Revealing higher than expected meiofaunal diversity in Antarctic sediments Fonseca, V.G.; Sinninger, F.; Gaspar, J.M.; Quince, C.; Creer, Simon; Power, Deborah; Peck, Lloyd S.; Clark, Melody, S. ## **Scientific Reports** DOI: 10.1038/s41598-017-06687-x Published: 21/07/2017 Peer reviewed version Cyswllt i'r cyhoeddiad / Link to publication Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA): Fonseca, V. G., Sinninger, F., Gaspar, J. M., Quince, C., Creer, S., Power, D., Peck, L. S., & Clark, M. S. (2017). Revealing higher than expected meiofaunal diversity in Antarctic sediments: a metabarcoding approach. *Scientific Reports*, 7, Article 6094. https://doi.org/10.1038/s41598-017-06687-x Hawliau Cyffredinol / General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. - · Users may download and print one copy of any publication from the public portal for the purpose of private study or research. - You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. - 1 Revealing higher than expected meiofaunal diversity in Antarctic sediments: a metabarcoding - 2 approach - 4 Fonseca VG^{1*}, Sinniger F², Gaspar JM³, Quince C⁴, Creer S⁵, Deborah M Power⁶, Lloyd S Peck⁷, - 5 Melody S Clark ^{7*} 6 - ¹Zoological Research Museum Alexander Koenig (ZFMK), Centre for Molecular Biodiversity - 8 Research, Bonn, Germany. - ²Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, - 10 Motobu, Okinawa, 905-0227 Japan. - ³Computational Biology Institute, George Washington University, Ashburn, Virginia, USA. - ⁴Department of Microbiology and Infection, Warwick Medical School, University of Warwick, - 13 Coventry, CV4 7AL, UK. - ⁵Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor - 15 University, Gwynedd, LL57 2UW, UK. - ⁶Centro de Ciencias do Mar, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, - 17 Portugal - ⁷British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, - 19 Cambridge, CB3 0ET, UK 20 - *Corresponding authors: Melody S Clark, British Antarctic Survey, Natural Environment Research - Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK. Email: mscl@bas.ac.uk - Fonseca VG² Zoological Research Museum Alexander Koenig (ZFMK), Centre for Molecular - Biodiversity Research, Bonn, Germany. Email: vfonseca@uni-bonn.de 25 **Abstract** Although studies show that Antarctic mega- and macrofauna are highly diverse, little is known about meiofaunal biodiversity in sediment communities, which are a vital part of a healthy and functional ecosystem. This is the first study to analyse community DNA (targeting meiofauna) using metabarcoding to investigate biodiversity levels in sediment communities of the Antarctic Peninsula. The results show that almost all of the meiofaunal biodiversity in the benthic habitat has yet to be characterised, levels of biodiversity were higher than expected and similar to temperate regions, albeit with the existence of potentially new and locally adapted species never described before at the molecular level. The Rothera meiofaunal sample sites showed four dominant eukaryotic groups, the nematodes, arthropods, platyhelminthes, and the annelids; some of which could comprise species complexes. Comparisons with deep-sea data from the same region suggest little exchange of Operational Taxonomic Units (OTUs) between depths with the nematodes prevalent at all depths, but sharing the shallow water benthos with the copepods. This study provides a preliminary analysis of benthic Antarctic Peninsula meiofauna using high throughput sequencing which substantiates how little is known on the biodiversity of one of the most diverse, yet underexplored communities of the Antarctic: the benthos. # Introduction 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Much recent effort has been expended into characterising Antarctic marine biodiversity and it is clear that it is significantly higher than was thought in previous decades, particularly in relation to marine invertebrates^{1,2}. An increasing number of cryptic species are being discovered³ and in some invertebrate groups, such as pycnogonids and polychaete worms. Antarctica has significantly higher diversity than the global averages⁴. However, even the most recent reviews of marine biodiversity in Antarctica have concentrated on marine mega- and macrofauna with relatively little discussion on endemic meiofauna, particularly those metazoans inhabiting marine sediments⁵. In a recent UN Assessment of the State of the Ocean I (http://www.worldoceanassessment.org/), meiofauna and the poles were highlighted as being of particular importance for future research. There is currently very limited knowledge on polar meiofauna; the extent of their biodiversity and their contribution to polar ecosystem functioning Marine sediments are some of the most species-rich habitats on Earth. They are one of the main contributors to ocean health and functioning, but one of the least studied habitats in the biosphere⁶. Within marine sediments, the meiofauna (the microscopic taxa generally between 45-500µm) are important members of the benthic ecosystem, playing a critical role in carbon transfer and nutrient cycling⁶. They participate in ecosystem energy flows via the consumption of dissolved organic carbon and from grazing on primary producers and bacteria⁷. In addition they play important roles in the consumption of detritus and predation. They excrete nutrients which can be used by phytobionts, bacteria and associated meiofauna, but they also act as a food source for benthic invertebrates and higher predators⁶. Thus, evaluations of benthic meiofauna biodiversity are of critical importance for understanding ecosystem functioning, sustainability and resilience, as well as understanding carbon cycling in the largest part of the World, the seabed⁶. In addition meiofauna represent useful tools for studying change within an ecosystem and could be particularly useful for understanding the effects of anthropogenic impacts and climate change⁶. 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 One region of particular note with respect to environmental change is the Western Antarctic Peninsula, some areas of which, particularly in the north west, are regarded as experiencing the most rapid rate of climate warming on the Antarctic continent⁸. However, the situation is complex and exacerbated by the lack of high density measurements. Recent analyses suggest that the atmospheric warming along the Peninsula has ceased⁹, but there is uncertainty whether this trend will continue, what the drivers are, and whether this cessation of warming is reflected in oceanographic data which is still showing changes in sea ice and retreat of glaciers¹⁰. What is clear is that this is still a region in transition and highly vulnerable¹¹. Surface ocean temperatures rose by more than 1°C in the second half of the 20th Century and the deeper layers have also warmed due to increased upwelling of warm Upper Circumpolar Deep Water. Sea ice duration has reduced significantly in the past few decades (by 100 days since 1978), which impacts not only on primary production and water column stratification, but also on the frequency of iceberg scouring^{11,12}. About 80% of glaciers along the Peninsula are in retreat, which has increased the amount of sediment and fresh-water in the system¹⁰. Given the huge uncertainty concerning climate trends in this region, continued monitoring is vital, as is the evaluation of the potential impact on the endemic fauna. The Southern Ocean fauna have evolved to life in freezing seas in relative isolation for the last 15Myr¹³ and as a consequence have evolved a series of physiological and biochemical adaptations to life in the cold, are highly stenothermal and poorly adapted to rapid change ¹⁴. Advances in molecular and sequencing methodologies now enable us to evaluate biodiversity levels 91 92 93 94 95 96 97 from even the most remote habitats, in a way, not previously possible. Large-scale environmental DNA (eDNA) approaches using high throughput sequencing (shortly referred to as metabarcoding) have recently been applied to examine biodiversity levels at the poles. To date polar marker gene studies have mainly focussed on microbial communities within soil, ice cores, microbial mats and melt water^{15,16}, marine viruses¹⁷, freshwater picoplankton¹⁸ and more recently, microbial biodiversity, on the shelf and the deep-sea^{19,20}. These studies have provided intriguing pilot data on micro- and meiofaunal biodiversity in this largely understudied and extreme environment. Whilst there is a long history of biological sediment analyses at research stations along the Peninsula, these have been based on either taxonomic identification or stable isotope analyses²¹⁻²⁵. High throughput sequencing of DNA derived from community environmental samples provides a powerful tool with which to complement existing approaches and provides a timely opportunity to gain insight into alpha and beta-diversity of Antarctic meiofauna and start to assess their likely resilience in the context of climate change. The first aim of this study was to provide a global description of marine Antarctic meiofaunal diversity and community structure in shallow waters, using high throughput sequencing approaches on
community DNA. Secondly, to compare Antarctic shallow-water datasets with deep-sea samples taken in the same area (both published and un-published) to identify general diversity trends in freezing habitats and potential depth gradients. A third aspect was to compare the data generated here with those of another metabarcoding study on meiofaunal samples from a mid-temperate region using the same 18S rRNA region to identify relative levels of biodiversity and whether these were markedly reduced in the Antarctic samples. ### **RESULTS** The total number of reads derived from the 454 FLX sequencing platform from the Antarctic Peninsula sampled sites was 61,057; which was reduced to 49,655 reads after filtering and chimera removal. This level of reduction in read numbers was comparable with previous 454 eDNA studies^{26,27}. This particular chemistry introduces higher error rates than the Illumina platform within homopolymer regions due to accumulated light intensity variation, but these reads can be identified and removed *in silico*. Additional reads were removed as they were only present in singletons and 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 through the application of UCHIME, which is known to be a stringent filtering step²⁷. Metazoan OTU numbers varied moderately between sample sites with a mean number of 90 OTUs in Hangar Cove (stdv \pm 36.09), 48.7 OTUs in Rothera Point (stdv \pm 26.05), 87 OTUs in Islands (stdv \pm 60.65) and South Cove with mean OTUs number of 47 (stdv \pm 24.24). A major proportion of the OTUs from each site (16-31%) were not assigned to any annotated taxa in SILVA database (Table 1). In terms of those taxa with matches in SILVA, the nematodes had the highest OTU numbers among the main phyla, with 92 OTUs followed by the arthropods and platyhelminthes represented by 47 and 37 OTUs respectively (Figure 1). More detailed taxonomy assignments retrieved for each clustered OTU (using a cut-off of 90% to any reference nSSU) showed that the majority (95-98%) of platyhelminth, arthropod and nematod OTUs were not present in the SILVA database (Figure 1). In total this represented 171 OTUs (30% of OTUs comprising 37671 individual sequences) which may represent un-sampled diversity. The annelids and molluses, however, had 23% and 50% respectively, of their OTUs with a 100% identity to previously sequenced taxa. The Brachiopoda, Echinodermata, Cnidaria, Gastrotricha and Bryozoa were grouped as BECGB with a total of 9 OTUs where 11% of which had 100% identity matches to previously annotated sequence data. Sampling saturation profiles showed that the sequencing effort was not sufficient to determine the full extent of the diversity for any of the four sampled sites (Figure 2). The slope of the OTU rarefaction curves did not approach saturation at 97% cut-off for all the meiobenthic phyla and more specifically for the nematodes, arthropods and even for the platyhelminthes which comprised a low abundance phylum where rarefaction curves tend to converge and reach an asymptote²⁸ (Supplementary Figure S1) and therefore the data described here are underestimates. Community composition by number of OTUs did not show significant differences between the sites, with the nematodes totalling ca 30-50 OTUs (Kruskal-Wallis, p=0.189) followed by the arthropods with ca. 20-30 OTUs (Kruskal-Wallis, p=0.901), the platyhelminthes with ca. 10-20 (Kruskal-Wallis, p=0.494), OTUs and the annelids with ca. 3-9 OTUS (Kruskal-Wallis, p=0.110), 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 found in the Antarctic meiobenthic samples (Supplementary Figure S2). In fact, the majority of the samples showed that 90-100% of the OTUs were shared between sites, with the exception of one of the triplicates of the Islands sample that had approximately 30% of unique OTUs (Figure 3). Whilst all sites showed globally very similar communities, cluster analysis for taxonomic patterns of meiofaunal communities based on Sørensen similarities of OTU presence/absence data for the combined sites showed two well-defined groups within the Antarctic Peninsula sampling sites (Supplementary Figure S3). The Islands and Hangar Cove were more similar to each other, sharing approximately 20% more OTUs than with South Cove and Rothera Point (data not shown). Graphical representation of community composition from all sample sites was visualized with the Krona chart (Figure 4a). Here, the eukaryotic taxonomic composition of all sites combined showed that the nematodes comprised 32% of the total eukaryotic OTUs. Followed by the arthropods. platyhelminthes and annelids with 18%, 12% and 4% representing the total eukaryotic biodiversity, respectively. Within the nematodes two taxonomic classes predominated: