

Metabolic and evolutionary patterns in the extremely acidophilic archaeon Ferroplasma acidiphilum ÝT

Golyshina, Olga; Hai, Tran; Reva, Olga N.; Lemak, Sofia; Yakunin, Alexander F.; Goesmann, Alexander; Nechitaylo, Taras Y.; LaCono, Violetta; Smedile, Francesco; Slesarev, Alexei; Rojo, David; Barbas, Coral; Ferrer, Manuael; Yakimov, Michail M.; Golyshin, Peter

Scientific Reports

DOI:

10.1038/s41598-017-03904-5

Published: 16/06/2017

Peer reviewed version

Cyswllt i'r cyhoeddiad / Link to publication

Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA): Golyshina, O., Hai, T., Reva, O. N., Lemak, S., Yakunin, A. F., Goesmann, A., Nechitaylo, T. Y., LaCono, V., Smedile, F., Slesarev, A., Rojo, D., Barbas, C., Ferrer, M., Yakimov, M. M., & Golyshin, P. (2017). Metabolic and evolutionary patterns in the extremely acidophilic archaeon Ferroplasma acidiphilum YT. *Scientific Reports*, 7, Article 3682. https://doi.org/10.1038/s41598-017-03904-5

Hawliau Cyffredinol / General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal?

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Olga V. Golvshina^{1*}, Hai Tran¹, Oleg N. Reva², Sofia Lemak³, Alexander F. Yakunin³, Alexander 1 Goesmann⁴, Taras Y. Nechitaylo⁵, Violetta LaCono⁶, Francesco Smedile⁶, Alexei Slesarey⁷, David 2 Rojo⁸, Coral Barbas⁸, Manuel Ferrer⁹, Michail M. Yakimov^{6,10} and Peter N. Golyshin¹ 3 4 Metabolic and evolutionary patterns in the extremely acidophilic archaeon Ferroplasma 5 $acidiphilum Y^T$ 6 7 ¹ School of Biological Sciences, Bangor University, LL57 2UW Bangor, Gwynedd, UK 8 ² Centre for Bioinformatics and Computational Biology, Department of Biochemistry, University of 9 Pretoria, Pretoria 0002, South Africa 10 ³ Department of Chemical Engineering and Applied Chemistry, University of Toronto, M5S3E5 11 12 Toronto, Ontario, Canada ⁴ CeBiTec Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany; current address: 13 Department of Bioinformatics and Systems Biology, Justus Liebig Universität Gießen, Heinrich-Buff-14 Ring 58, D-35392 Gießen, Germany 15 ⁵ Insect Symbiosis Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 16 17 Jena, Germany ⁶ Institute for Coastal Marine Environment, CNR, Spianata S, Raineri 86, 98122 Messina, Italy 18 ⁷ Fidelity Systems, Zylacta Corporation, 7965 Cessna Avenue, Gaithersburg, MD 20879, USA 19 ⁸ Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU San 20 Pablo, Campus Montepríncipe, Madrid, Spain 21 ⁹ Institute of Catalysis CSIC, Campus Cantoblanco, 28049 Madrid, Spain 22 ¹⁰ Immanuel Kant Baltic Federal University, Universitetskaya 1, 36040 Kaliningrad, Russia 23 24 25 BioSample SAMN03952737; GenBank accession number CP015363 26 * Corresponding author Tel.: +44 1248 383629; Fax: +44 1248 382569; e-mail: <u>o.golyshina@bangor.ac.uk</u> 27 28 29 Key words: Ferroplasma, Thermoplasmatales, acidophilic archaea 30 31 32

Abstract

33

Ferroplasmaceae represent ubiquitous iron-oxidising extreme acidophiles with a number of unique 34 physiological traits. In a genome-based study of Ferroplasma acidiphilum Y^T, the only species of the 35 genus Ferroplasma with a validly published name, we assessed its central metabolism and genome 36 stability during a long-term cultivation experiment. Consistently with physiology, the genome analysis 37 points to F. acidiphilum Y^T having an obligate peptidolytic oligotrophic lifestyle alongside with 38 anaplerotic carbon assimilation. This narrow trophic specialisation abridges the sugar uptake, although 39 all genes for glycolysis and gluconeogenesis, including bifunctional unidirectional fructose 1,6-40 bisphosphate aldolase/phosphatase, have been identified. Pyruvate and 2-oxoglutarate dehydrogenases 41 substituted by 'ancient' CoA-dependent pyruvate and alpha-ketoglutarate ferredoxin 42 oxidoreductases. In the lab culture, after ~550 generations, the strain exhibited the mutation rate of ≥1.3 43 x 10⁻⁸ single nucleotide substitutions per site per generation, which is among the highest values recorded 44 45 for unicellular organisms. All but one base substitutions were G:C to A:T, their distribution between coding and non-coding regions and synonymous-to-non-synonymous mutation ratios suggest the neutral 46 drift being a prevalent mode in genome evolution in the lab culture. Mutations in nature seem to occur 47 with lower frequencies, as suggested by a remarkable genomic conservation in F. acidiphilum Y^T 48 49 variants from geographically distant populations.

Introduction

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

Ferroplasma acidiphilum Y^T (DSM 12658^T) from the family Ferroplasmaceae, order Thermoplasmatales, phylum Euryarchaeota are iron-oxidising extreme acidophiles that require small amounts (0.02 % w/vol) of yeast extract for growth and populate environments with low pH values and rich in sulfur compounds and metals in the form of sulfides^{1,2}. Various ecological aspects related to this widely distributed archaeal group were reviewed earlier³. Deep metagenomic and metaproteomic investigations of microbial communities of acid mine drainage (AMD) biofilms in Iron Mountain (CA, USA) inhabited inter alia by the members of the family Ferroplasmaceae, have been conducted to provide some insights into, and hypotheses on, their metabolism and physiology^{4,5,6}. A number of uncommon biochemical features have also earlier been revealed for F. acidiphilum Y^T, such as an unusually high proportion of iron-containing proteins in the proteome and low pH optima for the enzyme activities in vitro^{7,8,9}. Despite aforementioned research milestones on Ferroplasmaceae, there is a further need in investigation of metabolism of F. acidiphilum Y^T, important in the relation to the practical applications and for filling the void in our understanding of fundamental mechanisms of its lifestyle. In particular, there is still no consensus on the major mechanisms of carbon assimilation and hence on the major role of Ferroplasma spp. play in the environment (apart from the ferrous oxidation, which is well established and characterised in detail). Suggested patchiness of the genomic pools of, and frequent recombinations in genomic variants in Ferroplasma spp. and "Ferroplasma acidarmanus" fer1 in their natural environment¹⁰ that could also be linked with a certain mosaicness of assemblies resulting from metagenomic data from a multitude of clonal variants, could also be verified by the analysis of a genome from geographically distant, yet closely related sibling with 100% SSU rRNA gene sequence identity. For this, the high-quality, ungapped genome from a characterised reference isolate from a similar environment represents a good opportunity. Here, we present the genome-based and wet-lab analysis of F. acidiphilum Y^T in the context of its niche adaptation, nutrients acquisition, energy and carbon metabolic pathways and its relatedness with

phylogenetic neighbours. Furthermore, we provide an overview of the in vitro genome evolution 76 patterns during the long-term maintenance of the strain in the laboratory culture.

78

79

77

RESULTS AND DISCUSSION

- Genome stability and evolution 80
- General genome features. 81
- The size of the genome of F. acidiphilum Y^T is 1.826.943 bp, G+C content 36.49 %, the total gene 82
- number was predicted to be 1773 (excluding 19 CDS with pseudogene qualifiers) with a coding density 83
- of 86.4 %; 508 genes were revealed to code for hypothetical proteins. Loci for 5S, 16S and 23S rRNA 84
- are not arranged in a single operon, but scattered in the chromosome; 46 tRNAs were predicted. 85
- Genome sequence comparison of F, acidiphilum Y^T with "F, acidarmanus" strain fer I. 86
- Strains F. acidiphilum Y^T and "F. acidarmanus" fer1 have zero mismatches in their 16S rRNA gene 87
- 88 sequences, which, nevertheless, does not prove by itself that both belong to the same species. It was
- therefore worth to assess their relatedness by using the Average Nucleotide Identity (ANI) analysis 89
- (http://enve-omics.ce.gatech.edu/ani/¹¹). The analysis suggested the median ANI value of 98.7 % (Fig. 90
- S1), which is well above the commonly accepted cut-off (95 %) for separation of two species based on 91
- the whole-genome comparisons. In addition to that, the application of the online Genome-to-Genome 92
- Distance Calculator (GGDC 2.0 tool, http://ggdc.dsmz.de/distcalc2.php¹²) using all three default 93
- calculation formulae suggested DNA-DNA hybridization (DDH) values 73.1, 85.5 and 85.80% and 94
- DDH values >= 70% with the probabilities 83.97, 97.3 and 98.38, correspondingly. To sum up, both 95
- analyses suggested that based on their genomic sequences, F. acidiphilum Y^T and "F. acidarmanus" 96
- belong to the same species, despite showing some physiological differences reported earlier⁵. 97
- Interestingly, the geographical separation of these two organisms (and many others, as one can judge 98
- from metagenomic assemblies in public sequence databases) has not lead to a great deal of speciation. 99
- 100 This may also suggest that their geographical separation occurred relatively recently and that despite the

affiliation of these archaea to a very special niche, they must be rather robust to, and persistent in the, non-acidic environments, which allows them to disseminate and colonise the sulfidic, low-pH niches across the planet. Seemingly under natural conditions the evolution of such small genome-sized (and hence having a narrow metabolic repertoire), slowly metabolising organisms is on-going at lower rates, which restricts the genome evolution and therefore prevents the divergence and speciation. This is also in line with the suggestion that small and compact genomes, as well as single-copy rRNA genes are the signs for minimising metabolic costs in habitats where neither a broad metabolic repertoire, nor high numbers of paralogous proteins are needed to accommodate growth under very constant and stagnant environmental conditions.

