

Metabolic and evolutionary patterns in the extremely acidophilic archaeon Ferroplasma acidiphilum Ý

Golyshina, Olga; Hai, Tran; Reva, Olga N.; Lemak, Sofia; Yakunin, Alexander F.; Goesmann, Alexander; Nechitaylo, Taras Y.; LaCono, Violetta ; Smedile, Francesco; Slesarev, Alexei; Rojo, David; Barbas, Coral; Ferrer, Manuael; Yakimov, Michail M.; Golyshin, Peter

Scientific Reports

DOI: 10.1038/s41598-017-03904-5

Published: 16/06/2017

Peer reviewed version

Cyswllt i'r cyhoeddiad / Link to publication

Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA): Golyshina, O., Hai, T., Reva, O. N., Lemak, S., Yakunin, A. F., Goesmann, A., Nechitaylo, T. Y., LaCono, V., Smedile, F., Slesarev, A., Rojo, D., Barbas, C., Ferrer, M., Yakimov, M. M., & Golyshin, P. (2017). Metabolic and evolutionary patterns in the extremely acidophilic archaeon Ferroplasma acidiphilum YT. *Scientific Reports*, *7*, Article 3682. https://doi.org/10.1038/s41598-017-03904-5

Hawliau Cyffredinol / General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

· Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Supplementary Information to the Manuscript

Metabolic and evolutionary patterns in the extremely acidophilic archaeon Ferroplasma acidiphilum Y^T

Olga V. Golyshina, Hai Tran, Oleg N. Reva, Sofia Lemak, Alexander F. Yakunin, Alexander Goesmann, Taras Y. Nechitaylo, Violetta LaCono, Francesco Smedile, Alexei Slesarev, David Rojo, Coral Barbas, Manuel Ferrer, Michail M. Yakimov and Peter N. Golyshin

Content:

Supplementary Table S1. F. acidiphilum Y ^T genes examined by real-time reverse-trans	nscription
PCR in this study	Pg. 2
Supplementary Table S2. 116 single-nucleotide substitutions (separate Excel file)	Pg. 2
Supplementary Table S3. Transporters in F . acidiphilum Y^T	.Pg. 3
Supplementary Figure S1. Average Nucleotide Identity (ANI) analysis	Pg. 6
Supplementary Figure S2. Overview of amino acid biosynthesis pathways	Pg. 7

Locus tag	Gene	Name	Forward primer / Reverse primer	TaqMan®
FAD_0161	rpl2	50S ribosomal protein L2	F: 5'-ATACAGGAGCCCGAGTCACA-3' R: 5'-TGTTGTGGTAGTGCCGTTGT-3'	5'-CACCGGGTAGAAATGCACCGTT-3'
FAD_0374	gyrB	DNA gyrase B	F: 5'-GCAGAGCTTCAAGGGGAGTT-3' R: 5'-CGCCAACAGGTAATGCAGTA-3'	5'-CTAAACGGTGCTGAAGTAATCA-3'
FAD_0567	porA	2-oxoacidferredoxin oxidoreductase, α subunit	F: 5'-CAACCGGGCTTCCAACAAAGA-3' R: 5'-GAGCACTATTCTTGGCATGT-3'	5'-AGATCTCAACCAGGTGCTTGGT-3'
FAD_0703	morME	malate oxidoreductase (malic enzyme)	F: 5'- ATGGCCAGGTGATGCAAAGA-3' R: 5'- TGCATAGGAAGCAGCAACCA-3'	5'- CCAATCAGATAAATAATAGCAT-3'
FAD_0712	korA	2-oxoacidferredoxin oxidoreductase, α subunit	F: 5'- AGCAGGGCGTATCAGCTAAC-3' R: 5'- AGGGTCATATGCCTGCCATT-3'	5'- AATGTTCGAGCCTTTCCCTGCA-3'
FAD_0713	kor B	2-oxoacidferredoxin oxidoreductase, β subunit	F: 5'- AGATTGGTGCCCTGGATGTG-3' R: 5'- AGCTGACAAAGCCTGTGTTA-3'	5'- TGACTTTGGTATAGTAAGTGCG-3'
FAD_0714	sdhD	Succinate dehydrogenase subunit D	F: 5'- AGCCCCATTTGCCACTGAAA-3' R: 5'-TCAACCATAGTGCCGGAGAA-3'	5'- AATTAAACAATGCTATGTACCT-3'
FAD_0717	sdhA	Succinate dehydrogenase subunit A	F: 5'- TTCAACGCGCTGGAAACAAG-3' R: 5'- TGAAGTGTGCACCCCTTGTT-3'	5'- ATATGCTATGGCTACTGGAGCA-3'
FAD_0718	mdh	Malate dehydrogenase	F: 5'- TTTGCACCCAGGACCCTAA-3' R: 5'- CTGCAATGCGTATGCCATTA-3'	5'- AACAGATTAAGAAATATTCACC-3'
FAD_1044	рерс	phosphoenol pyruvate carboxylase	F: 5'- AGAAGGGAGCGGAAATTGCA-3' R: 5'- GCACGTGGCAAACTAGCTTT-3'	5'- CTATTTGGATACTCCCGTAGTA-3'

Supplementary Table S1. *F. acidiphilum* Y^T genes examined by real-time reverse-transcription PCR in this study.