the Chromadorea (80%) OTUs) and the Enoplea (20% OTUs) (Figure 4b, Supplementary Table S1.1 – S1.3, Supplementary Material S1). Within these two taxa, Monhysterida (37% OTUs) and Enoplida (19% OTUs) comprised the major proportion of the identifications respectively (Figure 4b, Supplementary Table S1.1 – S1.3). Copepoda dominated the arthropods with 87% of the identified OTUs. The Harpacticoida were particularly abundant at 76% of the Copepoda (Figure 4b, Supplementary Table S1.1 – S1.3, Supplementary Material S1). Outside of the crustaceans, the Acari represented 2% of the arthropod OTUs. The platyhelminthes were mainly represented by with the Rhabditophora (97%) with predominance of the orders Rhabdocoela (62%) and Macrostomida (31%) (Figure 4b. Supplementary Table S1.1 – S1.3, Supplementary Material S1). The annelids were mainly composed of the Polychaeta (85%) and the Haplotaxida (15%). The Polychaeta were dominated by the subclass Palpata (31%) and infraclass Scolecida (54%). The Palpata comprised the Phylodocida order (23%) and taxa with uncertain taxonomic position (Incertae Sedis) (8%). The Scolecida 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 covered five distinct families with the Spionida (15%), Orbibidae (15%), Terebellida (8%), Ophellidae (8%) and the Capitellida (8%) (Figure 4b, Supplementary Table S1.1 – S1.3, Supplementary Material S1), identifications which have been further substantiated by 18s rRNA molecular barcoding of polychaete samples from shallow-water hard and soft sediment communities near Rothera (Clark, unpublished data). The shallow-water comparisons with deep-water samples taken from along the Antarctic Peninsula showed very different community compositions (Supplementary Figure S4). Although the annelids and nematodes were found at both depths, they were particularly dominant in the deep-water samples. Shallow-water samples had a much higher percentage of arthropods (or more precisely, copepods). The Nemertea and Hemicordata were essentially only found in the deep samples, with the Cnidaria, Echinodermata and Mollusca more common in the shallows. The difference in community composition was further substantiated by pairwise comparisons of the number of shared OTUs between the different deep-water samples with the combined shallow samples, with the shallow-water sites sharing on average ca. 15% of OTUs with the different deep-water sites (Supplementary Figure S5). It should be noted that comparisons of two of the deep-water sites taken at a similar depth (CTD, 515m and Laubeuf, 500m) showed only 20.4% shared OTUs, indicating the patchiness of distributions (similar shallow-water comparisons between the Islands (13m) and Rothera Point (15m) showed 26.7% shared OTUs) (data not shown). **DISCUSSION** This study shows interesting insights into levels of meiofaunal biodiversity in Antarctic sediments, suggesting similar levels of meiobenthic diversity when compared to other marine studies carried out in more temperate regions using the same nSSU gene region²⁶, which is higher than expected. Such evidence emerges when comparing the incomplete slopes of the rarefaction curves and OTU numbers obtained here with a previous study on a Scottish temperate benthic ecosystem²⁶ using an 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 identical 18S rRNA gene region, a 97% identity cut-off and the same number of replicates, showing both sites to be very similar (e.g. 540 Antarctic and 650 Scottish meiofauna total OTUs). This evidence is not in line with paradigms of reducing diversity with latitude²⁹. It also suggests that Antarctic meiofaunal biodiversity could be as rich and diverse as that found in temperate areas. This preliminary study reveals that almost all of the main meiobenthic biodiversity is yet to be described, particularly with regard to taxonomic identification and development of associated barcodes, since only 1-4% of our taxa had a full taxonomy match against public databases (Figure 1). Such low levels of taxonomy assignments are almost certainly the result of the lack of Antarctic species in eukaryotic sequence databases, limited and patchy sampling regimes and the almost total absence of knowledge of Antarctic meiobenthic biodiversity in many taxa³⁰. Studies on the benthos around the Antarctic Peninsula have found more than 20% of new families, genera and species. which emphasizes that these habitats contain not only new species records but previously undescribed taxa^{3,31}. For example, more than half of the known gastropods and bivalve mollusc species in the Antarctic have only been found once or twice³⁰. Although this level of novelty might seem atypical for such an extensive but harsh environment, it is somehow reasonable that a topographically complex and remote area such as the Antarctic would be bound to contain new species due to the long period of biogeographic isolation via the Antarctic Circumpolar Current, especially if some of these areas have been little or never sampled before³². In
this study, the phylogenetic analysis and the taxonomic assignments retrieved from the SILVA database produced four dominant taxonomically distinct metazoan groups, the nematodes, arthropods, platyhelminthes and the annelids (Figure 4a and b, Supplemental Material S1). These results are supported by previous studies showing that nematodes and Harpaticoid copepods dominate the Antarctic benthos^{33, 34}. Additionally, very few studies describe platyhelminthes living within Antarctic sediments possibly because they are commonly known to live in the sea-ice and 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 feed on sea ice diatoms³⁵ but may also be explained by a likely high destruction rate of their soft bodies when sampled for physical taxonomic studies. Most annelids found in this study, were dominated by the polychaetes, which tend to be transient meiofauna associated with Antarctic sediments³⁶. These data are supported by a macrofaunal (>1mm) taxonomic study in the same region, which showed a predominance of Arthropods and Annelids (polychaete worms) in the sediments³⁷. The more fragile nematode samples were largely identified using molecular techniques, which showed them to be the dominant microtaxa, followed by Arthropods and Platyhelminthes³⁷. In our study there were also some identified phyla with very few assigned OTUs (Mollusca, Brachiopoda and Echinodermata). However, given the size fractionation methodology used in this study (<500µm, >45µm), these low abundant OTUs would be either traces of larval or very early post-settlement stages or more likely, gut contents of detritivores, cell debris, faeces, pieces of dermis etc. from adult benthic colonisers. Indeed the macrofaunal study showed that molluses were highly represented, particularly by Mysella charcoti and Aequiyoldia eightsi, which would have been largely excluded in meiofaunal fractionation³⁷. Taxonomy studies in the Southern Ocean^{1,2} have described a greater number of species than presented in this data set here (for example 524 nematode species compared with our estimate of 140 OTUs). However the fact that we identified such a number of OTUs in shallow waters at four sampling sites, some of which are geographically close (rather than the whole of the Southern Ocean for the 524 species²) (Supplementary Figure S2) validates the conclusion that there is still much to discover, especially in the sediments. While, the four meiobenthic phyla described here are the main representatives found in the benthos 248 249 250 251 252 253 anywhere in the world, there will be taxonomic differences in community structures at the species level. This is reflected in trophic features and reproductive strategies, which in the case of the shallow-water meiofauna in Antarctica are adjusted to a cold, highly disturbed and food limiting environment. Stable isotope analyses of meiofaunal communities in Potter Cove, Antarctic 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 Peninsula (latitude -62.235, longitude -58.663) have shown relatively small food webs, based mainly on non-selective deposit feeders, epistrate feeders and a higher proportion of predators²². This was substantiated in our study where the taxonomic assignment within the nematodes were dominated by the *Neochromodora*, *Desmolaimus* and *Sabieteria* genera, suggesting that nematode assemblages were mainly composed of deposit feeders and epistrate feeders, which can minimize interspecific competition. There was also a proportion of Enoplea nematodes that are known to be predators/omnivores. Such different feeding strategies will alleviate species competition to available food^{38,39}. Molecular analyses, such as metabarcoding used here, allow the identification of previously unknown levels of biodiversity²⁰ and enable studies that would otherwise not be possible in such detail using other methodologies. In this study, for each of the main meiobenthic phyla (nematodes, arthropods, platyhelminthes and annelids) (Supplemental Material S1) there were some well-supported clades, particularly in the nematodes and nematodes, where OTUs assigned to the same genus, could potentially comprise species complexes. However without further molecular and taxonomic analysis, these would be difficult to define, but would be highly likely⁴⁰. Clustering of sites according to community composition similarity revealed two well-defined groups (Supplementary Figure S3). The first composed of South Cove (8m depth) and Rothera Point (15m depth), represented virtually adjacent sites and thus their clustering confirmed the similarity of their meiobenthic community assemblages. The second cluster was comprised of Hangar Cove (18m depth) and the Islands (13m depth). This is substantiated by the macrofaunal study which showed significant patchiness and differences between different coves³⁷. South Cove and Rothera Point are more exposed areas with smaller levels of sediment than Hangar Cove or the Islands and likely subject to different current patterns within Ryder Bay and also increased iceberg scour. Generally, replicates of each ecological location always clustered together and thus the combined replicate meiobenthic samples accurately reflected alpha diversity from the Antarctic Peninsula, as shown previously in similar studies in more temperate areas^{41,42}. Meiobenthic community composition can be extremely variable even within small spatial scales^{21,26,43-46}. Local patchiness and structure within these communities is probably a consequence of a combination of several biotic and abiotic factors^{41,42}. Similar to global observations, sediment type and grain size play large roles in structuring Antarctic communities^{21,23,37}, with the additional factors of food supply, which influences species richness and ice disturbance²³. Glacial retreat, ice shelf collapse and the increasing frequency of iceberg scour are significantly impacting the Antarctic benthos, particularly the more shallow waters^{12,21-23,47}. Species return is largely dictated by motility, with the three main methods of return being locomotion, advection by storms and larval re-colonisation⁴⁸. Overall, only the most resilient animals (probably r-selection species) are able to regularly resist such local impacts and prosper in these harsh environments⁴⁹. Studies on Antarctic sediments have shown that nematodes are able to resist and survive in such harsh conditions, namely after ice disturbance nematode communities are very little impacted³³, which again reflects their dominance within the benthos described here. The shallow-water data were also compared to six deep sea samples from the Peninsula region (Supplementary Figures S4 and S5). There was a clear difference in phyla composition with the deep sea sites dominated by nematodes and the shallow by both nematodes and arthropods (or more specifically copepods). These data confirm existing published information on the differences between shallow and deep meiofauna and fit with previous analyses showing biodiversity patterns associated with sediment type and grain size. The shallow samples comprised coarser grains, which are a more favourable habitat for copepods, whilst the deeper sites comprised more fine sediments (mud) suitable for nematodes, as noted in previous studies^{20,23,37}. What was interesting to note was the relatively small overlap in shared OTUs between the shallow and deep samples (Supplementary Figure S5). Because of the way the OTUs were clustered at 97% similarity, "same OTU" in these comparisons may represent the same genus or family, but is unlikely to be the same species in all OTUs^{50,51}. However, the 97% cut-off for OTU clustering is a known proxy for most meiofaunal studies. Although the physical processing of the shallow and deep samples was slightly different, the rest of the process was identical (primers used in the initial amplification reactions and processing of the data such as removal of non-metazoan OTUs from the comparisons between the two studies) and contributed to standardising the data comparison. Moreover, the higher sensitivity for extracellular DNA of the methods used in the deeper sediments should have actually increased the amount of overlap between shallow and deep due to sedimentation, yet very limited overlap was observed. 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 306 307 308 309 310 311 312 This lack of overlap between shallow and deep sites is particularly interesting as the deep CTD samples were quite close to all the shallow sites (Figure 5) and the CTD sampling site was at the bottom of the Marguerite Bay trough. One could expect all the OTUs from the shallow sites to passively sink/disperse to the deepest point and this clearly does not happen or the conditions at depth select against shallow dwelling species. This depth zonation has been shown previously^{20,34} and as yet, there is not a clear answer as to whether there is true depth zonation of meiofauna or whether the shallow DNAs are simply too diluted or degraded by the time they reach the deep. Further to this, more sampling effort would be needed to clarify meiofauna zonation patterns since the rarefaction curves for the sampled Antarctic areas remained incomplete and thus community composition and diversity levels are yet to be determined. The question of faunal exchange between deep and shallow waters is the subject of much debate and may vary according to species ecology, but is a clear area for further research²³. Interestingly even after five years, the meiofaunal communities of the innermost embayments of Larsen B (at 242-427m depth) were still much more similar to those from the deep sea (800-4000m), than shallow shelf communities suggesting that perhaps such zonation does exist. In addition these data show that recolonisation and restructuring of meiofaunal