Horizontally transferred genomic islands in F. acidiphilum Y^T .

Horizontally transferred genomic islands (GIs) were identified in the complete genome sequence of *F. acidiphilum* Y^T by the Seqword Gene Island Sniffer (SWGIS) program¹³, IslandViewer program package comprising three different GI prediction algorithms¹⁴ and by GOHTAM¹⁵. Joint results of GI identification by different methods are shown in Fig. 1. Nine putative GIs characterized by alternative oligonucleotide usage (OU) patterns were detected by SWGIS and IslandViewer programs predicted three shorter GIs. GOHTAM returned many short regions with atypical tetranucleotide and/or codon usage; however, not all of them necessarily were of a lateral origin. Predicted GIs mostly harboured genes with unknown functions, a few transposases and several enzyme-coding genes including a gene cluster of archaeal sulfocyanin-containing respiratory system and a beta-lactamase in GI [126,000-156,681] and a cluster of genes encoding CRISPR-associated proteins in seventh GI [905,732-938,099] (see below for more details). Our findings indicate that the horizontal gene transfer might play an important role in the evolution of metabolic pathways of *F. acidiphilum* Y^T and in the acquisition of a resistance against viruses.

GIs identified were searched for tetranucleotide pattern similarity through the database of 17,984 GIs

detected in 1,639 bacterial and chromosomal sequences (see the database at

www.bi.up.ac.za/SeqWord/sniffer/gidb/index.php)¹⁶. Significant compositional similarity of GIs from 126 F. acidiphilum Y^T was found with GIs of many other archaea and bacteria belonging to distant 127 taxonomic units. However, the highest similarity was observed between GIs of F. acidiphilum and 128 another acidophilic archaeon *Thermoplasma volcanium* GSS1. Remarkably, among recipients of GIs 129 from other extremophiles, there were several Bacteroides species. 130 131 The factor playing an important role in the genome evolution and lateral gene transfer are transposases. 132 In total, 80 transposases have been predicted, among them 28 belonged to IS4 family proteins and 10 were affiliated with MutS transposase mutator family proteins (COG3328). As it was suggested earlier¹⁷ 133 the MutS homologs are abundant in Euryarchaeota and could be indicative to the gene transfer from 134 bacteria to archaea. Other genes encode IS605 OrfB family transposases and ISA0963 transposases, 135 IS2000 family protein, MULE, OrfA of protein families, consistently with the previous reports of 136 Thermoplasmatales to commonly carry numerous ISs of the families IS4 IS5, IS256, IS481, ISA1214 137 and IS2000/605/607¹⁸. 138 139 Mismatch repair and recombination. Recombination and mismatch repair proteins were represented by the DNA resolvase (FAD 0665) 140 exhibiting a relatively low similarity to its counterparts from methanogens and bacteria. DNA-repair 141 helicase FAD 1466 was similar to archaeal Rad25 proteins, FAD 1503 exhibited 30% identity with 142 Sulfolobales XPD/Rad3-related DNA helicases and with another DNA repair protein FAD 1564. Genes 143 FAD 0550 and FAD 0559 encode DNA repair and recombination proteins RadA and RadB, archaeal 144 homologs of RecA and Rad51, respectively; the latter is considered of being Euryarchaeota-specific 19. 145 Mismatch repair proteins, MutS-like ATPases (FAD 0765-0766), were most similar to MutS proteins 146 from bacteria and *Thermoplasmatales*. The genome encodes a number of endonucleases, namely of the 147 type II restriction endonuclease FAD 0313 exhibiting a high similarity only with bacterial proteins, two 148 gene copies for endonucleases of types III (FAD 1157, 1370), IV (FAD 0129, 1301) and of type V 149 150 (FAD 0403) as well as Fen1 (FAD 0558) and PolX (FAD 1333) endonucleases.

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR). The F. acidiphilum Y^T 151 genome revealed the presence of two clusters of Clustered Regularly Interspaced Short Palindromic 152 Repeats (CRISPR) separated by one operon encoding the CRISPR-associated (Cas) proteins and ten 153 genes, which are not related to CRISPR (Fig. 2). CRISPRs and Cas proteins represent a microbial small 154 RNA-based interference system found in most archaea and many bacteria; the CRISPR-Cas system 155 functions as the adaptive microbial immune system against invading viruses and plasmids, and it also 156 has a role in microbial pathogenesis, DNA repair, and biofilms²⁰. The cluster CRISPR1 of F. 157 acidiphilum Y^T is quite large and contains 133 identical and 3 degenerated direct repeats (30 bp long) 158 separated by 135 different spacers of similar size (34-39 bp) (Fig. 2). The cluster CRISPR2 is smaller 159 with 31 direct repeats (31 bp each) separated by 30 different spacers (35-38 bp, with spacer 5 being 62 160 bp). Neither spacers, nor repeats from these clusters share any sequence similarity to each other. The 161 162 rather large size of both CRISPR1 and CRISPR2 arrays might be indicative of high activity of the F. acidiphilum Y^T CRISPR system^{21,22}. The NCBI Blast analysis of the F. acidiphilum Y^T CRISPR spacers 163 revealed no homologous sequences present in the available viral genomes or plasmids suggesting that its 164 CRISPR targets have yet to be discovered. Only the spacer 2 from cluster CRISPR2 was found to be 165 identical to a region in a gene encoding the hypothetical protein FACI IFERC00001G0010 in the "F. 166 acidarmanus" genome, a large uncharacterized protein with the predicted UvrD-like helicase and 167 restriction endonuclease type II-like domains. Although the "F. acidarmanus" genome also encodes two 168 CRISPR clusters and eight cas genes, their repeat sequences showed no similarity one to another 169 suggesting that their CRISPR systems are not related. The eight cas genes of F. acidiphilum Y^T are 170 associated with the cluster CRISPR1 and are expected to be co-transcribed (cas6, cas10, cas7, cas5, 171 cas3, cas4, cas1, and cas2) (Fig. 2). Based on the cas gene arrangement and the presence of cas10, the 172 F. acidiphilum Y^T CRISPR-Cas system can be classified as a CRISPR subtype I-D, which is similar to 173 the type III system²³. This is consistent with the fact that most archaea contain the CRISPR subtypes A, 174 B, or D²⁴. In most of the type I and III CRISPR systems, Cas6 proteins cleave long pre-CRISPR RNA 175

(crRNA) transcripts generating mature crRNAs containing a single spacer with flanking repeat fragments²⁵. Based on sequence, the type I-D CRISPR repeats have been predicted to form hairpin structures, which are recognized by Cas6 proteins and cleaved at the 3'-base of the stem-loop. Analysis of the *F. acidiphilum* Y^T CRISPR1 and CRISPR2 repeats revealed that they can form similar hairpin structures suggesting that both CRISPR1 and CRISPR2 pre-crRNAs can be processed by the single *F. acidiphilum* Y^T Cas6 protein. Comparison of amino acid sequences of the *F. acidiphilum* Y^T Cas proteins with GenBank identified the Cas1 and Cas2 proteins from *Picrophilus torridus* (an acidophilic archaeon and the closest phylogenetic neighbour of *Ferroplasmaceae*) as the top BLAST hits (50% and 46% sequence identity, respectively). However, other Cas proteins from *F. acidiphilum* Y^T were more similar to the corresponding Cas proteins from the metagenomic assembly dubbed "*Ferroplasma* sp. Type II" (58% to 75% sequence identity).

Analysis of mutations over the long-term cultivation in vitro.

Comparison of two variants of genomes of *F. acidiphilum* Y^T (i.e. the original culture deposited in the DSMZ in 1998 (DSM 12658^T) and the culture continuously grown in laboratory with re-inoculation intervals of 24.5 days for 11 years) revealed 116 single-nucleotide substitutions (see Supplementary Table S2 for details on substitutions and single-nucleotide polymorphism) randomly scattered across the chromosome (Fig. 1), green arrowheads on the outer circle). 115 out of 116 were GC to AT substitutions; such nucleotide shift is a common tendency for spontaneous single-base substitutional mutations²⁶ and indicates that *F. acidiphilum* Y^T genome with already low GC content is prone to further AT enrichment. Among substitutions, 12 (about 11 %) were detected in non-coding sequences that is consistent with the overall coding percentage (86.4 %) in the genome. From bases' substitutions in coding sequences, 34 of 103 (i.e. 33%) were synonymous. Majority of 69 non-synonymous base substitutions resulted in non-conservative amino acid changes and only in 7 cases resulted in conserved ones. 11 genes had two substitution sites (Table S2). Substitutions in coding regions mostly occurred in genes with known functions but also in 17 genes encoding hypothetical proteins (almost all these

proteins contain one or more conserved domains). Some base substitutions occurred in genomic islands 201 1, 2 and 4, specifically in the GI 1, which contains gene clusters coding for ribosomal proteins (Fig. 1) 202 and Table S2). Distribution of substitutions in other GIs showed evidence of those in functional genes, 203 only one mutation occurred in a hypothetical gene. 204 Base-substitutional mutation rate per nucleotide position per generation calculated for F. acidiphilum Y^T 205 was within the highest range of that in other unicellular organisms, i.e. was similar or higher than that in 206 Mesoplasma florum²⁷, which until now had the highest record of mutation rates per base per generation. 207 According to the data²⁷, in prokaryotic organisms, viruses and most (except four) unicellular eukaryotes 208 base substitution rates per site per cell division fit the regression plot $\log_{10}u = -8.663 - 1.096\log_{10}G$ (u and 209 G are mutation numbers and genome sizes, respectively, and $r^2=0.872$) (Fig. 3). F. acidiphilum Y^T , 210 however, occupies an outstanding position in this respect with remarkable 0.02 (conservative estimates) 211 212 mutations per generation per genome (as a comparison, this figure for *Escherichia coli* is of approx. 0.001). We hypothesize that one of the possible reasons of these outstanding mutation rates may be the 213 earlier observed abnormal abundance of intracellular iron in the cells of F. acidiphilum $Y^{T 8}$, which may 214 under oxidative stress conditions be linked with excessive DNA damage by Fenton reaction. Another 215 factor, which may contribute to the high mutation rates, is the error-prone DNA polymerase IV 216 (FAD 1298), which is capable of inducing mutations at sevenfold higher rate than under its 217 deficiency²⁸. The experimental validation of above hypotheses though is yet to be conducted. 218

