to $\log_{10} B$ versus F for each comparative study, K was estimated as the $10^{\text{intercept}}$ of this relationship.
The data collated from comparative studies were initially used to estimate relative changes in abundance \((B/K)\) as a function of trawling frequency \(F\). This approach differs from the aforementioned analyses of depletion because the change in abundance with trawling is a response to both depletion (per trawl pass) and recovery. Because \(b = d/r\) (equation 1), once \(d\) is estimated from experimental data, recovery rate \(r\) can be estimated from the slope \(b\) of equation (2) after taking account of the log-linear nature of this relationship, which implies \(r\) increases with \(F\). To propagate uncertainty in the estimates of \(b\) and \(d\) into the estimate of \(r\) we sampled the distributions of \(b\) and \(d\) estimates to derive the distribution of \(r\) (SI Appendix, Text S4). Time to recovery from a given level of depletion \(D\) to a defined proportion \(\phi\) of \(K\) at which recovery is deemed to have occurred (e.g. 0.95) was derived from the approach of Lambert et al. (22) (SI Appendix, Text S5).

When reporting recovery times, we report recovery from 0.5\(K\) to 0.95\(K\).

Variables that determine the effect of trawling in comparative studies

The effect of trawling on seabed biota in comparative studies could be influenced by different variables. Thus we evaluated the explanatory power of several potential factors by including them as covariates in a linear mixed model (39) based on equation (2) and selecting the most parsimonious model using AIC. According to equation (2) the community response to trawling in log\(_{10}\) scale is approximately proportional to \(F\), with slope a function of the ratio of \(d/r\). The fixed part of the mixed models was therefore:

\[
\log_{10} (\text{Response}) \sim \text{Trawling frequency} + \text{Trawling frequency} \times \text{other variables} \quad (4)
\]
where the response variable is community biomass or numbers and where the ‘other variables’ can
be covariates for d, r or their ratio. The intercept was removed because $\log_{10}(B/K)$ with no impact =
0. We modelled ‘study’ as a random effect, allowing the slope to vary per study. This approach
accounted for the non-independence of observations within a study. We checked the assumptions
of the linear mixed model by visual inspection of the normalized residuals (38).

We expected that factors that lead to a higher d would strengthen the effect of trawling (e.g. higher
penetration depth), while factors that lead to a higher r by affecting growth rates of individuals and
populations (higher flow of energy to the seabed because of a higher production or shallower depth,
or a higher temperature) would weaken the effect. The closely related penetration depth P
(continuous) and gear type (categorical) were examined as covariates for d. The following covariates
for r were examined: primary production estimated from the vertically generalized productivity
model ($\text{mg C m}^{-2} \text{d}^{-1}$) (41) and particulate organic carbon flux to depth ($\text{POC flux, g C}_{\text{org}} \text{m}^{-2} \text{y}^{-1}$) (42)
as proxies for energy availability, mean sea bottom temperature calculated from monthly mean
bottom temperature for 2009-2011 provided in MyOcean Product; GLOBAL-REANALYSIS-PHYS-001-
009, depth (from GECBO if not reported in the original study), habitat type and sediment
composition (gravel, sand and mud content). Habitat types were classified as biogenic habitats,
gravel, sand, muddy sand/sandy mud, and mud. Sediment gravel, sand and mud content were
extracted from the source studies by converting the sediment description to the Folk classification
(43) and then converting the Folk classification to percentages based on the means in each category.

In addition to analyses using covariates of d or r, we also conducted analyses using covariates of the
d/r ratio, here the d/r ratio was approximated as the ratio of d or P to the continuous r covariates.
The effect of trawling is expected to increase with water depth owing to the lower levels of natural
disturbance in deeper water and the corresponding increase in the relative abundance of individuals
with slower life histories (low r), so $d \times \text{depth}$ was examined as a covariate for d/r, with depth expressed as a negative number.

Acknowledgements

The study was funded by David and Lucile Packard Foundation, the Walton Family Foundation, The Alaska Seafood Cooperative, American Seafoods Group U.S., Blumar Seafoods Denmark, Clearwater Seafoods, Espersen Group, Glacier Fish Company LLC U.S., Gortons Inc., Independent Fisheries Limited N.Z., Nippon Suisan (USA), Inc., Pacific Andes International Holdings, Ltd., Pesca Chile, S.A., San Arawa, S.A., Sanford Ltd. N.Z., Sealord Group Ltd. N.Z., South African Trawling Association and Trident Seafoods. Additional funding to individual authors was provided by the UK Department of Environment, Food and Rural Affairs (SJ, project MF1225); the European Union project BENTHIS EU-FP7 312088, The International Council for the Exploration of the Sea (ICES) Science Fund, the Food and Agriculture Organisation of the UN.