communities is not rapid and less likely to be subject to the rapid shifts as seen in motile megabenthic communities^{21-23,52}. Because they are less motile, they may be forced to adapt and thus the signals of change may be clearer in these smaller species⁶. However, what is clear in both shallow and deep-sea Antarctic samples is the high levels of undiscovered taxa and potentially high levels of biodiversity, in what are often described as species-poor regions of the globe. 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 332 333 #### **Conclusions** Our results suggest that meiofaunal biodiversity in the shallow waters of the Antarctic is at least similar to that of temperate regions. The Antarctic comprises ca. 10-11% of the World's continental-shelf-area and the total number of validated marine species (mega- and macrofauna) described for the Southern Ocean exceeds 8,000 species, with at least as many more expected^{1,2}. Antarctic meiofaunal descriptions are relatively few to date and have concentrated on taxonomic characterisation. Taxonomically classification of all species is often not practical due to the lack of suitably qualified taxonomists and the sheer volume of work required, thus environmental high throughput sequencing enables faster surveys into understanding biodiversity, albeit providing a slightly different type of data. It also facilitates studies that would otherwise be impossible particularly when applied to bulk environmental samples containing small and easily damaged taxa obtained from inhospitable regions²⁷. The study described here showed that much of the Rothera meiofaunal biodiversity is yet to be described, as no plateau was reached from the rarefaction curves and most OTUs could not be annotated with confidence using the public databases. It also shows that the genomic variability of the 18S rRNA gene can effectively be used to reflect the high but also intangible level of biodiversity even in such a relatively small dataset used in this study and that the methodology is highly tractable for more detailed samplings in the future. These will enable us to gain a more accurate understanding of patchiness and adaptation of meiobethic communities to different environments. This approach may be particularly useful for detecting molecular taxonomic signatures of response to climate change not only in terms of gradual sea warming and acidification, but also the emergence of new habitats resulting from anthropogenic change. 356 357 # MATERIAL AND METHODS Antarctic meiofauna 358 359 **Sample collection** 360 Sediment samples were collected in triplicate at different depths in four different sites near Rothera 361 Station, Adelaide Island on the Antarctic Peninsula (Figure 5). Sampled areas comprised the Islands 362 (67°35.6' S, 68°15.1' W, 13m depth), Hangar Cove (67°33.8' S, 68°07.6' W, 18m depth), South Cove (67°34.2' S, 68°7.9' W, 8m depth) and Rothera Point (67°34'19'S, 68°6'44'W, 15m depth). 363 364 Samples were collected using a standard corer methodology. All samples were immediately fixed in 365 500 ml storage pots containing 300 ml of DESS (20% DMSO and 0.25 M disodium EDTA, saturated with NaCl, pH 8.0)⁵³. The meiofaunal size fraction was mechanically separated from the 366 367 sand and concentrated by decanting five times with filtered tap water through a 45 µm filter. 368 Subsequent separation from fine silt was achieved by repetitive centrifugation in 1.16 specific gravity (sg) LUDOX-TM solution⁵⁴. Following centrifugation, each sample was retained on a 369 370 distinct mesh sieve which was then folded, sliced and placed in a 15 ml falcon tube and kept at -371 80°C until DNA extraction. Samples were lysed overnight at 55°C in lysis buffer (100 mM Tris-372 HCl, pH7.5; 100 mM NaCl; 100 mM EDTA; 1% SDS, 500 µg/ ml proteinase K), assisted by 373 spinning wheel mixing, and DNA extracted with the QIAamp DNA Blood Maxi Kit (Qiagen) following the manufacturer's protocol²⁶. 374 375 376 377 378 379 380 381 382 383 ## Primer design and PCR Due to the extreme sensitivity of this methodology, all PCR and DNA extractions were carried out in separate rooms and recommended eDNA practices were applied to avoid cross-contamination between samples. The primers were SSU F04 primer (GCTTGTCTCAAAGATTAAGCC) and SSU R22mod (5'- CCTGCTGCCTTCCTTRGA -3') were used to amplify approximately 450 bp of the V1–V2 regions of the nuclear small subunit rDNA (18S rDNA)²⁰. Fusion primers, PCR amplification and 454 Roche sequencing were performed as described previously^{26,27}. Specifically, PCR amplification of the specified nSSU region was performed using 1 µl of genomic DNA template (1:500 dilutions) in 3x40 µl independent reactions with Pfu DNA polymerase (Promega). PCR conditions involved a 5 min denaturation at 95 °C, then 35 cycles with 1 min at 95 °C, 45 s 57 °C, 3 min 72 °C and a final extension of 10 min at 72 °C. Negative controls (ultrapure water only) were included for all amplification reactions. Subsequently, triplicates of PCR products were visualized and the expected 450 bp fragment was purified (QIAquick Gel Extraction Kit, Qiagen) in an agarose gel and quantified using the Agilent Bioanalyser 2100. All purified PCR products were diluted to the same concentration, pooled together to create one metagenetic sample/ library and sequenced in one direction (A-Amplicon) on half a plate of a Roche 454 GSFLX platform (2x250 bp) at the Centre for Genomic Research, Liverpool. For full details of replicated PCRs and associated MID tags, see Supplementary Table S2. # Data analysis and generation of OTUs Raw sequence reads were filtered and denoised using FlowClus⁵⁵. The filtering criteria included truncating reads prior to the first ambiguous base, the reverse primer, or a window of 50bp whose average quality score was less than 25.0. Any reads shorter than 200bp or longer than 600bp were eliminated. For the denoising step, in which pyrosequencing errors were corrected by clustering the flowgrams, a constant value of 0.50 was used for the denoising distance⁵⁶. After denoising, PCR chimeras were removed using UCHIME⁵⁷ (Supplementary Table S2). The remaining reads were then analysed using QIIME⁵⁸. They were clustered into OTUs at 97% sequence similarity using UCLUST⁵⁹ (pick_otus.py), and taxonomic assignment was performed using the Silva 111 database⁶⁰ (assign_taxonomy.py), which uses uclust. The uclust consensus taxonomy assigner retrieves the maximum assigned matches for each query sequence. It then assigns the most specific taxonomic label that is associated with at least min_consensus_fraction of the matches. It is acknowledged that the threshold used for the OTU clustering at 97% similarity might cluster genus or family from the same taxa, as intra-specific variability will differ across many taxa/ species. However, this cut-off is known as proxy for most meiofauna species⁵⁰, but cut-offs such as 99% have also been justified as a proxy for some nematode species in more targeted studies⁵¹. For direct ecological comparisons among samples with different read numbers, the percentage of reads in each sample was used instead of read counts and downstream analyses targeted main representatives within meiofauna phyla occupying the Antarctic Peninsula sediment habitats⁴². 415 416 417 410 411 412 413 414 **Data Deposition:** All sequence reads have been deposited in the European Nucleotide Archive (ENA) with accession number ENA: PRJEB1952. 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 # Diversity and community analysis Rarefaction curves were generated with EstimateS 8.2.0 software⁶¹ using the Chao1 richness estimator; nonetheless other richness estimators were tested (ACE, Chao1, Jackknife1 and Bootstrap) and yielded similar results. Sørensen's similarity coefficient among samples was computed based on a presence/absence similarity matrix and was used to create cluster dendrograms with 50 random starts, using primer 6^{62} . Using the same software, a similarity profile ('SIMPROF') permutation test, was performed on group-average cluster analysis to test whether the meiobenthic samples differ from each other. In order to further test for significant differences in community composition among sampling sites, a permutational multivariate analysis of variance ('PERMANOVA') was performed. Analyses were based on Sørensen's similarity coefficient on untransformed data of an OTU presence/absence matrix over the four sampled sites, with 1000 permutations. Further comparisons between the Antarctic and a Scottish study²⁶ were performed to illustrate possible differences between the numbers of meiofauna OTUs found per phyla in the two habitats. In order for the two studies to be as comparable as possible, all analysis were performed using triplicated samples, similar 18S gene regions and using the same OTU clustering threshold of 97%. Antarctic eukaryotic OTUs retrieved from the data analysis were used in a Neighbour-Joining (NJ) phylogeny reconstruction to confirm the taxonomic assignments (Supplemental material S6). 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 Taxonomic contributions using total OTU proportions were visualized using Krona graphs, plotted using the Krona web interface software⁶³ and a non-parametrical statistical test was performed (Kruskal-Walis) to check if number of OTUs per replicated sample site were significantly different Taxonomic assignment for this purpose was also performed using SILVAngs 1.5 database at https://www.arb-silva.de/ngs/. Comparison with deep sea samples Comparisons of OTUs were made with deep sea meiofaunal data from samples taken along the Antarctic Peninsula²⁰ and comprise SED 415 (Laubeuf Fjord) (500m) (67°52.583S 68°5.842'W), SED 390 and SED 410 (duplicate CTD samples at the same site and depth) (515m) (67°35'6.57S 68°12'17.38W), SED385 (390m)
(67°35'6.16"S 68°8'35.42"W), SED395 (off Anchorage Island) (290m) (67°36'5.23"S 68°13'29.75"W) with an additional sample denoted Adria2 (1120m) (74°29'.00S 104°25'.00W) kindly provided by Holly Bik and Adrian Glover (data unpublished) (Figure 5). Published data were obtained from direct extractions of minimal amounts of frozen sediments²⁰ while the data from the additional sample "Adria2" was processed using the same methodology (DESS fixed samples, meiofauna isolated from sediments and then DNA extraction) as the shallow-water data presented here. Acknowledgements The authors would like to thank both Holly Bik and Adrian Glover for allowing us to use the data from their deep-sea Peninsula sediment sample in our analyses. We would also like to thank the Rothera Dive Team for help in collecting core samples, Susannah Pereira for meiofaunal decantation and molecular technical assistance and Laura Gerrish for producing the maps. The NERC National Facility for Scientific Diving (Oban) provided overall diving support. This paper was financed by NERC core funding to BAS within the Polar Sciences for Planet Earth Programme (MSC and LSP) and a NERC Antarctic Funding Initiative Collaborative Gearing Scheme to SC (No | 462 | 57). VGF and DMP were supported by CCMAR core funding from the Portuguese Science | |-----|--| | 463 | Foundation (FCT.UID/Multi/04326/2013). VGF would like to thank the Portuguese Foundation for | | 464 | Science and Technology (FCT) for a post-doctoral grant (SFRH/BPD/80447/2014). FS was | | 465 | supported by the European Community FP7 Marie Curie International Incoming Fellowship project | | 466 | MARMEDIV (no. 253251). | | 467 | | | 468 | Author Contributions | | 469 | VGF performed most of the shallow-water bioinformatics analyses, interpreted the data and wrote | | 470 | the first draft of the paper. FS was involved in collecting the samples, advised on the bioinformatics | | 471 | analyses, supplied the deep-sea data, performed the deep-sea analyses and contributed to the paper. | | 472 | JMG and CQ both performed some of the shallow-water bioinformatics analyses and provided | | 473 | bioinformatics advice. SC jointly conceived the project with LSP, supervised sample collection and | | 474 | the molecular extractions, provided metagenomics advice and contributed to the paper. DMP | | 475 | supervised the biological interpretations and the production of the manuscript. LSP jointly | | 476 | conceived the project with SC, managed the Antarctic fieldwork, provided advice on Antarctic | | 477 | ecology and contributed to the paper. MSC supervised the project and the analyses and wrote the | | 478 | final draft of the paper. | | 479 | | | 480 | Competing Financial Interests | | 481 | The authors state that they have no conflicts of interest. | | 482 | | | 483 | References | | 484 | 1. Gutt, J., Graham, H. & Stoddart, M. "Marine life in the Antarctic." Life in the World's | | 485 | Oceans pp. 203-220. (2010) | | 486 | 2. De Broyer, C et al. Biogeographic Atlas of the Southern Ocean. Scientific Committee on | | 487 | Antarctic Research, Cambridge, XII + 498 pp. (2014) | - 488 3. Kaiser, S. *et al.