219

220

221

Energy and carbon metabolism

Oxygen respiration and iron oxidation

The detailed biochemical study of the respiratory chain of F. acidiphilum strain Y^T has recently been reported²⁹. Interestingly, the genes coding for electron flow chain involved in iron oxidation in F. acidiphilum Y^T were located in the identified Genomic Island/GI 1 (126,000-156,681), similarly to that

- 225 in P. torridus and Cuniculiplasma divulgatum, where the origin of the respiratory complexes has also
- been attributed to the lateral gene transfer^{30,31}.
- 227 Related to the synthesis of the Fe-S systems we have detected the cysteine desulfurase gene
- 228 (FAD 0633), co-clustered genes sufC and sufB genes (probably related to the above) and the
- 229 hypothetical protein with a low similarity level to bacterial SufD like protein (FAD 1089-1087). There
- were 6 ORFs in the genome related to ferredoxin synthesis (FAD 0146 [COG0348]; FAD 0257
- 231 [COG1146]; FAD 1078 [COG1145]; FAD 1661 [COG2440]; FAD 1852 [COG1146] and FAD 1160
- [COG2440]). Most of them contain 4Fe-4S clusters, providing low potential electron donors for redox
- processes in F. acidiphilum Y^T .

234 Amino acids metabolism.

- Genome inspection of F. acidiphilum Y^T revealed incomplete synthesis pathways for histidine,
- isoleucine, leucine and valine (Fig. S2) pointing at the dependence on external sources and hence
- supporting the role of *Ferroplasma* in the environment as iron-oxidising proteolytic 'scavengers'. The
- well-developed capacity for degrading amino acids is encoded by the F. acidiphilum Y^T genome. For
- example, we found the genes for the degradation of histidine via urocanate (FAD 1379) and
- 240 tryptophane via kynurenine to anthranilate (FAD 0101-0104) and 2-oxoacid dehydrogenase complex
- 241 (FAD 1290-1291). Transamination of aspartate and glutamate via aspartate aminotransferases
- 242 (FAD 0393, 0538 and 1098) and glutamate dehydrogenase (FAD 0434) generates corresponding
- branched-chain 2-oxoacids, oxaloacetate and 2-oxoglutarate, which are citric acid cycle intermediates.
- Bioleaching pilot plant, from where F. acidiphilum Y^{T} was isolated, contained ore particles of various
- sizes, where this archaeon may encounter anoxic microenvironments. Physiological studies performed
- on F. acidiphilum Y^T denoted this strain as a facultative anaerobe, coupling chemoorganotrophic growth
- on yeast extract to the reduction of ferric iron⁵. However, the detected reduction cannot be recognised as
- respiratory reactions since the obtained biomass was very low and close to no substrate-control.
- Nevertheless, we looked for corresponding genes relevant to a certain metabolic activity of F.

acidiphilum Y^T strain under anaerobic conditions. Pyruvate can be converted to acetyl-CoA by a 250 ferredoxin-dependent pyruvate oxidoreductase (POR, FAD 0567-0568). Obtained product may be 251 converted to acetate by an ADP-forming acetyl-CoA synthetase thus providing substrate level 252 phosphorylation step of pyruvate fermentation. Additionally, the F. acidiphilum Y^T genome possesses 253 all genes necessary for complete arginine fermentation, i.e. arginine deiminase pathway. This 'ancient' 254 catabolic route, converting arginine to ornithine, carbon dioxide, ATP and ammonium constitutes a 255 major source of energy for some obligate anaerobic bacteria and fermenting archaea^{32,33}. Produced 256 ammonium increases the intracellular pH and has been shown to be important for survival of various 257 prokaryotes in acidic environment³⁴. The arginine deiminase pathway was probably present in the last 258 259 universal common ancestor (LUCA) to all the domains of life and its genes evolved independently, undergoing complex evolutionary changes leading to a later assemblage into a single cluster with 260 functional interdependence³³. It must be noted that all three genes of the arginine deiminase pathway, 261 namely arginine deiminase (FAD 0428), ornithine transcarbamoylase (FAD 1523) and carbamate 262 kinase (FAD 0067) are not in a single operon, but are located distantly one from another in the F. 263 acidiphilum Y^T genome; the above has so far not been detected in any other but very closely related 264 extremely acidophilic archaea. 265 Arginine fermentation route is not the only signature of ancient anaerobic LUCA metabolism, which 266 occurs in the F. acidiphilum Y^T genome. Following the method described elsewhere^{35,36}, we identified 267 several other genes of the ancient metabolic core including 6 methyltransferases (FAD 0113, 0367, 268 1012, 1218, 1562 and 1651), 5 SAM-dependent methyltransferases (FAD 0758, 0931, 1052, 1315 and 269 1729) and ferredoxin (FAD 0146) in addition to several subunits of the H⁺/Na⁺-antiporter 270 Mrp/hydrogenases and related complexes (FAD 0579-0584). The acquisition of this antiporter 271 comparable to [NiFe] hydrogenases was proposed as a crucial step at the early stages of bio-energetic 272 273 evolution, which allowed conversion of geochemical pH gradient into the biologically more useful Na⁺ gradient³⁷. Noteworthy, all these protein families are typical for strict anaerobes and rarely occur in 274

genomes of aerotolerant or facultatively anaerobic prokaryotes, harbouring heme-copper oxygen reductases³⁶. *F. acidiphilium* Y^T can be an example of such rare organisms that possess both LUCA candidate gene protein families alongside the cytochrome oxidases.

TCA cycle in F. acidiphilum Y^T

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

As observed in a multitude of studies, for a successful isolation of many prokaryotes, and especially archaea, the yeast extract should be added into the cultivation media as an essential component and a source of numerous cofactors and nutrients but also oligopeptides and amino acids. These nutrients are fundamental substrates feeding many metabolic pathways, including tricarboxylic (citric) acid cycle (TCA). This cycle is likely the central metabolic hub of F. acidiphilium Y^T , while most proteins involved in the canonical TCA cycle were identified in genome, except for 2-oxoglutarate (OG) dehydrogenase complex (Fig. 4). In common with some other archaea^{38,39}, the conversions of pyruvate to acetyl-CoA and of 2-OG to succinyl-CoA are catalysed by the respective pyruvate:ferredoxin oxidoreductase (POR, FAD 0567-0568) and alpha-ketoglutarate:ferredoxin oxidoreductase (KOR, FAD 0712-0713). Although both enzymes were initially characterised as extremely oxygen-sensitive, POR and KOR activities have been demonstrated also in a number of obligately aerobic organisms^{40,41}. Compared to their anaerobic counterparts, these enzymes are oxygen-tolerant, exhibit lower rates and have an unusual subunit structure 42,43. Noteworthy, it has been suggested 44 that to support biosynthetic reactions some aerobic prokaryotes might utilise KOR for the reductive carboxylation of succinyl-CoA to 2-OG. Given that succinyl-CoA synthetase, succinate dehydrogenase, fumarate hydratase and malate dehydrogenase are the enzymes that catalyse reversible reactions, the formation of 2-OG from oxaloacetate via malate, fumarate, succinate and succinyl-CoA is apparently plausible for F. acidiphilum Y^T (Fig. 4). This finding suggests that, while relying primarily on amino acids catabolism for carbon, F. acidiphilium Y^T can recruit the partially reverse, or reductive, TCA cycle as the additional anabolic strategy to produce important precursors for biosynthesis. This strategy was demonstrated in a number of archaea and acidophilic bacteria⁴⁵.

Although we did not quantify the expression of all genes involved in TCA cycle, the transcriptomic 300 analysis of succinate dehydrogenase and malate dehydrogenase revealed that both enzymes were 301 expressed to a similar extent (Fig. 4). Recently, these enzymes were identified in Ferroplasma proteome 302 as proteins induced during anaerobic growth coupled with ferric iron reduction 46,47. It is therefore most 303 likely that under these conditions, in order to provide the terminal electron acceptor (Fe³⁺) with reducing 304 power, the catabolic function of TCA cycle prevails over the anabolic. 305 306 In connection with the inability to use acetate as the sole carbon source, the key enzymes of the glyoxylate cycle, isocitrate lyase, and malate synthase, could not be identified in the F. acidiphilum Y^T 307 genome. Concluding the description for the oxidative, partially "anaerobic" TCA cycle, it becomes 308 apparent that due to the capability of KOR for the reductive carboxylation, F. acidiphilum Y^T cells 309 possess an enzymatic machinery permitting to convert succinyl-CoA into 2-OG while fixing inorganic 310 311 carbon. 2-OG can be directly converted into amino acids by glutamate dehydrogenase (FAD 0434), which assimilates ammonium and besides biosynthetic function can be regarded as a part of nitrogen 312 metabolism. Additionally, glutamate can be also formed from 2-OG by an aspartate aminotransferase 313 (FAD 1098) yielding oxaloacetate (Fig. 4). 314

Glycolysis/ Gluconeogenesis.