Supplementary Table S2. 116 single-nucleotide substitutions (separate Excel file).

Sugar & polysaccharide transporters			
FAD_1026	ABC-type sugar transporter, ATPase component		
FAD_1027	ABC-type sugar transporter, permease component		
FAD_1028	ABC-type sugar transporter, permease component		
FAD_1029	ABC-type sugar transporter, extracellular component		
FAD_1459	sugar ABC transporter 1, permease protein		
FAD_1460	sugar ABC transporter 1, ATP binding protein		
AA transporters			
FAD_0093	ABC-type peptide transporter, permease component		
FAD_0094	oligopeptide ABC transporter Dpp2, permease protein		
FAD_0126	6TMS neutral amino acid family transporter		
FAD_0228	amino acid transporter		
FAD_0377	amino acid transporter related protein		
FAD_0539	cationic amino acid transporter		
FAD_0636	amino acid transporter		
FAD_0655	ABC transporter peptide-binding protein		
FAD_0659	ABC transporter permease. dipeptide/oligopeptide/nickel transport system		
FAD_0802	amino acid/polyamine/organocation superfamily transporter		
FAD_0803	aspartate/glutamate family transporter		
FAD_0804	aspartate/glutamate family transporter		
FAD_0805	amino acid/polyamine/organocation superfamily transporter		

FAD_0853	ABC transporter peptide-binding protein
FAD_0914	amino acid/polyamine/organocation superfamily transporter
FAD_0915	amino acid/polyamine/organocation superfamily transporter
FAD_0919	ABC transporter substrate-binding protein (C-terminal fragment) peptide
FAD_1013	amino acid/polyamine/organocation superfamily transporter
FAD_1014	ABC-type peptide/opine/nickel family transporter ATPase
FAD_1015	ABC-type peptide/opine/nickel family transporter ATPase
FAD_1016	ABC-type peptide/opine/nickel family transporter
FAD_1017	ABC-type peptide/opine/nickel family transporter
FAD_1018	ABC-type peptide/opine/nickel family transporter
FAD_1069	amino acid transporter
FAD_1371	6TMS neutral amino acid family transporter
FAD_1571	amino acid transporter
FAD_1737	transporter probably aa
	1

Major facilitator superfamily MFS multidrug efflux pumps and major facilitator superfamily permeases

FAD_0778_0801_0803_0815_0839_1106 FAD_1033_1118_1278_1296_1750_0006_0143_0213_0472_0497_0561_0684_0768 _0796_0822_0844_0849_0979_0994_0996_1000_1011_1018_1038_1040_1047_1048 _1129_1272_1349_1380_1407_1408_1445_1484_1504_1544_1555_1591 _1599_1720_1788_1791

Other transporters FAD_0049 stomatin family transporter FAD_0249 cation diffusion facilitator family transporter, that increase tolerance to divalent metal ions such as cadmium, zinc, and cobalt

FAD_0250	cation diffusion facilitator family transporter, that increase tolerance
	to divalent metal ions such as cadmium, zinc, and cobalt
FAD_1045	ammonium transporter
FAD_1137	C4-dicarboxylate transporter
FAD_1177	ABC-2-type family permease
FAD_1178	ABC-2-type family permease
FAD_0071	VIT family Fe2+/Mn2+ transporter
FAD_1261	VIT family Fe2+/Mn2+ transporter
FAD_0016	transporter of sulfur-containing compounds
FAD_0264	transporter of sulfur-containing compounds
FAD_0848	transporter of sulfur-containing compounds
FAD_1341	transporter of sulfur-containing compounds
FAD_1460	nitrate/sulfonate/bicarbonate ABC transporter ATP-binding protein
FAD_1459	nitrate/sulfonate/bicarbonate ABC transporter ATP-binding protein
FAD_1458	nitrate/sulfonate/bicarbonate ABC transporter ATP-binding protein
FAD_1494	monovalent cation:proton antiporter-2 family transporter
FAD_1510	sodium-dependent phosphate transporter
FAD_1593	manganese/divalent cation transporter
FAD_1667	multidrug ABC transporter ATP-binding protein
FAD_1771	daunorubicin resistance ABC transporter
FAD_1800	Kef-type potassium transporter NAD-binding component

Supplementary Figure S1. Average Nucleotide Identity (ANI) analysis (<u>http://enve-omics.ce.gatech.edu/ani/</u>¹) of genomes "*F. acidarmanus* fer1" and *F. acidiphilum* Y^T suggests ANI values above 95 %, which is the accepted cut off for separation of two species based on the whole-genome comparisons, suggesting that on the basis of their genomic data, *F. acidiphilum* Y^T and "*F. acidarmanus*" fer1 belong to the same species.

1. Goris, J., Konstantinidis, K. T., Klappenbach, J. A., Coenye, T., Vandamme, P. & Tiedje, J. M. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. *Int J Syst Evol Microbiol.* **57**, 81-91 (2007).

Supplementary Figure S2. Overview of amino acid biosynthesis pathways in the *F*. *acidiphilum* \mathbf{Y}^{T} genome. Missing genes and reaction are indicated by red colour and crossed out. All amino acids with incomplete synthesis pathways are indicated in red. EC numbers are shown in parentheses.

7