* Patterns, processes and vulnerability of Southern Ocean benthos: a decadal - leap in knowledge and understanding. *Marine Biology*, **160**, 2295-2317, - 490 doi:10.1007/s00227-013-2232-6 (2013). - 491 4. Barnes, D. K. A. & Peck, L. S. Vulnerability of Antarctic shelf biodiversity to predicted - 492 regional warming. *Climate Research*, **37**, 149-163 (2008). - 5. Convey, P. et al. The spatial structure of Antarctic biodiversity. Ecological Monographs 84, - 494 203-244, doi:10.1890/12-2216.1 (2014). - 6. Schratzberger, M. & Ingels, J. Meiofauna matters: The role of meiofauna in benthic - 496 ecosystems. Journal of Experimental Marine Biology and Ecology - 497 https://doi.org/10.1016/j.jembe.2017.01.007. (2017) - 7. Meyer-Reil, L. A. & Faubel, A. Uptake of organic matter by meiofauna organisms and - interrelationships with bacteria. *Marine Ecology Progress Series* **3**, 251-256, - doi:10.3354/meps003251 (1980). - 8. van Wessem, J. M. et al. Temperature and Wind Climate of the Antarctic Peninsula as - Simulated by a High-Resolution Regional Atmospheric Climate Model. *Journal of Climate* - **28**, 7306-7326, doi:10.1175/jcli-d-15-0060.1 (2015). - 9. Turner, J. et al. Absence of 21st century warming on Antarctic Peninsula consistent with - natural variability. *Nature* **535**, 411-415, doi:10.1038/nature18645 (2016). - 506 10. Cook, A. J. et al. Ocean forcing of glacier retreat in the western Antarctic Peninsula. Science - **353**, 283-286, doi:10.1126/science.aae0017 (2016). - 508 11. Ducklow, H. W. et al. West Antarctic Peninsula: An Ice-Dependent Coastal Marine - Ecosystem in Transition. *Oceanography* **26**, 190-203 (2013). - 510 12. Barnes, D. K. A. & Souster, T. Reduced survival of Antarctic benthos linked to climate- - induced iceberg scouring. *Nature Climate Change*, **1**, 365-368, (2011). - 512 13. Clarke, A. & Crame, J. A. The Southern Ocean benthic fauna and climate change A - 513 historical perspective. *Philosophical Transactions of the Royal Society of London Series B*- - *Biological Sciences* **338**, 299-309, doi:10.1098/rstb.1992.0150 (1992). - 515 14. Peck, L. S. Organisms and responses to environmental change. *Marine Genomics* **4**, 237- - 516 243, doi:10.1016/j.margen.2011.07.001 (2011). - 517 15. Tytgat, B. et al. Bacterial diversity assessment in Antarctic terrestrial and aquatic microbial - mats: a comparison between bidirectional pyrosequencing and cultivation. *PLoS One*, **9**, - 519 e97564, (2014). - 16. Archer, S.D., McDonald, I.R., Herbold, C.W., Lee, C.K. & Cary, C.S. Benthic microbial - 521 communities of coastal terrestrial and ice shelf Antarctic meltwater ponds. Frontiers in - 522 *Microbiology*, **6**, 485, doi:10.3389/fmicb.2015.00485 (2015) - 523 17. Zablocki, O. et al. High-level diversity of tailed phages, eukaryote-associated viruses, and - virophage-like elements in the metaviromes of antarctic soils. *Applied Environmental* - 525 *Microbiology*, **80**, 6888-97, (2014). - 18. Eiler, A. *et al.* Unveiling distribution patterns of freshwater phytoplankton by a next - generation sequencing based approach. *PLoS One*, **8**, e53516, (2013). - 528 19. Luria, C., Ducklow, H.W. & Amaral-Zettler, L.A. Marine bacterial, archaeal and eukaryotic - diversity and community structure on the continental shelf of the western Antarctic - Peninsula. *Aquatic Microbial Ecology*, **73**, 107-121, (2014). - 20. Sinniger, F. et al. Worldwide Analysis of Sedimentary DNA Reveals Major Gaps in - Taxonomic Knowledge of Deep-Sea Benthos. Frontiers in Marine Science, 3, 92, - 533 doi.org/10.3389/fmars.2016.00092 (2016). - 21. Pasotti, F. *et al.* Antarctic shallow water benthos in an area of recent rapid glacier retreat. - 535 *Marine Ecology-an Evolutionary Perspective* **36**, 716-733, doi:10.1111/maec.12179 (2015). - 22. Pasotti, F. *et al.* Benthic Trophic Interactions in an Antarctic Shallow Water Ecosystem - Affected by Recent Glacier Retreat. *PLoS One*, **10**, e0141742, (2015). - 23. Rose, A., Ingels, J., Raes, M., Vanreusel, A. & Arbizu, P. M. Long-term iceshelf-covered - meiobenthic communities of the Antarctic continental shelf resemble those of the deep sea. - 540 *Marine Biodiversity* **45**, 743-762, doi:10.1007/s12526-014-0284-6 (2015). - 541 24. Bouvy, M. Contribution of the bacterial and microphytobenthic microflora in the energetic - demand of the meiobenthos in an intertidal muddy sediment (Kerguelen Archipelago). - 543 Marine Ecology-Pubblicazioni Della Stazione Zoologica Di Napoli I **9**, 109-122, - 544 doi:10.1111/j.1439-0485.1988.tb00202.x (1988). - 545 25. Vanhove, S. et al. The metazoan meiofauna in its biogeochemical environment: The case of - an Antarctic coastal sediment. Journal of the Marine Biological Association of the United - 547 *Kingdom* **78**, 411-434 (1998). - 548 26. Fonseca, V. et al. Second-generation environmental sequencing unmasks marine metazoan - biodiversity. *Nature Communications*, **1**, 98, doi:10.1038/ncomms1095 (2010). - 27. Creer, S. *et al.* Ultrasequencing of the meiofaunal biosphere: practice, pitfalls and promises. - *Molecular Ecology*, **19**, 4-20, (2010). - 28. Tipper, J. Rarefaction and rarefiction the use and abuse of a method in paleoecology. - 553 *Paleobiology*, **5**, 423-434 (1979). - 29. Gaston, K. & Spicer, J. I. Biodiversity: An introduction (2nd Edition) Pub. Blackwell, - 555 Oxford, UK. (2004) - 30. Clarke, A., Griffiths, H.J., Linse, K., Barnes, D.K.A. & Crame, J.A. How well do we know - the Antarctic marine fauna? A preliminary study of macroecological and biogeographical - patterns in Southern Ocean gastropod and bivalve molluscs. *Diversity and Distributions*, **13**, - 559 620-632, (2007). - 31. Grant, R. A., Griffiths, H. J., Steinke, D., Wadley, V. & Linse, K. Antarctic DNA - barcoding; a drop in the ocean? *Polar Biology* **34**, 775-780, doi:10.1007/s00300-010-0932-7 - 562 (2011). - 32. Griffiths, H.J. Antarctic marine biodiversity--what do we know about the distribution of life - in the Southern Ocean? *PLoS ONE*, **5**, e11683, (2010). - 33. Lee, H., Vanhove, S., Peck, L.S. & Vincx, M. Recolonisation of meiofauna after - catastrophic iceberg scouring in shallow Antarctic sediments. *Polar Biology*, **24**, 918-925, - 567 (2001). - 34. Hauquier, F., Duran Suja, L., Gutt, J., Veit-Kohler, G. & Vanreusel, A. Different - Oceanographic Regimes in the Vicinity of the Antarctic Peninsula Reflected in Benthic - Nematode Communities. *PLoS One*, **10**, e0137527, (2015). - 35. Janssen, H.H. & Gradinger, R. Turbellaria (Archoophora: Acoela) from Antarctic sea ice - endofauna examination of their micromorphology. *Polar Biology*, **21**, 410-416, (1999). - 36. Bick, A. & Arlt, G. Description of
intertidal macro- and meiobenthic assemblages in - Maxwell Bay, King George Island, South Shetland Islands, Southern Ocean. *Polar Biology*, - **36**, 673-689 (2013). - 37. Vause, B.J., Morley, S.A., Fonseca, V., Jazdzewkas, A., Ashton, G.V., Barnes, D.K.A., - 577 Clark, M.S., Giebner, H. & Peck, L.S. Latitudinal patterns in shallow soft sediment - 578 communities: high biodiversity in Antarctica. *In review*. - 38. Jensen, P. Feeding ecology of free-living aquatic nematodes. *Marine Ecology Progress* - *Series* **35**, 187-196, doi:10.3354/meps035187 (1987). - 39. Moens, T. & Vincx, M. Observations on the feeding ecology of estuarine nematodes. - Journal of the Marine Biological Association of the United Kingdom 77, 211-227 (1997). - 583 40. Derycke, S. *et al.* Coexisting cryptic species of the *Litoditis marina* complex (Nematoda) - show differential resource use and have distinct microbiomes with high intraspecific - variability. *Molecular Ecology* **25**, 2093-2110, doi:10.1111/mec.13597 (2016). - 41. Fonseca, V. et al. Metagenetic analysis of patterns of distribution and diversity of marine - meiobenthic eukaryotes. *Global Ecology and Biogeography*, **23**, 1293-1302 (2014). - 42. Lallias, D. *et al.* Environmental metabarcoding reveals heterogeneous drivers of microbial - eukaryote diversity in contrasting estuarine ecosystems. *ISME J*, **9**, 1208-1221, (2015). | 590 | 43. Fonseca, G., Soltwedel, T., Vanreusel, A. & Lindegarth, M. Variation in nematode | |-----|--| | 591 | assemblages over multiple spatial scales and environmental conditions in Arctic deep seas. | - 592 *Progress in Oceanography* **84**, 174-184, doi:10.1016/j.pocean.2009.11.001 (2010). - 44. Ingels, J. & Vanreusel, A. The importance of different spatial scales in determining structural and functional characteristics of deep-sea infauna communities. *Biogeosciences* - **10**, 4547-4563, doi:10.5194/bg-10-4547-2013 (2013). - 45. Gallucci, F., Moens, T. & Fonseca, G. Small-scale spatial patterns of meiobenthos in the Arctic deep sea. *Marine Biodiversity* **39**, 9-25, doi:10.1007/s12526-009-0003-x (2009). - 46. Vieira, D. C. & Fonseca, G. The Importance of Vertical and Horizontal Dimensions of the Sediment Matrix in Structuring Nematodes Across Spatial Scales. *Plos One* 8, doi:10.1371/journal.pone.0077704 (2013). - 47. Brown, K.M., Fraser, K.P., Barnes, D.K. & Peck, L.S. Links between the structure of an Antarctic shallow-water community and ice-scour frequency. *Oecologia*, **141**, 121-129 (2004). - 48. Peck, L. S., Brockington, S., Vanhove, S. & Beghyn, M. Community recovery following catastrophic iceberg impacts in a soft-sediment shallow-water site at Signy Island, Antarctica. *Marine Ecology Progress Series* 186, 1-8, doi:10.3354/meps186001 (1999). - 49. Giere, O. *Meiobenthology: The Microscopic Motile Fauna of Aquatic Sediments*, 2nd edn. Springer-Verlag Berlin Heidelberg, (2009). - 50. Porazinsk, D.L. *et al.* Evaluating high-throughput sequencing as a method for metagenomic analysis of nematode diversity. *Molecular Ecology Resources* **9,** 1439–1450. (2009) - 51. Blaxter, M. et al. Defining operational taxonomic units using DNA barcode data. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences 360, 1935-43. (2005) - 52. Gutt, J. et al. Shifts in Antarctic megabenthic structure after ice-shelf disintegration in the - Larsen area east of the Antarctic Peninsula. *Polar Biology* **36**, 895-906, doi:10.1007/s00300- - 616 013-1315-7 (2013). - 53. Yoder, M. et al. DESS: a versatile solution for preserving morphology and extractable DNA - of nematodes. *Nematology*, **8**, 367-376, (2006) - 54. de Jonge, V. & Bouwman, L. A simple density separation technique for quantitative - isolation of meiobenthos using the colloidal silica Ludox-TM. *Marine Biology*, **42**, 143–148, - 621 (1977). - 55. Gaspar, J. M. & Thomas, W. K. FlowClus: Efficiently filtering and denoising - pyrosequenced amplicons. *BMC Bioinformatics* **16,** 105, doi:10.1186/s12859-015-0532-1 - 624 (2015). - 56. Reeder, J. & Knight, R. Rapidly denoising pyrosequencing amplicon reads by exploiting - rank-abundance distributions. *Nature Methods* 7, 668-669, doi:10.1038/nmeth0910-668b - 627 (2010). - 57. Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves - sensitivity and speed of chimera detection. *Bioinformatics* **27,** 2194-2200, doi: - 630 10.1093/bioinformatics/btr381 (2011). - 58. Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing - data. *Nature Methods* **7**, 335-336, doi:10.1038/nmeth.f.303 (2010). - 59. Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. *Bioinformatics* - **26**, 2460-2461, doi:10.1093/bioinformatics/btq461 (2010). - 60. Pruesse, E. et al. SILVA: a comprehensive online resource for quality checked and aligned - ribosomal RNA sequence data compatible with ARB. *Nucleic Acids Research* **35**, 7188- - 637 7196, doi:10.1093/nar/gkm864 (2007). - 61. Colwell, R.K. EstimateS: Statistical estimation of species richness and shared species from - samples. Version 9 and earlier. User's Guide and application. http://purl.oclc.org/estimates, | 640 | (2013). | |-----|---| | 641 | 62. Clarke, K. & Gorley, R. PRIMER version 6: user manual/tutorial PRIMER-E. Plymouth, | | 642 | England, (2006). | | 643 | 63. Ondov, B.D., Bergman, N.H. & Phillippy, A.M. Interactive metagenomic visualization in a | | 644 | Web browser. BMC Bioinformatics, 12, 385, (2011). | | 645 | | | 646 | Figure Legends | | 647 | | | 648 | Figure 1 - Percent identity to known sequences and number of OTUs found for the main meiofauna | | 649 | phyla retrieved from the Antarctic Peninsula sampled sites. The red full line represents the total | | 650 | number of OTUs found per phyla and the blue bar represents the percentage identity BLAST match | | 651 | against the SILVA 111 nucleotide database. OTUs percentages of BLAST match identity against | | 652 | SILVA database are shown black (100% BLAST), dark to light grey (100-97% BLAST), light to | | 653 | dark blue (97-93%) and light to dark orange (93-90% BLAST). BECGB: Brachiopoda, | | 654 | Echinodermata, Cnidaria, Gastrotricha, Bryozoa. | | 655 | | | 656 | Figure 2 - Operational taxonomic unit saturation profiles at 99% sequence similarity level, for the | | 657 | Antarctic samples collected. Hangar Cove (HC), Islands (I), Rothera Point (RP) and South Cove | | 658 | (SC), where 1-3 represent each sample replicate. | | 659 | | | 660 | Figure 3 – Venn diagram depicting OTUs that are shared or unique to each of the four | | 661 | sampling sites found in the Antarctica meiofaunal shallow waters. Numbers in the diagram | | 662 | represent the number of total OTUs found in the different samples, South Cove (blue), Islands | | 663 | (Red), Rothera Point (yellow) and Hangar Cove (green). | | 664 | | | 665 | Figure 4 – Krona graphical representation of the relative taxonomic contributions (OTU | percentages) of the main eukaryotic (a) and meiofauna representatives (b) found at Rothera Peninsula sampled sites, using taxonomic assignment from SILVAngs 1.5 database at https://www.arb-silva.de/ngs/. Depicted are also OTU percentages of four of the main meiofauna phyla found, the nematodes, arthropods, platyhelminthes and the annelids. Figure 5 – Map showing the main sampling sites along the Antarctic Peninsula, with finer detail of the deep-water sites in Ryder Bay. SED 385 is closest to Rothera Research Station and the sites of the four shallow-water sediment-sampling sites (not shown at this scale). Maps made in-house at BAS using ArcGIS v10.1 by the Mapping and Geographical Information Centre (MAGIC). **Table 1:** Summary data for the sampled areas Hangar (HC), Rothera point (RP), Islands (I) and South Cove (SC) at Rothera in the Antarctic Peninsula. The number of reads before (No reads) and after denoising (QC/CC): QC: quality score; CC: chimera check) and total OTU numbers are shown. OTUs numbers were taxonomically assigned to the eukaryotes and unknown. The latter samples comprised both sequences with no matches in the SILVA reference database and also matches to unannotated environmental samples. --- | Location | Depth (m) | No Reads | QC/CC | Number of OTUs | | | |---------------|-----------|----------|-------|----------------|---------|-------| | | | | | Eukaryote | Unknown | Total | | Hangar | 18 | 18391 | 14445 | 116 | 43 | 159 | | Rothera Point | 15 | 8110 | 6898 | 85 | 16 | 101 | | Islands | 13 | 23882 | 20109 | 127 | 58 | 185 | | South cove | 8 | 5740 | 8203 | 76 | 19 | 95 | Revealing higher than expected meiofaunal diversity in Antarctic sediments: a metabarcoding approach ## **Supplementary Information** Fonseca VG¹, Sinniger F², Gaspar JM³, Quince C⁴, Creer S⁵, Deborah M Power⁶, Lloyd S Peck⁷, Melody S Clark ⁷ ¹Zoological Research Museum Alexander Koenig (ZFMK), Centre for Molecular Biodiversity Research, Bonn, Germany. ²Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa, 905-0227 Japan. ³Computational Biology Institute, George Washington University, Ashburn, Virginia, USA. ⁴Department of Microbiology and Infection, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK. ⁵Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Gwynedd, LL57 2UW, UK. ⁶Centro de Ciencias do Mar, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal ⁷British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK **Supplementary Figure S1:** Rarefaction curves of the Chao 1 diversity estimator. Plots are shown for all phyla, Nematoda, Arthropoda and