315

316

317

318

319

320

321

322

323

324

Growth on amino acids requires a gluconeogenic pathway for carbohydrate synthesis⁴⁸ and in line with that all genes for a reverse glycolytic pathway have been identified. Interestingly, Ferroplasma possesses gene encoding a bifunctional gluconeogenetic fructose 1,6-bisphosphate aldolase/phosphatase, a strictly anabolic enzyme, which is discussed as being an ancestral enzyme type⁴⁹. Consistently, homologues for classical (glycolytic) fructose 1,6-bisphosphate aldolases are missing. Although F. acidiphilum Y^T was reported to be unable to use sugars as the sole carbon source. genes coding for some essentially irreversible reactions of glycolysis, besides aldolase, appear to be present in the genome. These are glucokinase (FAD 0277), phosphofructokinase (FAD 0353). Thus, it is likely that the absence of corresponding transporters preclude the uptake of external glucose, which, nevertheless, can be metabolised in phosphosugars and pentoses if synthesised *de novo* by F.

acidiphilum Y^T cells. In consistency with findings in other archaea⁵⁰, the oxidative pentose phosphate pathway is lacking in F. acidiphilum Y^T , but its reductive part is fully present and likely operative (Fig. 4).

Putative CO₂ assimilation mechanisms through gene expression analysis.

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

Earlier it was reported that F. acidiphilum Y^T was able to incorporate into its biomass the inorganic carbon in the form of ¹⁴CO₂ ^{1,51}. The genome analysis however did not suggest a clear assimilatory pathway whereas a number of carboxylation reactions may have led to the incorporation of CO2 into the biomass. Besides mentioned above reductive carboxylation of succinyl-CoA to 2-OG by KOR, it is possible that also POR enzyme is used in the reverse direction for anabolic purposes to support biosynthetic reactions. Additionally, the F. acidiphilum Y^T genome harbours two enzymes whose activity in the carboxylation direction might be involved in CO2 fixation: phosphoenol pyruvate carboxylase (PEPC) (FAD 1044) and NAD-binding malate oxidoreductase (malic enzyme FAD 0703) (Fig. 4). Expression of genes for these four enzymes along with succinate and malate dehydrogenases was detected and quantified by real-time PCR. Prior to perform the RT-PCR assays we estimated the nucleic acids ratio in F. acidiphilum Y^T culture harvested after 4 days, which corresponded to the late exponential/early stationary growth phase. This value provides an indication of cellular RNA levels, i.e. metabolic state, and is independent of the number of cells examined. The estimated RNA/DNA ratio of 7.81 indicated that F. acidiphilum Y^T cells were actively metabolising at this state. Two housekeeping genes, gyrB and rpl2 exhibiting constitutive levels of expression, were selected as standards to quantify the relative abundance of F. acidiphilum Y^T gene transcripts involved in both, TCA cycle and in anaplerotic CO₂ assimilation (Table S1). Compared to gyrB transcripts, we detected a slightly higher transcription level of rpl2 (the structural component of the large 50S ribosomal subunit), which reflected the active metabolic state of F. acidiphilum Y^T. Noteworthy, while comparable with expression levels of the references, relative amounts of *sdhA*, *sdhD* and *mdhI* transcripts were significantly reduced (40-200fold) as compared to those of POR, KOR and malic enzyme. The PEPC transcripts were detected in quantities similar to those of *gyrB* (Fig. 4). As far as only PEPC catalyses irreversible carboxylation, the RT-PCR data confirm that direct carboxylation reactions do contribute to the inorganic carbon uptake by *F. acidiphilum* Y^T cells. We are aware that to confirm unambiguously the contribution of POR, KOR and malic enzyme to the total cellular carbon formation, more in-depth biochemical studies of anaplerosis are needed.

Transport mechanisms of F. acidiphilum Y^T are habitat-specific

To thrive in environmental settings with high concentrations of metals and metalloids (iron, copper, cadmium, zinc and arsenic) *F. acidiphilum* Y^T must possess the corresponding set of important transport mechanisms. Various genes coding for cation diffusion facilitator family, manganese/divalent cation and tellurium resistance ABC transporters were detected in the *F. acidiphilum* Y^T genome (Table S3). These transporters increase tolerance to divalent metal ions such as cadmium, cobalt, tellurium and zinc. Besides, they may provide essential cofactors like molybdate and tungsten for diverse enzymes. *F. acidiphilum* Y^T is native to arsenic-rich environments, and to withstand the arsenite stress the genome encodes the ATP-dependent arsenite efflux pump. Genes for homologues of arsenite-sensitive regulator (FAD_1795) and arsenite efflux pump permease (FAD_1796) were found located in a single operon. A gene encoding for an arsenite efflux pump ATPase located distantly from the *ars* operon on the chromosome was also identified (FAD_1514). With regard to the phosphorus, the *F. acidiphilum* Y^T genome possesses one sodium-dependent phosphate transporter FAD_1510 and three inorganic phosphate:H⁺ symporters (FAD_1260, 1738, 1753). Previously we described the narrow specialisation of *F. acidiphilum* Y^T in uptake of organic substrates, highlighting that this strain was not capable of growth on any of tested compounds, including organic acids, alcohols and single amino acids, common

sugars and related compounds¹. The addition of yeast extract was observed to be essential for growth

with the optimum concentration at 200 mg l⁻¹. In concordance with these observations, F. acidiphilum

Y^T genome is lacking genes for the transport and assimilation of common organic compounds other than 375 376 amino acids, and has only one identifiable integral carbohydrate ABC transporter (FAD 1026-1028). Herewith, at least 7 oligopeptide/peptide ABC transporters and 17 transporters for amino acids were 377 found. Additionally to this cluster of transporters, the F. acidiphilum Y^T genome harbours 48 genes for 378 transporters belonging to the Major Facilitator Superfamily (MFS). Although poorly characterised, this 379 large and diverse group of secondary transporters was found to participate in the export of structurally 380 and functionally unrelated compounds and in the uptake of a variety of substrates including ions, amino 381 acids and peptides^{52,53}. These MFS-affiliated genes were found to be located nearby genes for 382 membrane and transposase IS4 family proteins, amino acids transporters or vitamins biosynthesis. 383 Certain speculation on various possible functionalities might be done in this relation. F. acidiphilum Y^T 384 MFS-related proteins exhibited the most significant similarity mostly to the counterparts from 385 386 Thermoplasmatales known to possess highest number of MFS proteins among other Euryarchaeota (13 in average) according to http://supfam.org/SUPERFAMILY⁵⁴. In this context, the number of MFS-387 related genes found in F. acidiphilum Y^T genome (48) is within the range (in average, 40 per genome) 388 for *Thermoplasmatales* that occupy the same or similar environments. 389 Consistently with the abundance of oligopeptide/peptide transporters, the genome of F. acidiphilum Y^T 390 encodes 16 cytoplasmic and membrane-associated proteases and aminopeptidases, including tricorn 391 protease FAD 0691 and its integrating factors F2 (FAD 0645) and F3 (FAD 0317) both possessing the 392 aminopeptidase activity. In conjunction with these factors, tricorn protease can degrade oligopeptides in 393 a sequential manner, yielding free amino acids⁵⁵. Besides this sophisticated cell-associated proteolytic 394 machinery, the genome of F. acidiphilum Y^T encodes three secreted acid proteases thermopsins 395 (FAD 0679, 0833 and 1292). Thus, in concordance with physiology, the genome analysis indicates that 396 F. acidiphilum Y^T has a metabolism specialised in efficiently converting proteins and peptides into 397 amino acids. Noteworthy, the growth of the strain F. acidiphilum Y^T is strongly affected by the presence 398 of yeast extract in amounts greater than 200 mg l⁻¹ and is completely inhibited at concentrations greater 399

than 2 g l^{-1} . As we realised from the genome analysis, the membrane of F. acidiphilum Y^{T} is likely to be 400 well supplied with numerous protein- and amino acid-transporting complexes determining exceptional 401 nutrient-scavenging capabilities. If this is true, the sudden entry into the cytoplasm of an abundance of 402 nutrients could overwhelm the respiratory metabolism with reducing power that would generate 403 damaging level of toxic oxygen species, such as hydroxyl radicals and peroxides. Additionally, the F. 404 acidiphilum Y^T cytoplasm would become overloaded by organic compounds, which could provoke the 405 406 cell death by dehydration. Additionally to the oligotrophic adaptation, the growth was not detected on the yeast extract alone 407 without ferrous iron, which serves as the electron donor 1,5 . Taken together, these data point to F. 408 acidiphilum Y^T as an obligate peptidolytic chemomixotrophic oligotroph. 409 F. acidiphilum Y^T genome does not harbour any of known pathways of CO₂ fixation, thus suggesting 410 that the capability of F. acidiphilum to assimilate inorganic carbon^{1,51} is probably a result of anaplerotic 411 CO₂ assimilation. An intriguing point to mention is the ubiquity of F. acidiphilum with their remarkable 412 conservation of genomes. The ability to iron oxidation is solely characteristic to Ferroplasmaceae 413 family members among all up to date cultivated and studied Thermoplasmatales archaea, which 414 represents a certain advantageous/niche speciation trait and might contribute to the broad distribution of 415 these archaea. This is in a strong contrast with Picrophilus or Thermogymnomonas spp. that have so far 416 been detected exclusively on Japanese Isles. 417 One could speculate on another argument for the possible ancient origin of these archaea reflected in 418 amino acid/peptides dependence, which was suggested to exist in first heterotrophs and which seems to 419 be linked to sulfur-containing environments⁵⁶. In concordance with this hypothesis, the genes for several 420 protein families from an apparent ancient anaerobic core of the LUCA, e.g. for ferredoxin, several 421 subunits of the Mrp-antiporter/hydrogenase family, numerous S-adenosyl methionine (SAM) dependent 422 methyltransferases that rarely occur in aerobic prokaryotes^{35,36}, were found in the F. acidiphilum Y^T 423 424 genome.