References

the Seafloor Within the New Zealand 200 N. Mile Exclusive Economic Zone, 1989-90 to 2004-
05. Ministry of Fisheries, Wellington
habitats. Report No. FRDC Project No 2014/204, CSIRO Oceans & Atmosphere, Brisbane
between unimpacted habitats. Mar Environ Res
composition of benthic invertebrate communities on a sea basin scale. Mar Ecol Prog Ser
318:31-45
objectives for fisheries and conservation. Conserv Biol 28:677-688
36. Jennings S, Greenstreet SPR, Reynolds JD (1999) Structural change in an exploited fish
community: a consequence of differential fishing effects on species with contrasting life
based on gear design and dimensions. ICES J Mar Sci 73 S1:i27-i43.
38. Zuur AF, et al. (2009) Mixed effects models and extensions in ecology with R. Springer Verlag,
New York
landings value, habitat sensitivity and fishing impacts to inform marine spatial planning and
an ecosystem approach. ICES J Mar Sci 69:1053-1063
chlorophyll concentration. Limnol Oceanogr 42:1-20
production and particulate organic carbon flux to depth describe the efficiency of biological
pump in the global ocean. J Geophys Res Oceans 112:C10011
43. Folk RL (1954) The distinction between grain size and mineral composition in sedimentary-rock
nomenclature. J Geol 62:344-359
44
Table 1. Linear mixed model (SI Appendix, equation S3.1) fits for the analysis of data from comparative studies of changes in (A) biomass and (B) numbers. For community biomass the model with the lowest AIC included no explanatory variables other than trawling frequency, but for community abundance both ‘Gravel content’ and ‘d/PP’ improved the AIC in relation to a model without other explanatory variables. Results for these variables are given under (A) for comparative purposes.

<table>
<thead>
<tr>
<th>A) Community biomass</th>
<th>Slope (b)</th>
<th>Std.Error</th>
<th>DF</th>
<th>t–value</th>
<th>p–value</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>TF</td>
<td>-0.07522</td>
<td>0.0158</td>
<td>503</td>
<td>-4.732</td>
<td><0.0001</td>
<td>566.9</td>
</tr>
<tr>
<td>TF</td>
<td>-0.07142</td>
<td>0.0172</td>
<td>502</td>
<td>-4.148</td>
<td><0.0001</td>
<td>568.4</td>
</tr>
<tr>
<td>TF: Gravel</td>
<td>-0.00067</td>
<td>0.0010</td>
<td>502</td>
<td>-0.648</td>
<td>0.5168</td>
<td></td>
</tr>
<tr>
<td>TF</td>
<td>-0.08623</td>
<td>0.0325</td>
<td>502</td>
<td>-2.653</td>
<td>0.0082</td>
<td>568.8</td>
</tr>
<tr>
<td>TF : (d/PP)</td>
<td>125.6879</td>
<td>373.7966</td>
<td>502</td>
<td>0.336</td>
<td>0.7368</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B) Community numbers</th>
<th>Slope (b)</th>
<th>Std.Error</th>
<th>DF</th>
<th>t–value</th>
<th>p–value</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>TF</td>
<td>-0.21185</td>
<td>0.1342</td>
<td>141</td>
<td>-1.577</td>
<td>0.1169</td>
<td>89.5</td>
</tr>
<tr>
<td>TF</td>
<td>-0.01451</td>
<td>0.0942</td>
<td>140</td>
<td>-0.153</td>
<td>0.8778</td>
<td>81.1</td>
</tr>
<tr>
<td>TF: Gravel content</td>
<td>-0.01206</td>
<td>0.0035</td>
<td>140</td>
<td>-3.377</td>
<td>0.0009</td>
<td></td>
</tr>
<tr>
<td>TF</td>
<td>0.25300</td>
<td>0.2145</td>
<td>140</td>
<td>1.048</td>
<td>0.2964</td>
<td>86.1</td>
</tr>
<tr>
<td>TF: (d/PP)</td>
<td>-6892.96900</td>
<td>2676.5453</td>
<td>140</td>
<td>-2.575</td>
<td>0.0111</td>
<td></td>
</tr>
</tbody>
</table>

TF = Trawling frequency
d = depletion estimate from experimental studies (fraction per trawl pass, SI Appendix, Table S4),
PP = Primary production (mg C m$^{-2}$ d$^{-1}$),
Gravel = sediment composition in % by weight
Figure 1. Maps of the locations of the studies. The higher resolution maps of the northwest and northeast Atlantic give more detail for two areas with high concentration of studies. The 200 m depth contour is shown in blue.
Figure 2. The relationship between the penetration depth P and depletion d of macrofaunal community biomass and numbers caused by a single trawl pass for different trawl gears. Means ± SD.
Figure 3. The relationship between trawling frequency and total community biomass (a) and numbers (c). The thicker lines are the fixed effects, grey lines the random effects of the individual studies (not all visible because many studies had small ranges and low trawling frequencies).

Recovery time to 0.95K for depleted total community biomass (b) and numerical abundance (d) as a function of estimated r and initial depletion D. In (a) and (b) lines are the median estimate based on the mean d across all gears. In (c) and (d), lines are the median estimates for the three different gear types, based on the mean gravel content in the areas where studies using these gear types were carried out. The shaded areas indicate the 5–95% uncertainty intervals for estimates.