Platyhelminthes at 97% identity OTU cut-off for all the Antarctic Peninsula sampled sites samples. Curves were estimated from 100 randomizations, without replacement, using EstimateS, version 8.2.0. **Supplementary Figure S2:** Community composition for the Antarctic sampled areas Hangar Cove (HC), Rothera Point (RP), Islands (I), South Cove (SC) and also for the Scottish sampled site²⁶. Taxonomy assignment was performed using the SILVA database and the number of total OTUs for each sample site is shown (triplicates were merged per sample site). **Supplementary_Figure_S3:** Cluster analysis for taxonomic patterns of meiofaunal communities based on Sørensen similarities of OTU presence/absence data for the combined sites. In the dendrogram, black solid lines represent samples sharing a significant similarity profile with a SIMPROF analysis. **Supplementary Figure S4:** Community composition for the shallow and deep-water samples. The shallow-water samples are highlighted within a border. Taxonomy assignment was performed using the SILVA database with the percentage of OTUs per phyla shown in all sample sites. **Supplementary Figure S5:** Overlap of metazoan OTUs between merged shallow samples and deep samples (individual and merged). Values are based on presence/absence data, with a total of 203 distinct metazoan OTUs found in all shallow samples and between 54 and 136 distinct OTUs in each of the deep samples for a total of 228 different deep metazoan OTUs. **Supplementary Material S1:** Fonseca et al. "Revealing higher than expected meiofaunal diversity in Antarctic sediments: a metabarcoding approach" Supplementary analysis #### Method All Eukaryotic OTUs retrieved from the data analysis were used to confirm the taxonomic position and community composition within the main eukaryotic metazoan found, using a Neighbour-Joining (NJ) phylogeny reconstruction, 500 bootstrap replications and the Kimura 2-parameter pairwise distance model. The analysis was performed using the software Mega7 (Kumar *et al.*, 2016) and illustrated via a phylogenetic tree produced using the Interactive Tree of Life iTOL tool (Letunic & Bork, 2007). #### Result Phylogenetic analysis of the total Eukaryotic OTUs further confirmed the presence of five taxonomically distinct phyla groups, the Nematoda, Arthropoda, Platyhelminthes, Annelida and the SAR supergroup (Starmenopiles, Alveolata and Rhizaria) and all phylogenetic clusters were supported by strong to moderate bootstrap values (Figure S1). OTUs assigned to Fungi were removed from the analysis and the Chloroplastida OTUS (ALGAE) were used as an outgroup (Figure S1). The Arthropoda cluster had a strong bootstrap support but it also showed a smaller independent cluster comprised mainly of the Ostracoda class (Figure S1). Here, three Echinodermata OTUs, two Kynorincha OTUs and one Mollusca OTU also sub-clustered. The Mollusca (7 OTUs) and Gastrotricha (4 OTUs) clustered inside the Annelida phyla. Within the SAR supergroup the Rhizaria (Cercozoa) also showed an independent phylogenetic sub-cluster, whereas the Stramenopiles and Alveolata clustered concurrently (Figure S1). **Figure S1**- Phylogenetic tree of all Eukaryotic OTUs using a Neighbour-Joining analysis based on the Kimura 2-parameter model. Black symbols at nodes represent the corresponding range of bootstrap support values, from the smallest (75% support) to the largest (100% support). Five main distinct phylogenetic groups were formed the Nematoda, Arthropoda, Platyhelminthes, Annelida and the SAR supergroup (Starmenopiles, Alveolata and Rhizaria). The Rhizaria from the SAR supergroup is depicted in dash-purple. Other phyla are also clustered, the Mollusca (dash-orange), Kynorincha (dash-red), Gastrotricha (light blue) and Echinodermata (solid black). The outgroup is the ALGAE green cluster. SILVA database was used for OTU taxonomy classification. **Supplementary Table S1.1-** Closest BLAST matches of Operational Taxonomic Units (OTUs) retrieved from Rothera sample sites, assigned to Nematoda, up to genus or species levels (Description) using SILVA 1.11 database. Depicted are the public accession numbers (AcNumber), BLAST identity percentage against SILVA (BLAST % ID), Phylum and other Taxa ranking. | Demon/2015 Gale Part P | OTU# | AcNumber | BLAST % ID | Phylum | Taxa Rank | Description | |--|-----------|----------------------|------------|------------------|--------------------|--------------------------| | Demons/16 g | denovo208 | gb AY593940.1 | 94,5 | phylum: Nematoda | class: Chromadorea | Achromadora cf terricola | | demon264 gipleMisAcASBB 96,19 priylum Nemandods docs Engolea Ancreating | denovo219 | emb AJ966473.1 | 91,17 | | class: Chromadorea | Anaplectus sp. | | Demonal | | | | | • | | | Demon/16 Genomination Demonstrate Class Chromadorea Acceptance Acceptan | | | | | | | | Genova 15 15 15 15 15 15 15 1 | | | | | | | | Common/2016 Commonstration | | | | | | | | demov216 | | | | | | · | | Genova G | denovo88 | emb AJ966476.1 | 92,68 | phylum: Nematoda | class: Enoplea | Bathylaimus assimilis | | demon/2013 Jan | | | | | | | | Genovo336 pbj.1996399.1 95, 62 phylum Nematods class: Chromadorea Casmocialimus sp. | | | | | | | | Genovo/31 Disposition 95.62 Disposition Post Disposition D | | 9 1 | | | | | | Denovo 17 Display 17 19 19 19 19 19 19 19 | | | | | | | | | denovo93 | | | | class: Chromadorea | Camacolaimus sp. | | Genova G | | gb HM564544.1 | | | | | | denovo247 gil F591333.1 95.53 phylum Nematoda dass: Chromadorea Desmolaimus sp. | | | | | | | | denovo275 gil EF99133.3.1 97.6.2 phylum Nemadoda class: Chromadorea Desmolelmus Sp. | | | | | | | | Desmolalmus sp. | | | | | | · | | Desmolalmus sp. Desmolalmus sp. | | | | | | · | | Desmolarimus sp. | denovo65 | gb EF591333.1 | | | | Desmolaimus sp. | | Desmolarimus Sp. Desmolarimus Sp. | | | | | | | | denovo 5 0 EF5913 33.1 94.74 phylum: Nematoda class: Chromadorea Desmolaimus sp. | | • . | | | | | | denovo195 gil 1913 33.1 94.47 phylum: Nematoda class: Chromadorea Desmolaimus \$p. denovo213 gil | | | | | | | | denov0718 gb EF591333.1 95.01 phylum: Nematoda class: Chromadorea denov074 gb EF591333.1 97.03 phylum: Nematoda class: Chromadorea Desmolalmus \$p. denov074 gb EF591333.1 97.03 phylum: Nematoda class: Emplea Emploida | | | | . , | | | | denovo76 gib F18217.1 | | • . | | | | | | denovol | | | | | | | | denova24 6 hM66449.1 98,6 phylum Nematoda class Enoplea Halalalimus sp. | | | | | | | | denovo33 | | | | | | • | | denovox84 69 F.040488.1 93,18 priyum Nematoda class: Chromadorea Leptolaimus sp. | | | | . , | | | | denovo279 del | | | | | | • | | denovo211 dip FJ040458.1 90.84 phylum: Nematoda class: Chromadorea Leptolalmus sp. | denovo209 | | 93,18 | phylum: Nematoda | class: Chromadorea | Leptolaimus sp. | | denovo124 dip F290351 94 phylum: Nematoda class: Chromadorea Liptolalimus sp. | | 9 1 | | | | | | denovo2149 denovo2149 delovo2149 delovo2149 delovo2140 del | | · | | | | | | denovo231 gl) FF59137.1 93,88 phylum: Nematoda class: Chromadorea Medesmolalimus sp. | | | | | | | | denova114 gli JNP08218.1 97,88 phylum: Nematoda class: Chromadorea Metadesmolalimus sp. | | • . | | | | • | | denov299 gib N854210.1 96,31 phylum: Nematoda class: Chromadorea Neochromadora denov2625 gib N854210.1 96,31 phylum: Nematoda class: Chromadorea Neochromadora denov2625 gib N854210.1 98,29 phylum: Nematoda class: Chromadorea Neochromadora denov263 gib N854210.1 97,63 phylum: Nematoda class: Chromadorea Neochromadora denov261 gib N854210.1 95,78 phylum: Nematoda class: Chromadorea Neochromadora denov261 gib N854210.1 95,78 phylum: Nematoda class: Chromadorea Neochromadora denov261 gib N854210.1 95,51 phylum: Nematoda class: Chromadorea Neochromadora denov261 gib N854210.1 95,51 phylum: Nematoda class: Chromadorea Neochromadora denov262 gib N856240.1 94,72 phylum: Nematoda class: Chromadorea Neochromadora denov263 gib N866246.1 94,72 phylum: Nematoda class: Chromadorea
Neochromadora denov264 gib N866246.1 96,31 phylum: Nematoda class: Chromadorea Neochromadora Neochromadora denov264 gib N866246.1 95,78 phylum: Nematoda class: Chromadorea Neochromadora Neochromadora denov264 gib N866246.1 97,78 phylum: Nematoda class: Chromadorea Neochromadora N | | • . | | | | | | denov328 gi A/854210.1 96.31 97.01 96.31 97.02 97.03 98.29 99.20 | | gb AY854210.1 | | | | | | denov0198 gil N854210.11 98,29 phylum:Nematoda class: Chromadorea Neochromadora denov030 gil N854210.11 97,63 phylum:Nematoda class: Chromadorea Neochromadora denov040 gil N854210.11 97,63 phylum:Nematoda class: Chromadorea Neochromadora denov040 gil N854210.11 95,78 phylum:Nematoda class: Chromadorea Neochromadora denov041 gil N854210.11 95,51 phylum:Nematoda class: Chromadorea Neochromadora denov041 gil N854210.11 95,51 phylum:Nematoda class: Chromadorea Neochromadora denov048 gil N854210.11 94,72 phylum:Nematoda class: Chromadorea Neochromadora denov030 gil N868246.11 94,72 phylum:Nematoda class: Chromadorea Neochromadora Neochromadora denov0207 gil N808246.11 95,78 phylum:Nematoda class: Chromadorea Neochromadora Neochromadora phylum:Nematoda class: Chromadorea Neochromadora Neochromadora Neochromadora Neochromadora phylum:Nematoda class: Chromadorea Neochromadora Neochroma | | | | | | | | denov0252 g b AY854210.1 95.51 phylum:Nematoda class: Chromadorea Neochromadora denov010 g b AY854210.1 95.51 phylum:Nematoda class: Chromadorea Neochromadora denov010 g b AY854210.1 97.63 phylum:Nematoda class: Chromadorea Neochromadora denov0193 g b AY854210.1 95.51 phylum:Nematoda class: Chromadorea Neochromadora denov0193 g b AY854210.1 93.95 phylum:Nematoda class: Chromadorea Neochromadora denov0333 g b AY854210.1 93.95 phylum:Nematoda class: Chromadorea Neochromadora Neochromadora denov0207 g b JN968246.1 94.72 phylum:Nematoda class: Chromadorea Neochromadora Neochromadora phylum:Nematoda class: Chromadorea Neochromadora Neo | | | | | | | | denovo133 gb AVB54210.1 95,51 phylum.Nematoda class: Chromadorea Neochromadora denovo10 gb AVB54210.1 95,63 phylum.Nematoda class: Chromadorea Neochromadora Neochro | | | | | | | | denov000 gip AYB54210.1 97.63 phylum. Nematoda class: Chromadorea Neochromadora denov0193 gip AYB54210.1 95.78 phylum. Nematoda class: Chromadorea Neochromadora | | | | | | | | denov0493 g JAY854210.1 93.95 phylum: Nematoda class: Chromadorea Neochromadora denov0333 g JAY854210.1 94.72 phylum: Nematoda class: Chromadorea Neochromadora denov0207 g JAY86246.1 94.72 phylum: Nematoda class: Chromadorea Neochromadora Odontophora phylum: Nematoda class: Chromadorea phylum | denovo60 | | 97,63 | phylum: Nematoda | class: Chromadorea | Neochromadora | | denov048 gb AWS84210.1 93.95 phylum: Nematoda class: Chromadorea Neochromadora sp. denov0207 gb JN968246.1 94.72 phylum: Nematoda class: Chromadorea Neochromadora sp. denov078 gb JN968246.1 93.14 phylum: Nematoda class: Chromadorea Neochromadora sp. denov0154 gb JN968246.1 92.61 phylum: Nematoda class: Chromadorea Neochromadora sp. denov0154 gb JN968246.1 94.74 phylum: Nematoda class: Chromadorea Neochromadora sp. denov0261 gb JN968246.1 93.44 phylum: Nematoda class: Chromadorea Neochromadora sp. denov0261 gb JN968246.1 94.74 phylum: Nematoda class: Chromadorea Neochromadora sp. denov0261 gb JN968215.1 95.25 phylum: Nematoda class: Chromadorea Neochromadora sp. denov0261 gb JN968215.1 91.6 phylum: Nematoda class: Chromadorea Neochromadora sp. denov045 gb JN968215.1 97.6 phylum: Nematoda class: Chromadorea Neochromadora sp. denov045 gb FJ040459.1 97.6 phylum: Nematoda class: Chromadorea Neochromadora sp. denov0300 gb FJ040459.1 94.32 phylum: Nematoda class: Chromadorea Odontophora sp. denov0300 gb FJ040499.1 96.52 phylum: Nematoda class: Enoplea Odontophora sp. denov0274 gb FJ040499.1 96.55 phylum: Nematoda class: Enoplea Oxystomina sp. denov0274 gb FJ040499.1 96.55 phylum: Nematoda class: Chromadorea denov0216 gb KJ0480305.1 96.58 phylum: Nematoda class: Chromadorea denov0217 gb KJ0480305.1 96.58 