One of the interesting observations was a relatively high number of single nucleotide substitutions in the genome of F. acidiphilum Y^T after ~550 generations in vitro. We hypothesize that such a high mutation rate could be caused by faster growth rates under optimal conditions in the culture, which is untypical for these archaea in their real life in natural habitats where they tend to exhibit a remarkable genomic conservation even in geographically distant populations. Analysis of nucleotide substitutions suggests that the genome is prone to the further decrease in GC content. The ratios of synonymous to non-synonymous amino acid substitutions and the distribution of single nucleotide substitutions between coding and non-coding regions suggest that at least under optimal cultivation conditions, the neutral drift is a prevalent mode of the genome evolution *in vitro*. This hypothesis certainly requires a deeper experimental analysis with parallel cell lines run in continuous bioreactors and for a greater number of generations.

Methods

Reference strain and growth conditions

F. acidiphilum Y^T (DSM 12658^T) was deposited to the DSMZ collection in 1998, and since then maintained in the laboratory, in 2008 the original isolate was retrieved from DSMZ for genome sequencing. F. acidiphilum Y^T was routinely grown on the Medium 9K containing 25 g/l of FeSO₄.7H₂O, supplemented with 0.02 % (w/vol) of yeast extract until the mid-exponential phase at as described previously¹. For calculation of single substitution mutation rates, the 100-ml cultures were grown in Erlenmeyer flasks under optimal conditions¹ since deposition of the strain to the DSMZ Strain Culture collection in 1998. As an inoculum, 10 ml of culture were used each time, with 164 repeated growth experiments. The final culture (2008) was subjected to the DNA extraction and sequencing. Isolation of DNA from both variants was conducted using Genomic DNA isolation kit (QIAGEN, Hilden, Germany).

Sequencing and assembly

450

452

453

454

455

456

457

458

459

461

462

463

464

465

466

468

469

470

471

472

473

474

De novo sequencing data production of F. acidiphilum Y^T was conducted at the Liverpool University Genome Centre on a 454 FLX Ti (454 Life Sciences, Branford, CT, USA) using a standard library (34 451 x) coverage. In addition, a library sequencing using Illumina 2000 was done at Fidelity Systems (short paired-end 400 bp, av. read 100, coverage x 639) and at the Sequencing Facility of the Helmholtz Centre for Infection Research (Braunschweig, Germany) (single end, 36 nt in average, x 233 coverage). Genome assembly and gap closure were performed by Fidelity Systems Ltd. (Gaithersburg, MD, USA) using Phred/Phrap and Consed^{57,58,59} have been operated for the final sequence assembly. DupFinisher⁶⁰ was used for the correction of repeat mis-assemblies and 384 Sanger end-sequenced fosmids for the generation of a single scaffold (0.98 x coverage). For the full closure, a number of direct sequencing reactions has been conducted⁶¹. The genome was automatically annotated at Fidelity Systems (USA) using Fgenesb:2.0 and manually curated using GenDB v. 2.2.1 annotation system Ribosomal RNA 460 genes were identified via BLAST searches⁶² against public nucleotide databases and transfer RNA genes using tRNAScan-SE v. 1.2163. The CRISPRFinder web service was used for the identification of CRISPRs⁶⁴. The genome of F. acidiphilum Y^T variant grown in the lab for ~550 generations was sequenced using Illumina (average coverage: 233) and was further mapped on the assembled type strain genome. The genome sequence of F. acidiphilum Y^T has been deposited to the GenBank/EMBL/DDBJ with the accession number CP015363.

RNA isolation and quantitative reverse transcription PCR analysis (Q-RT-PCR). 467

Q-RT-PCR was used to estimate the abundance of ten target genes transcripts (Table S1). F. acidiphilum Y^T cells were collected after 4 days (corresponding to onset of stationary phase) by centrifugation at 9000 rpm for 15 min of 15 - 25 ml culture and total RNA was immediately purified using miRVANA kit (Ambion). RNA samples were treated with Turbo DNA-free kit (Ambion Austin, TX, USA). To eliminate the residual DNA contamination present in the RNA preparations, a second DNase treatment (DNase I, Invitrogen) was included prior to complementary DNA (cDNA) production. cDNA synthesis was performed with SuperScript II Reverse Transcriptase (Invitrogen, Carlsbad, CA,

USA) with 100 ng of total RNA and 2 pmol of Random Hexamer Primer (Thermo Fisher Scientific) 475 according to the manufacturer's instruction. All RT-PCR experiments were performed using an ABI 476 7500 Fast Real-Time PCR System thermocycler. Gene-specific primers and TagMan® probes (Table 477 S1) were designed using Primer Express® software v.2.0 (Applied Biosystems, USA). 5'-6-FAM and 3'-478 BHQ1 labelled TaqMan® probes were obtained from Biomers (Germany). RNA samples were tested in 479 triplicates along with "No Template Control" (NTC). The reaction mixtures for Tagman® Q-RT-PCR 480 were as follows: 0.3 µM final concentration of each primer, 0.2 µM TaqMan probe, cDNA template 481 equivalent to 1 ng of RNA starting material, 12.5 µl of 2X TaqMan® 5 Universal PCR Master Mix (PE 482 Applied Biosystems) and ultrapure water added to the final volume of 25 µl. The reactions were 483 performed under the following conditions: 2 min at 50 °C followed by 10 min at 95 °C, followed by 40 484 cycles of 15 s at 95 °C and 1 min at 60 °C. PCR specificity and product detection was checked by 485 486 examining the temperature-dependent melting curves of the PCR products and by sequencing of cloned amplicons. 487 Generation of quantitative data by RT-PCR is based on the number of cycles needed for amplification-488 generated fluorescence to reach a specific threshold of detection (the Ct value). RT-PCR amplification 489 was analysed using an automatic setting for the baseline and threshold values and using the relative 490 standard curve method. Standards for all amplifications were prepared using known amounts of cloned 491 target templates. Amplicons were generated by PCR amplification of the target genes from genomic 492 DNA. The resulting amplicons were then purified using the Wizard SV Gel and PCR Clean-up System 493 kit (Promega, Madison, WI, USA), and cloned in pGEM®-T Easy Vector System I (Promega). After 494 cloning, plasmids were extracted using the QIAprep Spin Miniprep kit (Qiagen, Hilden, Germany) and 495 DNA concentrations were measured using a Nanodrop® ND-1000 spectrophotometer. Standard curves 496 were based on serial dilution ranging between 10⁷ and 10¹ gene copies. Ct values were then 497 automatically generated by software and exported for calculation of average Ct and standard deviation 498 499 (SD) values of triplicates. The comparative method using gyrB mRNA as the normalizer was performed

500	as described elsewhere ⁶⁵ . For normalization based on multiple, most stably expressed housekeeping
501	genes, we used a ribosomal $pL2$ gene, which has equal to $gyrB$ reaction efficiency (E) value of $1.90^{66,67}$.
502	
503	Acknowledgments
504	We are very much thankful to Dr Ivan Berg (University of Freiburg, Germany) for careful reading of the
505	manuscript and important suggestions. The work of T.H. and P.N.G. was supported by ERA Net IB2
506	Project MetaCat through UK Biotechnology and Biological Sciences Research Council (BBSRC) Grant
507	BB/M029085/1, S.L. and A.F.Y. were supported by the NSERC Strategic Network grant IBN. This
508	work was also supported by the Spanish Ministry of Economy and Competitiveness (PCIN-2014-107
509	within the ERA Net IB2 Program, and CTQ2014-55279-R) to which M.F., C.B., and D.R. would like to
510	acknowledge their funding.
511	
512	Conflict of interest
513	The authors declare no conflict of interest.
514	
515	Authors' contributions
516	O.V.G., M.M.Y. and P.N.G conceived the research. O.V.G, H.T., O.N.R, S.L., A.F.Y, A.G., A.S., D.R.,
517	C.B, M.F, T.Y.N., M.M.Y, and P.N.G did the genome analysis. V.L., F.S. and M.M.Y. did the qPCR
518	experiments. O.V.G, M.M.Y and P.N.G wrote the manuscript.
519	

520

521

Supplementary Information is available at the Journal website.

522

523

REFERENCES

- 1. Golyshina, O. V. et al. Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic,
- ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov.,
- 526 comprising a distinct lineage of the Archaea. *Int J Syst Evol Microbiol.* **3**, 997-1006 (2000).
- 2. Golyshina, O.V. & Timmis, K. N. Ferroplasma and relatives, recently discovered cell wall-
- lacking archaea making a living in extremely acid, heavy metal-rich environments. Environ
- 529 *Microbiol.* **7**, 1277-1288, (2005).
- 3. Golyshina, O. V. Environmental, biogeographic, and biochemical patterns of archaea of the
- family Ferroplasmaceae. Appl Environ Microbiol. 77, 5071-5078 (2011).
- 4. Tyson, G. W. et al. Community structure and metabolism through reconstruction of microbial
- genomes from the environment. *Nature* **428**, 37-43, (2004).
- 5. Dopson, M., Baker-Austin, C., Hind, A., Bowman, J. P. & Bond, P. L. Characterization of
- 535 Ferroplasma isolates and Ferroplasma acidarmanus sp. nov., extreme acidophiles from acid
- mine drainage and industrial bioleaching environments. *Appl Environ Microbiol.* **70**, 2079-2088
- 537 (2004).
- 6. Banfield, J. F., Verberkmoes, N. C., Hettich, R. L. & Thelen, M. P. Proteogenomic approaches
- for the molecular characterization of natural microbial communities. *OMICS* **9**, 301-333 (2005).
- 7. Golyshina, O. V., Golyshin, P. N., Timmis, K. N. & Ferrer, M. The 'pH optimum anomaly' of
- intracellular enzymes of Ferroplasma acidiphilum. Environ Microbiol. 8, 416-425 (2006).
- 8. Ferrer, M., Golyshina, O. V., Beloqui, A., Golyshin, P. N. & Timmis, K. N. The cellular
- machinery of *Ferroplasma acidiphilum* is iron-protein-dominated. *Nature* **445**, 91- 94 (2007).

- 9. Ferrer, M. et al. A purple acidophilic di-ferric DNA ligase from Ferroplasma. Proc Natl Acad
- 545 *Sci USA* **105**, 8878-8883 (2008).
- 546 10. Allen, E. E. et al. Genome dynamics in a natural archaeal population. Proc Natl Acad Sci USA
- **104**, 1883-1888 (2007).
- 11. Goris, J. et al. DNA-DNA hybridization values and their relationship to whole-genome sequence
- similarities. *Int J Syst Evol Microbiol.* **57**, 81-91 (2007).
- 12. Meier-Kolthoff, J. P., Auch, A.F., Klenk, H. P. & Göker, M. Genome sequence-based species
- delimitation with confidence intervals and improved distance functions. *BMC Bioinformatics* **14**,
- 552 60 (2013).
- 13. Bezuidt, O., Pierneef, R., Mncube, K., Lima-Mendez, G. & Reva, O. N. Mainstreams of
- horizontal gene exchange in enterobacteria: consideration of the outbreak of enterohemorrhagic
- E. coli O104:H4 in Germany in 2011. *PLoS One* **6**, e25702 (2011).
- 14. Langille, M. G. & Brinkman, F. S. IslandViewer: an integrated interface for computational
- identification and visualization of genomic islands. *Bioinformatics* **25**, 664-665 (2009).
- 15. Menigaud, S. et al. GOHTAM: a website for genomic origin of horizontal transfers, alignment
- and metagenomics. *Bioinformatics* **28**, 1270-1271. 14 (2012).
- 16. Pierneef, R., Cronje, L., Bezuidt, O. & Reva, O. N. Pre GI: a global map of ontological links
- between horizontally transferred genomic islands in bacterial and archaeal genomes. Database
- 562 (Oxford):bav058 (2015).
- 17. Lin, Z., Nei, M. & Ma, H. The origins and early evolution of DNA mismatch repair genes
- multiple horizontal gene transfers and co-evolution. *Nucl Acids Res.* **35**, 7591–7603 (2007).
- 18. Filée, J., Siguier, P. & Chandler, M. Insertion Sequence Diversity in Archaea. *Microbiol Mol*
- 566 *Biol Rev.* **71**, 121-157 (2007).
- 19. Haldenby, S., White, M. F. & Allers, T. RecA family proteins in archaea: RadA and its cousins.
- 568 Biochem Soc Trans. **37(Pt 1)**, 102, (2009).

- 569 20. Makarova, K. S., Grishin, N. V., Shabalina, S. A., Wolf, Y. I. & Koonin, E. V. A putative RNA-
- interference-based immune system in prokaryotes: computational analysis of the predicted
- enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms
- of action. *Biol Direct.* **16**, 7 (2006).
- 573 21. Tyson, G. W. & Banfield, J. F. Rapidly evolving CRISPRs implicated in acquired resistance of
- microorganisms to viruses. *Environ Microbiol* 1, 200-207 (2008).
- 575 22. Gophna, U. et al. No evidence of inhibition of horizontal gene transfer by CRISPR-Cas on
- evolutionary timescales. *ISME J.* **9(9)**, 2021-2027 (2015).
- 577 23. Makarova, K. S. et al. Evolution and classification of the CRISPR-Cas systems. Nat Rev
- 578 *Microbiol.* **9**, 467-477 (2011).
- 579 24. Deng, L, Garret, R. A., Shah, S. A., Peng, X. & She, Q. A novel interference mechanism by a
- type IIIB CRISPR-Cmr module in *Sulfolobus*. *Mol Microbiol* **87**, 1088-1099 (2013).
- 581 25. Wiedenheft, B., Sternberg, S. H. & Doudna, J. A. RNA-guided genetic silencing systems in
- bacteria and archaea. *Nature* **482**, 331-338 (2012).
- 583 26. Lynch, M. Rate, molecular spectrum, and consequences of human mutation. *Proc Natl Acad Sci*
- 584 *USA* **107**, 961-968 (2010).
- 585 27. Sung, W., Ackerman, M. S., Miller, S. F., Doak, T. G. & Lynch, M. Drift-barrier hypothesis and
- mutation-rate evolution. *Proc Natl Acad Sci USA* **109**, 18488-18492 (2012).
- 587 28. Tompkins, J. D. *et al.* Error-prone polymerase, DNA polymerase IV, is responsible for transient
- 588 hypermutation during adaptive mutation in *Escherichia coli*. *J Bacteriol*. **185**, 3469-3472.
- 589 (2003).
- 590 29. Castelle. C. J. et al. The aerobic respiratory chain of the acidophilic archaeon Ferroplasma
- *acidiphilum*: A membrane-bound complex oxidizing ferrous iron. *Biochim Biophys Acta* **1847**,
- 592 717-728 (2015).

- 30. Fütterer, O. et al. Genome sequence of Picrophilus torridus and its implications for life around
- pH 0. Proc Natl Acad Sci USA **101**, 9091-9096 (2004).
- 595 31. Golyshina, O. V. et al. Biology of archaea from a novel family Cuniculiplasmataceae
- 596 (*Thermoplasmata*) ubiquitous in hyperacidic environments. *SciRep.* **6**, 39034 (2016).
- 32. Soppa, J., Vatter, P., zur Miihlen, A., Link, T. & Ruepp, A. Regulation of Gene Expression in
- 598 *Halobacterium salinarum*: The *arcr*ACB Gene Cluster and the TATA box-binding protein. In:
- Oren A (ed.) Microbiology and Biogeochemistry of Hypersaline Environments. 5, pp.249-263.
- 600 (1998).
- 33. Zúñiga, M., Pérez, G. & González-Candelas, F. Evolution of arginine deiminase (ADI) pathway
- genes. *Mol Phylogenet Evol.* **25**, 429-444. (2002).
- 34. Xiong, L. et al. Arginine deiminase pathway is far more important than urease for acid resistance
- and intracellular survival in *Laribacter hongkongensis*: a possible result of arc gene cassette
- duplication. *BMC Microbiol* .**14**, 1 (2014).
- 35. Sousa, F. L., Alves, R.J., Pereira-Leal, J. B., Teixeira, M. & Pereira, M. M. A bioinformatics
- classifier and database for heme-copper oxygen reductases. *PLoS One* **6**, e19117 (2011).
- 36. Sousa, F. L., Nelson-Sathi, S. & Martin, W. F. One step beyond a ribosome: The ancient
- anaerobic core. *Biochim Biophys Acta* **1857**, 1027-1038 (2016).
- 37. Lane, N. & Martin, W. F. The origin of membrane bioenergetics. *Cell* **151**, 1406-1416 (2012).
- 38. Adams, M. W. & Kletzin, A. Oxidoreductase-type enzymes and redox proteins involved in
- fermentative metabolisms of hyperthermophilic archaea. *Adv Protein Chem.* **48**, 101-180 (1996).
- 39. Ng, W. V. et al. Genome sequence of Halobacterium species NRC-1. Proc Natl Acad Sci USA
- **97**, 12176-81 (2000).
- 40. Kerscher, L. & Oesterhelt, D. The catalytic mechanism of 2-oxoacid: ferredoxin oxidoreductases
- from Halobacterium halobium. European J Biochem 116, 595-600 (1981).

- 41. Kawasumi, T., Igarashi, Y., Kodama, T. & Minoda, Y. Hydrogenobacter thermophilus gen.
- 618 nov., sp. nov., an extremely thermophilic, aerobic, hydrogen-oxidizing bacterium. *Int J Syst*
- 619 *Bacteriol.* **34**, 5–10 (1984).
- 42. Ikeda, T. et al. Enzymatic and electron paramagnetic resonance studies of anabolic pyruvate
- synthesis by pyruvate: ferredoxin oxidoreductase from *Hydrogenobacter thermophilus*. *FEBS J*.
- **277**, 501-510 (2010).
- 43. Yamamoto, M., Ikeda, T., Arai, H., Ishii, M. & Igarashi, Y. Carboxylation reaction catalyzed by
- 2-oxoglutarate:ferredoxin oxidoreductases from *Hydrogenobacter thermophilus*. *Extremophiles*
- **14**, 79-85 (2010).
- 44. Yoon, K.S., Ishii, M., Igarashi, Y. & Kodama, T. Purification and characterization of 2-
- oxoglutarate: ferredoxin oxidoreductase from a thermophilic, obligately chemolithoautotrophic
- bacterium, *Hydrogenobacter thermophilus* TK-6. *J Bacteriol.* **178**, 3365-3368 (1996).
- 45. Blaut, M. Metabolism of methanogens. *Antonie Van Leeuwenhoek* **66**, 187-208 (1994).
- 46. Dopson, M., Baker-Austin, C. & Bond, P. Towards determining details of anaerobic growth
- coupled to ferric iron reduction by the acidophilic archaeon 'Ferroplasma acidarmanus' Ferl.
- 632 Extremophiles 11, 159-168 (2007).
- 47. Baker-Austin, C., Potrykus, J., Wexler, M., Bond, P. L. & Dopson, M. Biofilm development
- in the extremely acidophilic archaeon 'Ferroplasma acidarmanus' Fer1. Extremophiles 6, 485-
- 635 491 (2010).
- 48. Danson, M. J., Lamble, H. J. & Hough, D. W. Central metabolism. In: Cavicchioli R. (ed).
- 637 Archaea: Molecular and Cellular Biology. Washington DC: ASM Press, pp. 260-287 (2007).
- 49. Say, R. F. & Fuchs, G. Fructose 1,6-bisphosphate aldolase/phosphatase may be an ancestral
- gluconeogenic enzyme. *Nature* **464**, 1077-1081 (2010).
- 50. Mwirichia, R. et al. Metabolic traits of an uncultured archaeal lineage--MSBL1--from brine
- pools of the Red Sea. *Sci Rep.* **6**, 19181 (2016).