phylum: Nematoda class: Chromadorea denov0300 gb JN968223.1 97.95 phylum: Nematoda class: Chromadorea denov0300 gb JN968223.1 97.97 phylum: Nematoda class: Chromadorea denov041 gb JN968223.1 97.97 phylum: Nematoda class: Chromadorea denov041 gb JN968223.1 97.97 phylum: Nematoda class: Chromadorea denov041 gb JN968223.1 97.95 phylum: Nematoda class: Chromadorea denov041 gb JN968223.1 97.95 phylum: Nematoda class: Chroma | | | | | | | | denovo333 gb JN968246.1 94.72 phylum: Nematoda class: Chromadorea Neochromadora sp. denovo78 gb JN968246.1 96.31 phylum: Nematoda class: Chromadorea Neochromadora sp. denovo197 gb JN968246.1 95.78 phylum: Nematoda class: Chromadorea Neochromadora sp. denovo197 gb JN968246.1 95.78 phylum: Nematoda class: Chromadorea Neochromadora sp. denovo194 gb JN968246.1 94.74 phylum: Nematoda class: Chromadorea Neochromadora sp. denovo265 gb JN968216.1 95.25 phylum: Nematoda class: Chromadorea Neochromadora sp. denovo265 gb JN968215.1 97.6 phylum: Nematoda class: Chromadorea Neochromadora sp. denovo466 gb JN968215.1 97.6 phylum: Nematoda class: Chromadorea Neochromadora sp. denovo466 gb FJ040459.1 97.6 phylum: Nematoda class: Chromadorea Neochromadora sp. denovo469 gb FJ040459.1 96.55 phylum: Nematoda class: Chromadorea Odontophora sp. denovo279 gb FJ040499.1 96.55 phylum: Nematoda class: Enoplea Odontophora sp. denovo279 gb FJ040499.1 96.55 phylum: Nematoda class: Enoplea Oxystomina sp. denovo279 gb FJ040499.1 96.55 phylum: Nematoda class: Enoplea Oxystomina sp. Odontophora sp. denovo279 gb FJ040499.1 96.55 phylum: Nematoda class: Enoplea Oxystomina sp. Oxystomina sp. denovo279 gb FJ040499.1 96.55 phylum: Nematoda class: Chromadorea Oxystomina sp. Oxystomina sp. denovo279 gb FJ040499.1 97.78 phylum: Nematoda class: Chromadorea Paracamithonchus sp. denovo279 gb FJ040499.1 97.78 phylum: Nematoda class: Chromadorea Sabatieria pulchra denovo110 gb JN968221.1 97.74 phylum: Nematoda class: Chromadorea Sabatieria pulchra denovo111 gb JN968228.1 97.45 phylum: Nematoda class: Chromadorea Sabatieria pulchra denovo113 gb JN968221.1 97.38 phylum: Nematoda class: Chromadorea Sabatieria pulchra denovo113 gb JN968221.1 97.52 phylum: Nematoda clas | | | | | | | | denov0207 gb JN968246.1 93.14 phylum:Nematoda class:Chromadorea Neochromadora sp. | | | | | | | | denov078 gb JN968246.1 92.61 phylum: Nematoda class: Chromadorea Neochromadora sp. | | • . | | | | · | | denovo154 gb JN968246.1 95,78 phylum: Nematoda class: Chromadorea Neochromadora sp. | denovo78 | | | | | | | denov0261 gb JN968246.1 94.74 phylum: Nematoda class: Chromadorea Neochromadora sp. | | • . | | | | | | denova261 gb. JN968246.1 93.44 phylum: Nematoda class: Chromadorea Neochromadora sp. denovo96 gb. JN968215.1 95.25 phylum: Nematoda class: Chromadorea Neochromadora sp. denovo96 gb. JN968215.1 97.6 phylum: Nematoda class: Chromadorea Odontophora sp. denovo139 gb. FJ040459.1 97.6 phylum: Nematoda class: Chromadorea Odontophora sp. denova289 gb. FJ040459.1 94.43 phylum: Nematoda class: Enoplea Odontophora sp. denova289 gb. FJ040499.1 96.55 phylum: Nematoda class: Enoplea Odontophora sp. denova277 gb. FJ040499.1 95.78 phylum: Nematoda class: Enoplea Oxystomina sp. denova277 gb. FJ040499.1 95.78 phylum: Nematoda class: Enoplea Oxystomina sp. denova274 gb. FJ040499.1 95.78 phylum: Nematoda class: Enoplea Oxystomina sp. denovo274 gb. FJ040499.1 95.79 phylum: Nematoda class: Enoplea Oxystomina sp. denovo275 gb. KF591743.1 92.73 phylum: Nematoda class: Chromadorea Oxystomina sp. denovo258 gb. KF591743.1 92.73 phylum: Nematoda class: Chromadorea Paracanthonchus sp. denovo316 gb. JN968228.1 98.43 phylum: Nematoda class: Chromadorea Oxystomina sp. denovo117 gb. JN968228.1 99.81 phylum: Nematoda class: Chromadorea Class: Chromadorea Oxystomina sp. denovo119 gb. JN968228.1 97.45 phylum: Nematoda class: Chromadorea Sabatieria pulchra denovo113 gb. JN968228.1 97.45 phylum: Nematoda class: Chromadorea Sabatieria pulchra denovo113 gb. JN968228.1 97.45 phylum: Nematoda class: Chromadorea Sabatieria pulchra denovo113 gb. JN968228.1 97.75 phylum: Nematoda class: Chromadorea Sabatieria pulchra denovo113 gb. JN968221.1 97.5 phylum: Nematoda class: Chromadorea Sabatieria pulchra denovo13 gb. JN968221.1 97.5 phylum: Nematoda class: Chromadorea Sabatieria pulchra denovo13 gb. JN968221.1 95.26 phylum: Nematoda class: Chromadorea Sabatieria pulchra denovo13 gb. JN968221.1 95.26 phylum: Nematoda class: Chromadorea Sabatieria pulchra denovo13 gb. JN968231.1 95.26 phylum: Nematoda class:
Chromadorea Sabatieria pulchra denovo13 gb. JN968231.1 95.26 phylum: Nematoda class: Chromadorea Sabatieria pulchra denovo13 gb. JN968231.1 95.66 phylum: N | | | | | | • | | denovo25 gb JN968215.1 95.25 phylum: Nematoda class: Chromadorea Neochromadora sp. denovo66 gb JN968215.1 91.6 phylum: Nematoda class: Chromadorea Neochromadora sp. denovo139 gb JF040459.1 97.6 phylum: Nematoda class: Chromadorea Odontophora sp. denovo239 gb JN868196.1 94.43 phylum: Nematoda class: Chromadorea Odontophora sp. denovo300 gb JF040499.1 96.55 phylum: Nematoda class: Enoplea Oxystomina sp. denovo277 gb JF040499.1 96.55 phylum: Nematoda class: Enoplea Oxystomina sp. denovo279 gb JF040499.1 96.55 phylum: Nematoda class: Enoplea Oxystomina sp. denovo57 gb JK1638035.1 95.89 phylum: Nematoda class: Enoplea Oxystomina sp. denovo57 gb JF0743.1 92.73 phylum: Nematoda class: Enoplea Oxystomina sp. denovo027 gb JJF08221.1 98.73 phylum: Nematoda class: Enoplea Oxystomina sp. denovo117 gb JJN968221.1 98.43 phylum: Nematoda class: Chromadorea Pomponema sp. denovo118 gb JN968228.1 97.45 phylum: Nematoda class: Chromadorea Punctodora ratzeburgensis denovo11 gb JJN968221.1 97.45 phylum: Nematoda class: Chromadorea Sabatteria pulchra denovo113 gb JJN968221.1 97.45 phylum: Nematoda class: Chromadorea Sabatteria sp. denovo113 gb JN968221.1 97.38 phylum: Nematoda class: Chromadorea Sabatteria sp. denovo110 gb JN968221.1 97.38 phylum: Nematoda class: Chromadorea Sabatteria sp. denovo110 gb JN968221.1 97.36 phylum: Nematoda class: Chromadorea Sabatteria sp. denovo110 gb JN968221.1 97.36 phylum: Nematoda class: Chromadorea Sabatteria sp. denovo120 gb JN968221.1 97.36 phylum: Nematoda class: Chromadorea Sabatteria sp. denovo130 gb JN968221.1 97.36 phylum: Nematoda class: Chromadorea Sabatteria sp. denovo130 gb JN968221.1 97.36 phylum: Nematoda class: Chromadorea Sabatteria sp. denovo29 gb JN968231.1 97.94 phylum: Nematoda class: Chromadorea Sabatteria sp. denovo29 gb JN968231.1 97.94 phylum: Nematoda class: Chromadorea Sphaerolaimus hirsutus denovo29 gb JN968231.1 97.45 phylum: Nematoda class: Chromadorea Sphaerolaimus hirsutus sp. denovo29 gb JN968231.1 97.44 phylum: Nematoda class: Chromadorea Terratocephalus terrestris | | | | | | | | denovo66 gb FJ040459.1 97.6 phylum: Nematoda class: Chromadorea Neochromadora sp. denovo139 gb FJ040459.1 94.43 phylum: Nematoda class: Chromadorea Odontophora sp. denovo289 gb FJ040459.1 94.43 phylum: Nematoda class: Enoplea Odontophora sp. denovo309 gb FJ040499.1 96.55 phylum: Nematoda class: Enoplea Oxystomina sp. denovo277 gb FJ040499.1 95.78 phylum: Nematoda class: Enoplea Oxystomina sp. denovo278 gb FJ040499.1 96.55 phylum: Nematoda class: Enoplea Oxystomina sp. denovo279 gb FJ04039.1 95.89 phylum: Nematoda class: Enoplea Oxystomina sp. denovo259 gb KF591743.1 92.73 phylum: Nematoda class: Chromadorea Paracanthonchus sp. denovo259 gb JP49023.1 98.73 phylum: Nematoda class: Chromadorea Pomponema sp. denovo130 gb JP98228.1 98.43 phylum: Nematoda class: Chromadorea Punctodora ratzeburgensis denov117 gb JN968228.1 91.95 phylum: Nematoda class: Chromadorea Sabatieria pulchra denov118 gb JN968228.1 97.45 phylum: Nematoda class: Chromadorea Sabatieria pulchra denov183 gb JN968221.1 97.97 phylum: Nematoda class: Chromadorea Sabatieria pulchra denov101 gb JN968221.1 97.38 phylum: Nematoda class: Chromadorea Sabatieria sp. denov040 gb JN968221.1 97.38 phylum: Nematoda class: Chromadorea Sabatieria sp. denov040 gb JN968221.1 95.26 phylum: Nematoda class: Chromadorea Sabatieria sp. denov040 gb JN968221.1 95.26 phylum: Nematoda class: Chromadorea Sabatieria sp. denov040 gb JN968231.1 95.26 phylum: Nematoda class: Chromadorea Sabatieria sp. denov040 gb JN968231.1 97.87 phylum: Nematoda class: Chromadorea Sabatieria sp. denov040 gb JN968231.1 97.87 phylum: Nematoda class: Chromadorea Sphaerolaimus hirsutus denov021 gb JN968231.1 97.60 phylum: Nematoda class: Chromadorea Sphaerolaimus hirsutus denov021 gb JN968231.1 97.87 phylum: Nematoda class: Chromadorea Sphaerolaimus hirsutus denov03 gb JN968231.1 97.62 phylum: Nematoda class: Chromadorea Sphaerolaimus hirsutus sp. denov048 gb JN968231.1 97.62 phylum: Nematoda class: Chrom | | 1 1 1010 (004 5 4 1 | 05.05 | | | | | denov0139 gb FJ040459.1 94.43 phylum: Nematoda class: Enoplea Odontophora sp. denov0289 gb AY854196.1 96.55 phylum: Nematoda class: Enoplea Oxystomina sp. denov0277 gb FJ040499.1 96.55 phylum: Nematoda class: Enoplea Oxystomina sp. denov0277 gb FJ040499.1 96.55 phylum: Nematoda class: Enoplea Oxystomina sp. denov0278 gb FJ040499.1 96.55 phylum: Nematoda class: Enoplea Oxystomina sp. denov057 gb KJ638035.1 95.89 phylum: Nematoda class: Enoplea Oxystomina sp. denov028 gb KF591743.1 92.73 phylum: Nematoda class: Chromadorea Paracanthonchus sp. gb FJ040499.1 98.73 phylum: Nematoda class: Chromadorea Pomponema sp. denov031 gb JN968221.1 90.81 phylum: Nematoda class: Chromadorea Pomponema sp. denov0117 gb JN968228.1 91.95 phylum: Nematoda class: Chromadorea Punctodora ratzeburgensis denov141 gb JN968228.1 97.45 phylum: Nematoda class: Chromadorea Sabatieria pulchra denov0183 gb JN968221.1 97.97 phylum: Nematoda class: Chromadorea Sabatieria pulchra denov0183 gb JN968221.1 97.97 phylum: Nematoda class: Chromadorea Sabatieria sp. denov010 gb JN968221.1 97.93 phylum: Nematoda class: Chromadorea Sabatieria sp. denov010 gb JN968221.1 97.38 phylum: Nematoda class: Chromadorea Sabatieria sp. denov010 gb JN968221.1 97.38 phylum: Nematoda class: Chromadorea Sabatieria sp. denov048 gb EF591321.1 95.26 phylum: Nematoda class: Chromadorea Sabatieria sp. denov049 gb JN968231.1 97.87 phylum: Nematoda class: Chromadorea Sabatieria sp. denov040 gb JN968231.1 97.87 phylum: Nematoda class: Chromadorea Sphaerolaimus hirsutus denov041 gb JN968231.1 97.87 phylum: Nematoda class: Chromadorea Sphaerolaimus hirsutus denov041 gb JN968231.1 97.87 phylum: Nematoda class: Chromadorea Sphaerolaimus hirsutus denov041 gb JN968231.1 97.87 phylum: Nematoda class: Chromadorea Spirinia parasitifera denov042 gb JN968231.1 97.87 phylum: Nematoda class: Chromadorea Spirinia parasitifera denov049 gb JN968231.1 97.62 phylum: Nematoda class: Chromadorea Theristus | | | | | class: Chromadorea | | | denovo289 gb AV854196.1 96,32 phylum: Nematoda class: Enoplea Oxystomina sp. denovo270 gb FJ040499.1 95,58 phylum: Nematoda class: Enoplea Oxystomina sp. denovo274 gb FJ040499.1 95,78 phylum: Nematoda class: Enoplea Oxystomina sp. denovo274 gb FJ040499.1 96,55 phylum: Nematoda class: Enoplea Oxystomina sp. denovo278 gb KJ638035.1 95,89 phylum: Nematoda class: Chromadorea Paracanthonchus sp. denovo288 gb KF991743.1 92,73 phylum: Nematoda class: Chromadorea Pomponema sp. denovo316 gb JP993023.1 98,73 phylum: Nematoda class: Chromadorea Punctodora ratzeburgensis denovo117 gb JN968228.1 98,43 phylum: Nematoda class: Chromadorea Punctodora ratzeburgensis denovo119 gb JN968228.1 91,95 phylum: Nematoda class: Chromadorea Sabatieria pulchra denovo141 gb JN968228.1 97,45 phylum: Nematoda class: Chromadorea Sabatieria pulchra denovo143 gb JN968221.1 97,97 phylum: Nematoda class: Chromadorea Sabatieria sp. denovo101 gb JN968221.1 97,15 phylum: Nematoda class: Chromadorea Sabatieria sp. denovo113 gb JN968221.1 97,38 phylum: Nematoda class: Chromadorea Sabatieria sp. denovo68 gb EF591321.1 97,38 phylum: Nematoda class: Chromadorea Sabatieria sp. denovo69 gb JN968221.1 95,26 phylum: Nematoda class: Chromadorea Sabatieria sp. denovo69 gb JN968239.1 91,6 phylum: Nematoda class: Chromadorea Sabatieria sp. denovo100 gb JN968231.1 95,26 phylum: Nematoda class: Chromadorea Sphaerolaimus hirsutus denovo21 gb JN968231.1 95,26 phylum: Nematoda class: Chromadorea Sphaerolaimus hirsutus denovo10 gb JN968231.1 97,87 phylum: Nematoda class: Chromadorea Sphaerolaimus hirsutus denovo21 gb JN968231.1 97,87 phylum: Nematoda class: Chromadorea Sphaerolaimus hirsutus denovo34 gb JN968231.1 97,87 phylum: Nematoda class: Chromadorea Spirinia parasitifera denovo39 gb JN968231.1 97,97 phylum: Nematoda class: Chromadorea Theristus sp. denovo49 gb JN968231.1 97,97 phylum: Nematoda class: Chromadorea Theristus sp. Uncultured nematode denovo109 gb JN968231.1 | | | | | | | | denovo300 gb FJ040499.1 96,55 phylum: Nematoda class: Enoplea Oxystomina sp. denovo277 gb FJ040499.1 95,78 phylum: Nematoda class: Enoplea Oxystomina sp. denovo57 gb KJ638035.1 96,55 phylum: Nematoda class: Chromadorea Paracanthonchus sp. denovo58 gb KF591743.1 92,73 phylum: Nematoda class: Chromadorea Pomponema sp. denovo316 gb JN968227.1 90,81 phylum: Nematoda class: Chromadorea Punctodora ratzeburgensis denovo11 gb JN968228.1 98,43 phylum: Nematoda class: Chromadorea Punctodora ratzeburgensis denovo11 gb JN968228.1 91,95 phylum: Nematoda class: Chromadorea Sabatieria pulchra denovo14 gb JN968228.1 97,45 phylum: Nematoda class: Chromadorea Sabatieria pulchra denovo13 gb JN968221.1 97,97 phylum: Nematoda class: Chromadorea Sabatieria pulchra denovo10 gb JN968221.1 97,38 phylum: Nematoda class: Chromadorea Sabatieria sp. denovo11 gb JN968221.1 97,38 phylum: Nematoda class: Chromadorea Sabatieria sp. denovo13 gb JN968221.1 95,36 phylum: Nematoda class: Chromadorea Sabatieria sp. denovo12 gb JN968216.1 95,36 phylum: Nematoda class: Chromadorea Sabatieria sp. denovo13 gb JN968216.1 95,24 phylum: Nematoda class: Chromadorea Sabatieria sp. denovo14 gb JN968216.1 99,44 phylum: Nematoda class: Chromadorea Sabatieria sp. denovo29 gb JN968216.1 99,44 phylum: Nematoda class: Chromadorea Sabatieria sp. denovo29 gb JN968231.1 97,87 phylum: Nematoda class: Chromadorea Sphaerolaimus hirsutus denovo29 gb JN968231.1 99,44 phylum: Nematoda class: Chromadorea Spirinia parasitifera denovo31 gb JN968231.1 99,49 phylum: Nematoda class: Chromadorea Spirinia parasitifera denovo64 gb FJ040468.1 97,87 phylum: Nematoda class: Chromadorea Theristus sp. denovo129 gb JN968231.1 93,99 phylum: Nematoda class: Chromadorea Theristus sp. denovo129 gb JN968231.1 93,99 phylum: Nematoda class: Chromadorea Theristus sp.