- 51. Pivovarova, T. A. et al. Phenotypic features of Ferroplasma acidiphilum strains Yt and Y-2.
- 643 *Mikrobiologiia* **71**, 809-818 (2002).
- 52. Pao, S. S., Paulsen, I. T. & Saier, M. H. Major facilitator superfamily. *Microbiol Mol Biol Rev.*
- **62**, 1-34 (1998).
- 53. Dias, P. J. & Sá-Correia, I. The drug:H⁺ antiporters of family 2 (DHA2), siderophore
- transporters (ARN) and glutathione: H⁺antiporters (GEX) have a common evolutionary origin in
- hemiascomycete yeasts. *BMC Genomics* **14**, 901 (2013).
- 54. Gough, J., Karplus, K., Hughey, R. & Chothia, C. Assignment of homology to genome
- sequences using a library of hidden Markov models that represent all proteins of known
- structure. *J Mol Biol.* **313**, 903-919 (2001).
- 55. Tamura, N., Lottspeich, F., Baumeister, W. & Tamura, T. The role of tricorn protease and its
- aminopeptidase-interacting factors in cellular protein degradation. *Cell* **95**, 637-648 (1998).
- 56. Schönheit, P., Buckel, W. & Martin, W. F. On the origin of heterotrophy. *Trends in Microbiol*.
- 655 **24**, 12-25 (2016).
- 57. Ewing, B., Hiller, L., Wendt, M. C. & Green, P. Base-calling of automated sequencer traces
- 657 using phred. I. Accuracy assessment. Genome Res. 8, 175–185 (1998).
- 58. Ewing, B. & Green, P. Base-calling of automated sequencer traces using phred. II. Error
- 659 probabilities. *Genome Res.* **8**, 186–194 (1998).
- 59. Gordon, D. Viewing and editing assembled sequences using Consed. Curr Protoc
- *Bioinformatics* **2**, 11.2.1–11.2.43 (2003).
- 60. Han, C. S. & Chain, P. Finishing repetitive regions automatically with Dupfinisher. In: Arabnia
- HR Valafar H. (eds). Proceedings of the 2006 International Conference on Bioinformatics and
- 664 Computational Biology. Las Vegas, NV, USA: CSREA Press, pp. 142–147 (2006).

- 61. Malykh, A., Malykh, O., Polushin, N., Kozyavkin, S. & Slesarev, A. Finishing 'Working Draft'
- BAC projects by directed sequencing with ThermoFidelase and Fimers. *Method Mol Biol.* **255**,
- 667 295–308 (2004).
- 62. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search
- tool. *J Mol Biol.* **215**, 403-410 (1990).
- 63. Schattner, P., Brooks, A. N. & Lowe, T. M. The tRNAscan-SE, snoscan and snoGPS web
- servers for the detection of tRNAs and snoRNAs. *Nucleic Acids Res* **33**, W686-689 (2005).
- 64. Grissa, I., Vergnaud, G. & Pourcel, C. CRISPRFinder: a web tool to identify clustered regularly
- interspaced short palindromic repeats. *Nucleic Acids Res.* **35**, W 52-57 (2007).
- 65. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time
- quantitative PCR and the $2^{(-\Delta\Delta Ct)}$ method. *Methods* **25**, 402–408, (2001).
- 66. Bron, P. A. et al. Genetic characterization of the bile salt response in Lactobacillus plantarum
- and analysis of responsive promoters in vitro and in situ in the gastrointestinal tract. *J Bacteriol*.
- **186**, 7829–7835 (2004).
- 67. Marco, M. L., Bongers, R. S., de Vos, W. M. & Kleerebezem, M. Spatial and temporal
- expression of *Lactobacillus plantarum* genes in the gastrointestinal tracts of mice. *Appl Environ*
- 681 *Microbiol* **73**, 124–132 (2007).
- 68. Ganesan, H., Rakitianskaia, A. S., Davenport, C. F., Tümmler, B. & Reva, O. N. The SeqWord
- Genome Browser: an online tool for the identification and visualization of atypical regions of
- bacterial genomes through oligonucleotide usage. *BMC Bioinformatics* **9**, 333 (2008).

685 686

Figure legends

- Figure 1. The genome genomic islands (GI) of F. acidiphilum \mathbf{Y}^{T} . Localization of GIs on the chromosome of F.
- acidiphilum Y^T, as predicted by SWGIS (pink boxes), IslandViewer (blue boxes) and GOTHAM (yellow boxes). Histograms
- in the inner cycles of the atlas depict variations of the following oligonucleotide usage parameters: GC-content (black curve);
- ratio of generalized to local relative variances calculated for tetranucleotide usage patterns normalized by the GC-content
- 691 (blue curve, n1_4mer:GRV/n1_4mer:RV); distances between not-normalized local tetranucleotide usage pattern and the
- 692 global one calculated for the complete chromosome (red curve, n0 4mer:D); asymmetry between not-normalized

tetranucleotide usage patterns calculated for the direct and complement DNA strands (green curve, n0 4mer:PS). Use of these parameters for GI identification and their standard abbreviations were explained in more detail⁶⁸. Green arrowheads (outer circle) indicate single-nucleotide substitutions in the genome of F. acidiphilum Y^T after ~550 generations in the laboratory culture (s. Supplementary Table S2 for more details).

697 698 699

700

693

694

695

696

Figure 2. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) locus in F. acidiphilum Y^T with one operon encoding the CRISPR-associated (Cas) proteins (red arrows). CRISPR system belongs to the Subtype I-D. Ten genes not related to CRISPR are shown in grey. The cluster CRISPR1 contains 137 identical direct repeats of 30 bp separated by 136 different spacers of 34-39 bases. The Cluster CRISPR2 is shorter and has 31 direct repeats (31 bp each) with 30 different spacers (35-62 nt). Spacers and repeats in Clusters 1 and 2 show no sequence similarity one to another.

705

706

707

708

709

710

711

712

713

714

715

Figure 3. Single-nucleotide mutations accumulated during cultivation of F. acidiphilum Y^T . Base-substitutional mutation rates per site per generation plotted vs genome sizes. The data on mutation rates of unicellular organisms and viruses and the regression plot $(\log_{10}u = -8.66 - 1.096\log_{10}G)$, where u and G are mutation numbers and genome size, respectively) are taken from ²⁹. Single-stranded DNA viruses: ϕ X174, phage phi174; M13, phage M13. Double-stranded DNA viruses: λ, phage lambda; T2, phage T2; T4, bacteriophage T4, Hs 1, Herpes simplex virus. Bacteria: Bsu, Bacillus subtilis; Ban, Bacillus anthracis; Dra, Deinococcus radiodurans; Hpy, Helicobacter pylori; Mfl, Mesoplasma florum; Mtu, Mycobacterium tuberculosis; Pae, Pseudomonas aeruginosa; Sen, Salmonella enterica; Stu, Salmonella typhimurium; Tth, Thermus thermophilus. Archaea: Fad, Ferroplasma acidiphilum; Hvo, Haloferax volcanii; Sac, Sulfolobus acidocaldarius. Eukarya: Cre, Chlamydomonas reinhardtii; Ncr, Neurospora crassa; Pfa, Plasmodium falciparum; Sce, Saccharomyces cerevisiae; Spo, Schizosaccharomyces pombe; Tbr, Trypanosoma brucei; Pte, Paramecium tetraurelia. Pink area reflects the distribution of mutation rates in Ferroplasma with the higher point value corresponding to all detected base substitutions in the strain cultured for ~550 generations as compared with the original genome, and lower value representing the most conservative mutation rate prediction (all mutations with frequency values <5% and SNPs in the original genome were excluded).

720

721 722

723

724

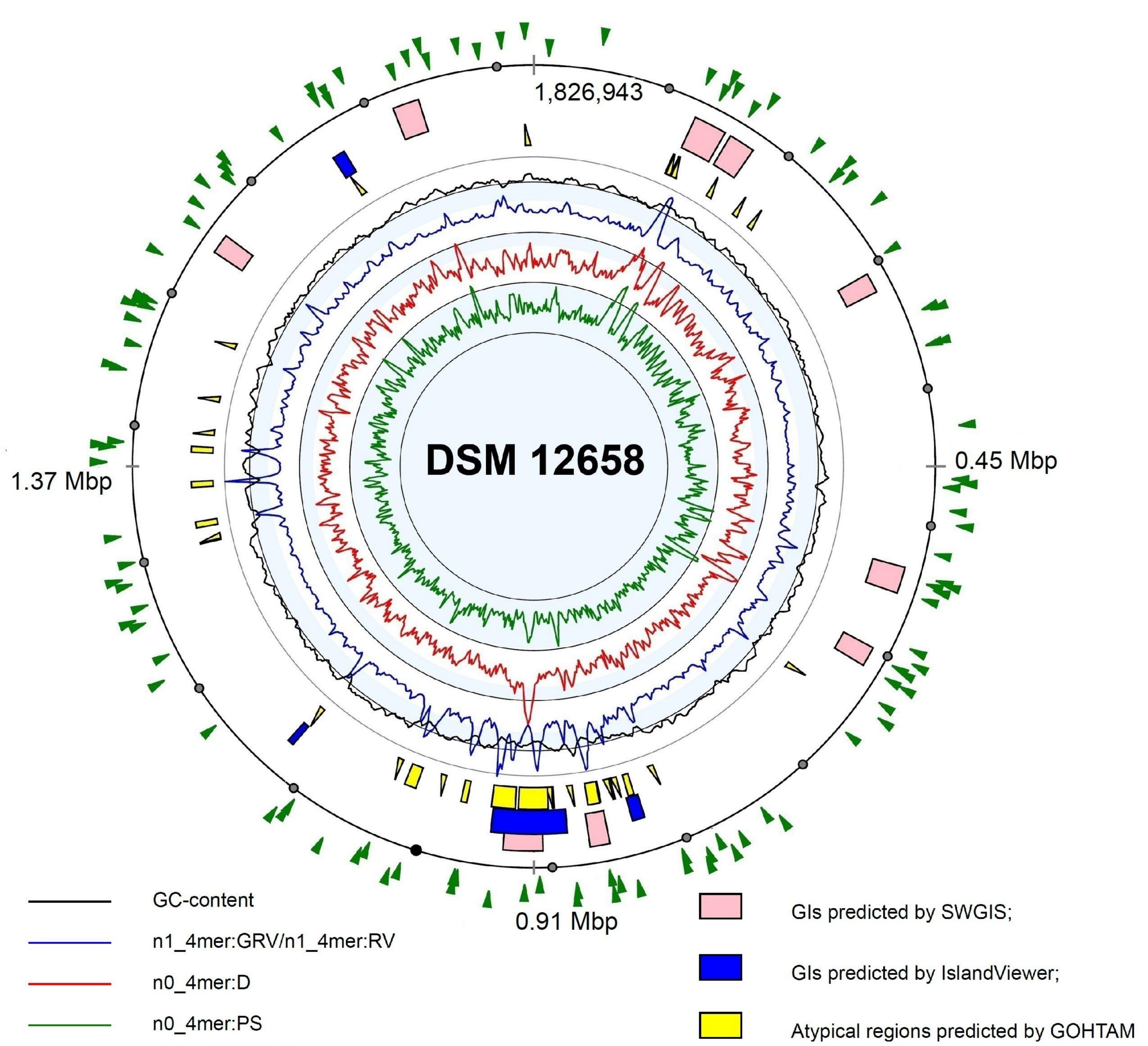
725 726

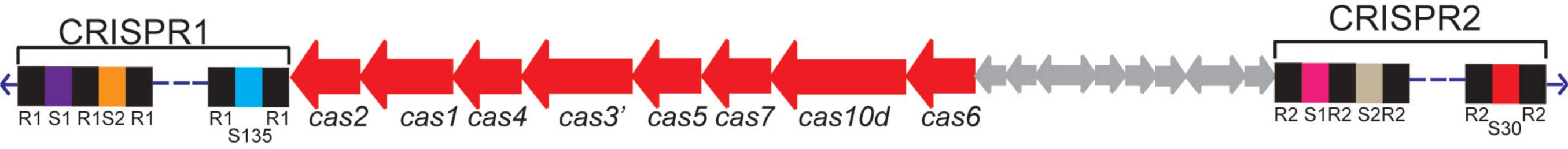
727 728

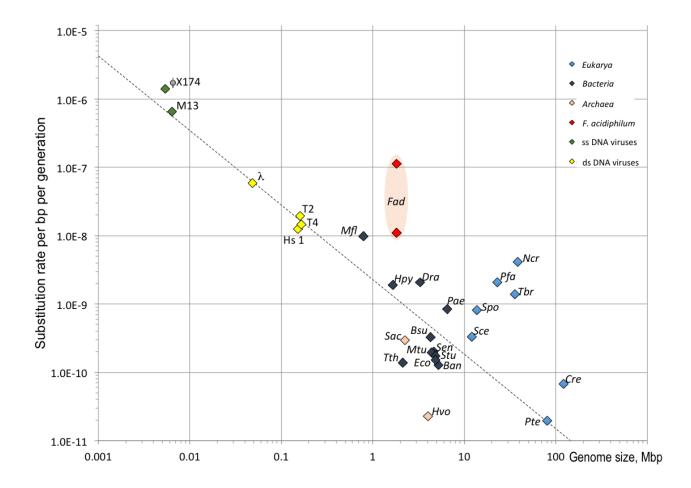
729

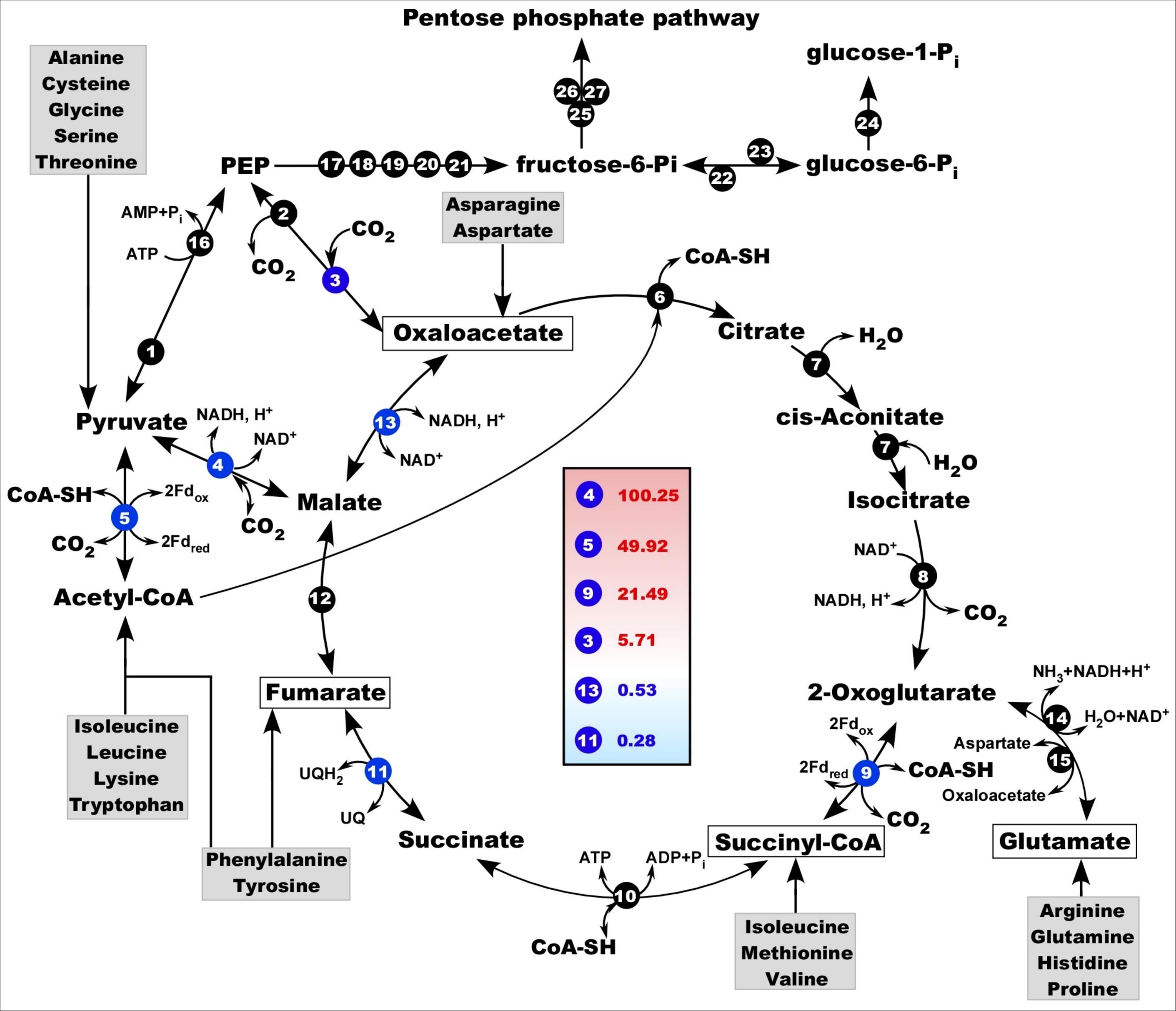
730

731 732


733


734


735


Figure 4. Proposed citric acid cycle and related enzyme reactions in F. acidiphilum \mathbf{Y}^{T} . The enzymes are as follows: 1, pyruvate kinase (FAD 1603); 2, PEP carboxykinase (FAD 1050); 3, PEP carboxylase (FAD 1044); 4, NAD-binding malic enzyme / malate dehydrogenase (FAD_0703); 5, pyruvate : ferredoxin oxidoreductase (FAD_0567-0568); 6, citrate synthase (FAD 1100); 7, aconitate hydratase (FAD 0701); 8, isocitrate dehydrogenase (FAD 1632); 9, 2-oxoglutarate; ferredoxin oxidoreductase (FAD 0712-0713); 10, succinyl-CoA synthetase (FAD 0709-710); 11, succinate dehydrogenase (FAD 0714-0717); 12, fumarate hydratase (FAD_1630); 13, malate dehydrogenase (FAD_0718); 14, glutamate dehydrogenase (FAD 0434); 15, aspartate aminotransferase (FAD 1098); 16, phosphoenolpyruvate synthase (FAD 1233); 17, phosphoglycerate mutase (FAD 0440, FAD 1169, FAD 1350); 18, 2-phosphoglycerate kinase (FAD 1810); 19, glyceraldehyde-3-phosphate dehydrogenase (FAD_0549); 20, triosephosphate isomerase (FAD_0107); 21, fructose-2,6bisphosphatase (FAD 0332); 22, 6-phosphofructokinase (FAD 0353); 23, bifunctional phosphoglucose/phosphomannose isomerase (FAD 0562); 24, phosphoglucomutase/phosphomannomutase (FAD 0602); 25, transketolase (FAD 1477-1476); 26, transaldolase (FAD 1201; FAD 1475); 27, ribulose-phosphate 3-epimerase (FAD 0295). Abbreviations used: Fd, electron carrier ferredoxin: NAD, nicotinamide adenine dinucleotide: CoA, Coenzyme-A; PEP, phosphoenolpyruyate: UO, ubiquinone. Enzymes labeled in blue are potentially involved in anaplerotic assimilation of CO₂. Their relative expression levels, analysed by RT-qPCR and indicated by the numbers in the central box, were obtained by normalization of the total RNA added and using transcripts of DNA gyrase subunit B (gyrB) as the internal reference (value 1.0). Normalization using gyrB was additionally validated vs transcripts of gene for ribosomal L2 protein. Average normalisation data derived from triplicates with standard deviation below 5%.

736