denovo129 gb JN968231.1 97,62 phylum: Nematoda class: Chromadorea Theristus sp. denovo100 gb JN968231.1 94,97 phylum: Nematoda class: Ch | | | | | | | | denovo277 gb FJ040499.1 95,78 phylum: Nematoda class: Enoplea Oxystomina sp. denovo274 gb FJ040499.1 96,55 phylum: Nematoda class: Enoplea Oxystomina sp. denovo57 gb KJ638035.1 95,89 phylum: Nematoda class: Chromadorea Paracanthonchus sp. denovo288 gb KF591743.1 92,73 phylum: Nematoda class: Chromadorea Pomponema sp. denovo316 gb JN968227.1 90,81 phylum: Nematoda class: Chromadorea Punctodora ratzeburgensis denovo117 gb JN968228.1 98,43 phylum: Nematoda class: Chromadorea Sabatieria pulchra denovo119 gb JN968228.1 91,95 phylum: Nematoda class: Chromadorea Sabatieria pulchra denovo114 gb JN968228.1 97,45 phylum: Nematoda class: Chromadorea Sabatieria pulchra denovo13 gb JN968221.1 97,97 phylum: Nematoda class: Chromadorea Sabatieria sp. denovo13 gb JN968221.1 97,97 phylum: Nematoda class: Chromadorea Sabatieria sp. denovo11 gb JN968221.1 97,38 phylum: Nematoda class: Chromadorea Sabatieria sp. denovo13 gb JN968221.1 94,5 phylum: Nematoda class: Chromadorea Sabatieria sp. denovo68 gb EF591321.1 95,26 phylum: Nematoda class: Chromadorea Sabatieria sp. denovo18 gb JN96821.1 95,36 phylum: Nematoda class: Chromadorea Sabatieria sp. denovo19 gb JN968216.1 99,44 phylum: Nematoda class: Chromadorea Sphaerolaimus hirsutus denovo21 gb JN968216.1 99,44 phylum: Nematoda class: Chromadorea Sphaerolaimus hirsutus denovo21 gb JN968216.1 97,87 phylum: Nematoda class: Chromadorea Spirinia parasitifera isolate denovo29 gb JN968231.1 93,99 phylum: Nematoda class: Chromadorea Spirinia parasitifera isolate denovo29 gb JN968231.1 97,87 phylum: Nematoda class: Chromadorea Treratocephalus terrestris denovo69 gb JN968231.1 97,97 phylum: Nematoda class: Chromadorea Theristus sp. denovo129 gb JN968231.1 97,62 phylum: Nematoda class: Chromadorea Theristus sp. denovo129 gb JN968231.1 97,62 phylum: Nematoda class: Chromadorea Theristus sp. denovo100 gb AY854198.1 97,62 phylum: Nematoda class: Chromadorea Theristus sp. denovo100 gb AY854198.1 97,62 | | | | | | | | denovo274 gb FJ040499.1 96,55 phylum: Nematoda class: Enoplea Oxystomina sp. denovo57 gb KJ638035.1 95,89 phylum: Nematoda class: Chromadorea Pomponema sp. denovo258 gb KF591743.1 92,73 phylum: Nematoda class: Chromadorea Pomponema sp. denovo316 gb JF293023.1 98,73 phylum: Nematoda class: Chromadorea Pomponema sp. denovo316 gb JN968222.1 90,81 phylum: Nematoda class: Chromadorea Punctodora ratzeburgensis denovo117 gb JN968228.1 91,95 phylum: Nematoda class: Chromadorea Sabatieria pulchra denovo141 gb JN968228.1 97,45 phylum: Nematoda class: Chromadorea Sabatieria pulchra denovo13 gb JN968228.1 97,45 phylum: Nematoda class: Chromadorea Sabatieria pulchra denovo13 gb JN968221.1 97,97 phylum: Nematoda class: Chromadorea Sabatieria pulchra denovo103 gb JN968221.1 97,97 phylum: Nematoda class: Chromadorea Sabatieria sp. denovo110 gb JN968221.1 97,38 phylum: Nematoda class: Chromadorea Sabatieria sp. denovo110 gb JN968221.1 94,5 phylum: Nematoda class: Chromadorea Sabatieria sp. denovo108 gb JN968221.1 95,26 phylum: Nematoda class: Chromadorea Sabatieria sp. denovo29 gb JN968239.1 91,6 phylum: Nematoda class: Chromadorea Sphaerolaimus spartinae denovo21 gb JN968239.1 91,6 phylum: Nematoda class: Chromadorea Sphaerolaimus hirsutus gb JN968231.1 95,24 phylum: Nematoda class: Chromadorea Sphaerolaimus hirsutus gb JN968231.1 95,24 phylum: Nematoda class: Chromadorea Spirinia parasitifera denovo23 gb JN968231.1 97,87 phylum: Nematoda class: Chromadorea Spirinia parasitifera denovo29 gb JN968231.1 93,99 phylum: Nematoda class: Chromadorea Theristus sp. denovo42 gb JN968231.1 97,97 phylum: Nematoda class: Chromadorea Theristus sp. denovo42 gb JN968231.1 97,97 phylum: Nematoda class: Chromadorea Theristus sp. denovo42 gb JN968231.1 97,97 phylum: Nematoda class: Chromadorea Theristus sp. denovo42 gb JN968231.1 97,97 phylum: Nematoda class: Chromadorea Theristus sp. denovo12 gb JN968231.1 97,97 phylum: Nematoda class: Chromadorea Th | | | | | | | | denovo258 gb KF591743.1 92,73 phylum:Nematoda class:Chromadorea Pomponema sp. denovo3 gb JF293023.1 98,73 phylum:Nematoda class:Enopla Prosorhochmus americanus denovo316 gb JN968228.1 90,81 phylum:Nematoda class:Chromadorea Punctodora ratzeburgensis denovo117 gb JN968228.1 91,95 phylum:Nematoda class:Chromadorea Sabatieria pulchra denovo141 gb JN968228.1 97,45 phylum:Nematoda class:Chromadorea Sabatieria pulchra denovo143 gb JN968228.1 97,97 phylum:Nematoda class:Chromadorea Sabatieria pulchra denovo143 gb JN968221.1 97,97 phylum:Nematoda class:Chromadorea Sabatieria sp. denovo143 gb JN968221.1 97,97 phylum:Nematoda class:Chromadorea Sabatieria sp. denovo113 gb JN968221.1 97,38 phylum:Nematoda class:Chromadorea Sabatieria sp. denovo113 gb JN968221.1 94,5 phylum:Nematoda class:Chromadorea Sabatieria sp. denovo68 gb [EF591321.1 95,26 phylum:Nematoda class:Chromadorea Sabatieria sp. denovo180 gb JN968239.1 91,6 phylum:Nematoda class:Chromadorea Sphaerolaimus hirsutus denovo21 gb JN968239.1 91,6 phylum:Nematoda class:Chromadorea Sphaerolaimus hirsutus denovo21 gb JN968216.1 95,24 phylum:Nematoda class:Chromadorea Spirinia parasitifera denovo34 gb JN968216.1 95,24 phylum:Nematoda class:Chromadorea Spirinia parasitifera denovo35 gb JN968231.1 93,99 phylum:Nematoda class:Chromadorea Spirinia parasitifera denovo69 gb JN968231.1 93,99 phylum:Nematoda class:Chromadorea Teratocephalus terrestris denovo69 gb JN968231.1 93,99 phylum:Nematoda class:Chromadorea Theristus sp. denovo129 gb JN968231.1 95,56 phylum:Nematoda class:Chromadorea Theristus sp. denovo129 gb JN968231.1 95,56 phylum:Nematoda class:Chromadorea Theristus sp. denovo129 gb JN968231.1 97,62 phylum:Nematoda class:Chromadorea Theristus sp. denovo100 gb JN968231.1 94,97 phylum:Nematoda class:Chromadorea Viscosia viscosa denovo100 gb | | | | phylum: Nematoda | | Oxystomina sp. | | denovo0 gb JF293023.1 98,73 phylum: Nemertea class: Enopla Prosorhochmus americanus phylum: Nematoda class: Chromadorea Punctodora ratzeburgensis denovo117 gb JN968228.1 98,43 phylum: Nematoda class: Chromadorea Sabatieria pulchra denovo119 gb JN968228.1 91,95 phylum: Nematoda class: Chromadorea Sabatieria pulchra denovo141 gb JN968228.1 97,45 phylum: Nematoda class: Chromadorea Sabatieria pulchra denovo143 gb JN968221.1 97,97 phylum: Nematoda class: Chromadorea Sabatieria pulchra denovo43 gb JN968221.1 92,15 phylum: Nematoda class: Chromadorea Sabatieria sp. denovo43 gb JN968221.1 97,38 phylum: Nematoda class: Chromadorea Sabatieria sp. denovo101 gb JN968221.1 94,5 phylum: Nematoda class: Chromadorea Sabatieria sp. denovo13 gb JN968221.1 95,26 phylum: Nematoda class: Chromadorea Sabatieria sp. denovo29 gb JN968264.1 95,36 phylum: Nematoda class: Chromadorea Setostephanolaimus spartinae denovo29 gb JN968239.1 91,6 phylum: Nematoda class: Chromadorea Sphaerolaimus hirsutus denovo31 gb JN968216.1 99,44 phylum: Nematoda class: Chromadorea Spirinia parasitifera denovo31 gb JN968216.1 99,44 phylum: Nematoda class: Chromadorea Spirinia parasitifera denovo31 gb JN968216.1 97,87 phylum: Nematoda class: Chromadorea Spirinia parasitifera denovo29 gb JN968231.1 93,99 phylum: Nematoda class: Chromadorea Teratocephalus terrestris denovo49 gb JN968231.1 93,99 phylum: Nematoda class: Chromadorea Theristus sp. denovo129 gb JN968231.1 95,56 phylum: Nematoda class: Chromadorea Theristus sp. denovo129 gb JN968231.1 95,56 phylum: Nematoda class: Chromadorea Theristus sp. denovo129 gb JN968231.1 96,89 phylum: Nematoda class: Chromadorea Theristus sp. denovo129 gb JN968231.1 97,62 phylum: Nematoda class: Chromadorea Theristus sp. denovo129 gb JN968231.1 97,62 phylum: Nematoda class: Enoplea Viscosia viscosa denovo100 gb JN854198.1 97,62 phylum: Nematoda class: Chromadorea Theristus sp. denovo100 gb JN854198.1 97,62 phylum: Nematoda class: Enoplea Viscosia viscosa denovo100 gb JN854198.1 97,62 phylum: Nematoda class: Chromadorea Zy | | gb KJ638035.1 | | phylum: Nematoda | class: Chromadorea | Paracanthonchus sp. | | denovo316 gb JN968227.1 90,81 phylum: Nematoda class: Chromadorea Sabatieria pulchra denovo117 gb JN968228.1 98,43 phylum: Nematoda class: Chromadorea Sabatieria pulchra denovo141 gb JN968228.1 97,45 phylum: Nematoda class: Chromadorea Sabatieria pulchra denovo143 gb JN968221.1 97,97 phylum: Nematoda class: Chromadorea Sabatieria pulchra denovo183 gb JN968221.1 97,97 phylum: Nematoda class: Chromadorea Sabatieria sp. denovo101 gb JN968221.1 97,38 phylum: Nematoda class: Chromadorea Sabatieria sp. denovo113 gb JN968221.1 94,5 phylum: Nematoda class: Chromadorea Sabatieria sp. denovo130 gb JN968221.1 95,26 phylum: Nematoda class: Chromadorea Sabatieria sp. denovo29 gb JN968264.1 95,36 phylum: Nematoda class: Chromadorea Sabatieria sp. denovo29 gb JN968264.1 95,36 phylum: Nematoda class: Chromadorea Setostephanolaimus spartinae denovo21 gb JN968264.1 95,26 phylum: Nematoda class: Chromadorea Sphaerolaimus hirsutus denovo21 gb JN968216.1 99,44 phylum: Nematoda class: Chromadorea Spirinia parasitifera denovo43 gb JN968216.1 95,24 phylum: Nematoda class: Chromadorea Spirinia parasitifera solate denovo54 gb JP040468.1 97,87 phylum: Nematoda class: Chromadorea Spirinia parasitifera isolate denovo64 gb JN968231.1 93,99 phylum: Nematoda class: Chromadorea Teratocephalus terrestris denovo89 gb JN968231.1 93,99 phylum: Nematoda class: Chromadorea Theristus sp. denovo129 gb JN968231.1 95,56 phylum: Nematoda class: Chromadorea Theristus sp. denovo129 gb JN968231.1 96,89 phylum: Nematoda class: Chromadorea Theristus sp. denovo129 gb JN968231.1 96,89 phylum: Nematoda class: Chromadorea Theristus sp. denovo109 gb JN968231.1 97,62 phylum: Nematoda class: Enoplea Viscosia viscosa denovo109 gb JK854198.1 94,97 phylum: Nematoda class: Enoplea Viscosia viscosa denovo9 gb JKC920423.1 93,97 phylum: Nematoda class: Chromadorea Zygonemella striata | | | | | | | | denovo117 gb JN968228.1 98,43 phylum: Nematoda
class: Chromadorea Sabatieria pulchra denovo14 gb JN968228.1 91,95 phylum: Nematoda class: Chromadorea Sabatieria pulchra denovo141 gb JN968228.1 97,45 phylum: Nematoda class: Chromadorea Sabatieria pulchra denovo183 gb JN968221.1 97,97 phylum: Nematoda class: Chromadorea Sabatieria sp. denovo140 gb JN968221.1 92,15 phylum: Nematoda class: Chromadorea Sabatieria sp. denovo101 gb JN968221.1 97,38 phylum: Nematoda class: Chromadorea Sabatieria sp. denovo113 gb JN968221.1 94,5 phylum: Nematoda class: Chromadorea Sabatieria sp. denovo68 gb [EF591321.1 95,26 phylum: Nematoda class: Chromadorea Sabatieria sp. denovo29 gb JN968264.1] 95,36 phylum: Nematoda class: Chromadorea Setostephanolaimus spartinae denovo21 gb JN968296.1 95,36 phylum: Nematoda class: Chromadorea Sphaerolaimus hirsutus denovo21 gb JN968216.1 99,44 phylum: Nematoda class: Chromadorea Spirinia parasitifera denovo54 gb [FJ040468.1] 97,87 phylum: Nematoda class: Chromadorea Spirinia parasitifera solate denovo69 gb JN968231.1 93,99 phylum: Nematoda class: Chromadorea Teratocephalus terrestris denovo69 gb JN968231.1 93,99 phylum: Nematoda class: Chromadorea Theristus sp. denovo128 gb JN968231.1 95,56 phylum: Nematoda class: Chromadorea Theristus sp. denovo129 gb JN968231.1 95,56 phylum: Nematoda class: Chromadorea Theristus sp. denovo129 gb JN968231.1 97,62 phylum: Nematoda class: Chromadorea Theristus sp. denovo129 gb JN968231.1 97,62 phylum: Nematoda class: Chromadorea Theristus sp. denovo129 gb JN968231.1 97,62 phylum: Nematoda class: Enoplea Viscosia viscosa denovo100 gb JN854198.1 94,97 phylum: Nematoda class: Enoplea Viscosia viscosa denovo9 gb JN96823.1 93,97 phylum: Nematoda class: Chromadorea Zygonemella striata | | 0 1 | | | | | | denovo19 gb_JN968228.1 91,95 phylum:Nematoda class:Chromadorea Sabatieria pulchra denovo141 gb_JN968228.1 97,45 phylum:Nematoda class:Chromadorea Sabatieria pulchra denovo183 gb_JN968221.1 97,97 phylum:Nematoda class:Chromadorea Sabatieria sp. denovo101 gb_JN968221.1 97,38 phylum:Nematoda class:Chromadorea Sabatieria sp. denovo101 gb_JN968221.1 94,5 phylum:Nematoda class:Chromadorea Sabatieria sp. denovo103 gb_JN968221.1 95,26 phylum:Nematoda class:Chromadorea Sabatieria sp. denovo68 gb_EF591321.1 95,26 phylum:Nematoda class:Chromadorea Sabatieria sp. denovo29 gb_JN968264.1 95,36 phylum:Nematoda class:Chromadorea Setostephanolaimus spartinae denovo29 gb_JN968239.1 91,6 phylum:Nematoda class:Chromadorea Sphaerolaimus hirsutus denovo31 gb_JN968216.1 95,24 phylum:Nematoda class:Chromadorea Spirinia parasitifera denovo31 gb_JN968216.1 95,24 phylum:Nematoda class:Chromadorea Spirinia parasitifera denovo54 gb_FJ040468.1 97,87 phylum:Nematoda class:Chromadorea Synonchiella sp. denovo69 gb_JN968231.1 93,99 phylum:Nematoda class:Chromadorea Teratocephalus terrestris denovo69 gb_JN968231.1 97,14 phylum:Nematoda class:Chromadorea Theristus sp. denovo128 gb_JN968231.1 95,56 phylum:Nematoda class:Chromadorea Theristus sp. denovo129 gb_JN968231.1 97,62 phylum:Nematoda class:Chromadorea Theristus sp. Uncultured nematode denovo100 gb_JN968231.1 97,62 phylum:Nematoda class:Chromadorea Viscosia viscosa denovo100 gb_JN96821.1 94,97 phylum:Nematoda class:Chromadorea Viscosia viscosa denovo9 gb_JKC920423.1 93,97 phylum:Nematoda class:Chromadorea Zygonemella striata | | | | | | | | denovo183 gb JN968221.1 97,97 phylum: Nematoda class: Chromadorea Sabatieria sp. denovo101 gb JN968221.1 97,38 phylum: Nematoda class: Chromadorea Sabatieria sp. denovo101 gb JN968221.1 97,38 phylum: Nematoda class: Chromadorea Sabatieria sp. denovo113 gb JN968221.1 94,5 phylum: Nematoda class: Chromadorea Sabatieria sp. denovo68 gb EF591321.1 95,26 phylum: Nematoda class: Chromadorea Setostephanolaimus spartinae denovo29 gb JN968264.1 95,36 phylum: Nematoda class: Chromadorea Setostephanolaimus spartinae denovo29 gb JN968239.1 91,6 phylum: Nematoda class: Chromadorea Sphaerolaimus hirsutus denovo21 gb JN968216.1 99,44 phylum: Nematoda class: Chromadorea Spirinia parasitifera denovo31 gb JN968216.1 95,24 phylum: Nematoda class: Chromadorea Spirinia parasitifera solate denovo54 gb JN968216.1 97,87 phylum: Nematoda class: Chromadorea Spirinia parasitifera solate denovo64 gb JN968231.1 93,99 phylum: Nematoda class: Chromadorea Teratocephalus terrestris denovo69 gb JN968231.1 93,99 phylum: Nematoda class: Chromadorea Theristus sp. denovo128 gb JN968231.1 95,56 phylum: Nematoda class: Chromadorea Theristus sp. denovo129 gb JN968231.1 96,89 phylum: Nematoda class: Chromadorea Theristus sp. denovo129 gb JN968231.1 97,62 phylum: Nematoda class: Enoplea Viscosia viscosa denovo100 gb JN854198.1 94,97 phylum: Nematoda class: Enoplea Viscosia viscosa denovo9 gb JN868431.1 94,97 phylum: Nematoda class: Chromadorea Zygonemella striata | | | | | | | | denovo43 gb JN968221.1 92,15 phylum: Nematoda class: Chromadorea Sabatieria sp. denovo113 gb JN968221.1 97,38 phylum: Nematoda class: Chromadorea Sabatieria sp. denovo113 gb JN968221.1 94,5 phylum: Nematoda class: Chromadorea Sabatieria sp. denovo68 gb JEF591321.1 95,26 phylum: Nematoda class: Chromadorea Setostephanolaimus spartinae denovo29 gb JN968264.1 95,36 phylum: Nematoda class: Chromadorea Sphaerolaimus hirsutus gb JN968239.1 91,6 phylum: Nematoda class: Chromadorea Sphaerolaimus hirsutus gb JN968216.1 99,44 phylum: Nematoda class: Chromadorea Spirinia parasitifera denovo21 gb JN968216.1 95,24 phylum: Nematoda class: Chromadorea Spirinia parasitifera denovo34 gb JN968216.1 97,87 phylum: Nematoda class: Chromadorea Spirinia parasitifera isolate gb JN968216.1 97,87 phylum: Nematoda class: Chromadorea Spirinia parasitifera isolate denovo54 gb JN968231.1 97,87 phylum: Nematoda class: Chromadorea Teratocephalus terrestris denovo69 gb JN968231.1 93,99 phylum: Nematoda class: Chromadorea Theristus sp. denovo128 gb JN968231.1 95,56 phylum: Nematoda class: Chromadorea Theristus sp. denovo129 gb JN968231.1 96,89 phylum: Nematoda class: Chromadorea Theristus sp. denovo129 gb JN968231.1 97,62 phylum: Nematoda class: Chromadorea Theristus sp. denovo100 gb JN96821.1 94,97 phylum: Nematoda class: Enoplea Viscosia viscosa denovo100 gb JN9681.1 94,97 phylum: Nematoda class: Chromadorea Zygonemella striata | denovo141 | | | | | | | denovo101 gb JN968221.1 97,38 phylum: Nematoda class: Chromadorea Sabatieria sp. denovo131 gb JN968221.1 94,5 phylum: Nematoda class: Chromadorea Sabatieria sp. denovo29 gb JN968264.1 95,36 phylum: Nematoda class: Chromadorea Setostephanolaimus spartinae denovo180 gb JN96829.1 91,6 phylum: Nematoda class: Chromadorea Sphaerolaimus hirsutus denovo21 gb JN968216.1 99,44 phylum: Nematoda class: Chromadorea Sphaerolaimus hirsutus denovo31 gb JN968216.1 95,24 phylum: Nematoda class: Chromadorea Spirinia parasitifera denovo34 gb JN968216.1 97,87 phylum: Nematoda class: Chromadorea Spirinia parasitifera denovo29 gb JN968231.1 90,89 phylum: Nematoda class: Chromadorea Synonchiella sp. denovo69 gb JN968231.1 93,99 phylum: Nematoda class: Chromadorea Theristus sp. denovo89 gb JN968231.1 97,14 phylum: Nematoda class: Chromadorea Theristus sp. denovo128 gb JN968231.1 95,56 phylum: Nematoda class: Chromadorea Theristus sp. denovo129 gb JN968231.1 96,89 phylum: Nematoda class: Chromadorea Theristus sp. denovo129 gb JN968231.1 96,89 phylum: Nematoda class: Chromadorea Theristus sp. denovo129 gb JN968231.1 97,62 phylum: Nematoda class: Chromadorea Theristus sp. denovo129 gb JN968231.1 97,62 phylum: Nematoda class: Chromadorea Theristus sp. denovo129 gb JN968231.1 97,62 phylum: Nematoda class: Chromadorea Theristus sp. Uncultured nematode denovo100 gb JN968198.1 94,97 phylum: Nematoda class: Enoplea Viscosia viscosa denovo100 gb JN96818.1 94,97 phylum: Nematoda class: Chromadorea Zygonemella striata | | | | | | | | denovo113 gb JN968221.1 94,5 phylum: Nematoda class: Chromadorea Sabatieria sp. denovo29 gb JN968264.1 95,26 phylum: Nematoda class: Chromadorea Setostephanolaimus spartinae denovo29 gb JN968239.1 91,6 phylum: Nematoda class: Chromadorea Sphaerolaimus hirsutus denovo21 gb JN968216.1 95,24 phylum: Nematoda class: Chromadorea Spirinia parasitifera gb JN968216.1 95,24 phylum: Nematoda class: Chromadorea Spirinia parasitifera denovo31 gb JN968216.1 95,24 phylum: Nematoda class: Chromadorea Spirinia parasitifera gb JN968216.1 97,87 phylum: Nematoda class: Chromadorea Spirinia parasitifera solate denovo54 gb JN968218.1 97,87 phylum: Nematoda class: Chromadorea Spirinia parasitifera isolate denovo23 gb JN968231.1 93,99 phylum: Nematoda class: Chromadorea Teratocephalus terrestris denovo89 gb JN968231.1 97,14 phylum: Nematoda class: Chromadorea Theristus sp. denovo128 gb JN968231.1 95,56 phylum: Nematoda class: Chromadorea Theristus sp. denovo129 gb JN968231.1 96,89 phylum: Nematoda class: Chromadorea Theristus sp. denovo129 gb JN968231.1 96,89 phylum: Nematoda class: Chromadorea Theristus sp. Uncultured nematode denovo115 gb JN868198.1 97,62 phylum: Nematoda class: Enoplea Viscosia viscosa denovo100 gb JN868198.1 94,97 phylum: Nematoda class: Enoplea Viscosia viscosa denovo09 gb JKC920423.1 93,97 phylum: Nematoda class: Chromadorea Zygonemella striata | | | | | | | | denovo68 gb EF591321.1 95,26 phylum: Nematoda class: Chromadorea Setostephanolaimus spartinae gb N968264.1 95,36 phylum: Nematoda class: Chromadorea Sphaerolaimus hirsutus denovo180 gb N968239.1 91,6 phylum: Nematoda class: Chromadorea Sphaerolaimus hirsutus denovo21 gb N968216.1 99,44 phylum: Nematoda class: Chromadorea Spirinia parasitifera denovo31 gb N968216.1 95,24 phylum: Nematoda class: Chromadorea Spirinia parasitifera isolate denovo54 gb FJ040468.1 97,87 phylum: Nematoda class: Chromadorea Spirinia parasitifera isolate denovo69 gb JN968231.1 93,99 phylum: Nematoda class: Chromadorea Teratocephalus terrestris denovo69 gb JN968231.1 93,99 phylum: Nematoda class: Chromadorea Theristus sp. denovo128 gb JN968231.1 95,56 phylum: Nematoda class: Chromadorea Theristus sp. denovo129 gb AY763130.1 96,89 phylum: Nematoda class: Chromadorea Theristus sp.
denovo115 gb AY854198.1 97,62 phylum: Nematoda class: Enoplea Viscosia viscosa denovo100 gb AY854198.1 94,97 phylum: Nematoda class: Chromadorea Zygonemella striata | | | | | | • | | denovo29 gb JN968264.1 95,36 phylum: Nematoda class: Chromadorea Sphaerolaimus hirsutus denovo21 gb JN968239.1 91,6 phylum: Nematoda class: Chromadorea Sphaerolaimus hirsutus denovo21 gb JN968216.1 99,44 phylum: Nematoda class: Chromadorea Spirinia parasitifera denovo31 gb JN968216.1 95,24 phylum: Nematoda class: Chromadorea Spirinia parasitifera isolate denovo54 gb FJ040468.1 97,87 phylum: Nematoda class: Chromadorea Synonchiella sp. denovo69 gb JN968231.1 90,89 phylum: Nematoda class: Chromadorea Teratocephalus terrestris denovo69 gb JN968231.1 93,99 phylum: Nematoda class: Chromadorea Theristus sp. denovo128 gb JN968231.1 95,56 phylum: Nematoda class: Chromadorea Theristus sp. denovo129 gb JN968231.1 96,89 phylum: Nematoda class: Chromadorea Theristus sp. denovo129 gb JN968231.1 97,62 phylum: Nematoda class: Chromadorea Theristus sp. denovo100 gb JN968498.1 97,62 phylum: Nematoda class: Chromadorea Theristus sp. Uncultured nematode denovo100 gb JN9684198.1 97,62 phylum: Nematoda class: Enoplea Viscosia viscosa denovo100 gb JK7854198.1 94,97 phylum: Nematoda class: Chromadorea Zygonemella striata | | | | | | | | denovo21 gb JN968216.1 99,44 phylum: Nematoda class: Chromadorea Spirinia parasitifera denovo31 gb JN968216.1 95,24 phylum: Nematoda class: Chromadorea Spirinia parasitifera isolate denovo54 gb JD040468.1 97,87 phylum: Nematoda class: Chromadorea Spirinia parasitifera isolate denovo63 gb JN968231.1 93,99 phylum: Nematoda class: Chromadorea Teratocephalus terrestris denovo69 gb JN968231.1 93,99 phylum: Nematoda class: Chromadorea Theristus sp. denovo89 gb JN968231.1 97,14 phylum: Nematoda class: Chromadorea Theristus sp. denovo128 gb JN968231.1 95,56 phylum: Nematoda class: Chromadorea Theristus sp. denovo129 gb JN968231.1 96,89 phylum: Nematoda class: Chromadorea Theristus sp. denovo129 gb JN968231.1 97,62 phylum: Nematoda class: Enoplea Viscosia viscosa denovo100 gb JN854198.1 97,62 phylum: Nematoda class: Enoplea Viscosia viscosa denovo100 gb JN854198.1 94,97 phylum: Nematoda class: Enoplea Viscosia viscosa denovo9 gb JNSC920423.1 93,97 phylum: Nematoda class: Chromadorea Zygonemella striata | denovo29 | gb JN968264.1 | 95,36 | phylum: Nematoda | class: Chromadorea | Sphaerolaimus hirsutus | | denovo31 gb JN968216.1 95,24 phylum:Nematoda class:Chromadorea Spirinia parasitifera isolate synonchiella sp. denovo23 gb FJ040468.1 97,87 phylum:Nematoda class:Chromadorea Synonchiella sp. denovo69 gb JN968231.1 93,99 phylum:Nematoda class:Chromadorea Teratocephalus terrestris denovo69 gb JN968231.1 97,14 phylum:Nematoda class:Chromadorea Theristus sp. denovo128 gb JN968231.1 95,56 phylum:Nematoda class:Chromadorea Theristus sp. denovo129 gb AY763130.1 96,89 phylum:Nematoda class:Chromadorea Theristus sp. denovo115 gb AY763130.1 97,62 phylum:Nematoda environmental samples Uncultured nematode denovo110 gb AY854198.1 97,62 phylum:Nematoda class:Enoplea Viscosia viscosa denovo9 gb KC920423.1 93,97 phylum:Nematoda class:Chromadorea Zygonemella striata | | | | | | | | denovo54 gb FJ040468.1 97,87 phylum:Nematoda class:Chromadorea Synonchiella sp. denovo69 gb JN968231.1 93,99 phylum:Nematoda class:Chromadorea Theristus sp. denovo128 gb JN968231.1 95,56 phylum:Nematoda class:Chromadorea Theristus sp. denovo129 gb JN968231.1 95,56 phylum:Nematoda class:Chromadorea Theristus sp. denovo125 gb JN968231.1 96,89 phylum:Nematoda class:Chromadorea Theristus sp. denovo100 gb JN968231.1 97,62 phylum:Nematoda environmental samples Uncultured nematode denovo100 gb JN9684198.1 97,62 phylum:Nematoda class:Enoplea Viscosia viscosa denovo100 gb JN9684198.1 94,97 phylum:Nematoda class:Enoplea Viscosia viscosa denovo9 gb KC920423.1 93,97 phylum:Nematoda class:Chromadorea Zygonemella striata | | | | | | | | denovo23 gb AY284683.1 90,89 phylum: Nematoda class: Chromadorea Teratocephalus terrestris denovo69 gb JN968231.1 93,99 phylum: Nematoda class: Chromadorea Theristus sp. denovo128 gb JN968231.1 97,14 phylum: Nematoda class: Chromadorea Theristus sp. denovo129 gb AY763130.1 96,89 phylum: Nematoda environmental samples Uncultured nematode denovo115 gb AY854198.1 97,62 phylum: Nematoda class: Enoplea Viscosia viscosa denovo100 gb AY854198.1 94,97 phylum: Nematoda class: Enoplea Viscosia viscosa denovo9 gb KC920423.1 93,97 phylum: Nematoda class: Chromadorea Zygonemella striata | | | | | | | | denovo69 gb JN968231.1 93,99 phylum:Nematoda class:Chromadorea Theristus sp. denovo89 gb JN968231.1 97,14 phylum:Nematoda class:Chromadorea Theristus sp. denovo128 gb JN968231.1 95,56 phylum:Nematoda class:Chromadorea Theristus sp. denovo129 gb AY763130.1 96,89 phylum:Nematoda environmental samples Uncultured nematode denovo115 gb AY854198.1 97,62 phylum:Nematoda class:Enoplea Viscosia viscosa denovo100 gb AY854198.1 94,97 phylum:Nematoda class:Enoplea Viscosia viscosa denovo9 gb KC920423.1 93,97 phylum:Nematoda class:Chromadorea Zygonemella striata | | | | | | | | denovo89 gb JN968231.1 97,14 phylum:Nematoda class:Chromadorea Theristus sp. denovo128 gb JN968231.1 95,56 phylum:Nematoda class:Chromadorea Theristus sp. denovo129 gb AY763130.1 96,89 phylum:Nematoda environmental samples Uncultured nematode denovo115 gb AY854198.1 97,62 phylum:Nematoda class:Enoplea Viscosia viscosa denovo100 gb AY854198.1 94,97 phylum:Nematoda class:Enoplea Viscosia viscosa denovo9 gb KC920423.1 93,97 phylum:Nematoda class:Chromadorea Zygonemella striata | | | | | | | | denovo129 gb AY763130.1 96,89 phylum:Nematoda environmental samples Uncultured nematode denovo115 gb AY854198.1 97,62 phylum:Nematoda class:Enoplea Viscosia viscosa denovo100 gb AY854198.1 94,97 phylum:Nematoda class:Enoplea Viscosia viscosa denovo9 gb KC920423.1 93,97 phylum:Nematoda class:Chromadorea Zygonemella striata | denovo89 | gb JN968231.1 | 97,14 | phylum: Nematoda | class: Chromadorea | Theristus sp. | | denovo115gb AY854198.1 97,62phylum: Nematodaclass: EnopleaViscosia viscosadenovo100gb AY854198.1 94,97phylum: Nematodaclass: EnopleaViscosia viscosadenovo9gb KC920423.1 93,97phylum: Nematodaclass: ChromadoreaZygonemella striata | | | | | | | | denovo100 gb AY854198.1 94,97 phylum:Nematoda class:Enoplea Viscosia viscosa denovo9 gb KC920423.1 93,97 phylum:Nematoda class:Chromadorea Zygonemella striata | | | | | | | | denovo9 gb KC920423.1 93,97 phylum:Nematoda class:Chromadorea Zygonemella striata | **Supplementary Table S1.2-** Closest BLAST matches of Operational Taxonomic Units (OTUs) retrieved from Rothera sample sites, assigned to Arthropoda, Annelida and Mollusca up to genus or species levels (Description) using SILVA 1.11 database. Depicted are the public accession numbers (AcNumber), BLAST identity percentage against SILVA (BLAST % ID), Phylum and other Taxa ranking. | OTU# | AcNumber | BLAST % ID | Phylum | Taxa Rank | Description | |------------------------|---------------------------------|----------------|--|--|------------------------------------| | denovo224 | dbj AB076626.1 | 99,74 | phylum: Arthropoda | superfamily: Cytheroidea | Howeina sp. | | denovo64 | dbj AB076628.1 | 95,61 | phylum: Arthropoda | superfamily: Cytheroidea | Cytheropteron subuchioi | | denovo295 | dbj AB076628.1 | 96,38 | phylum: Arthropoda | superfamily: Cytheroidea | Cytheropteron subuchioi | | denovo36 | dbj AB076644.1 | 98,71 | phylum: Arthropoda | superfamily: Cytheroidea | Robustaurila salebrosa | | denovo200 | gb DQ538499.1 | 94,78 | phylum: Arthropoda | order: Siphonostomatoida | Kroyeria sp. | | denovo322 | gb DQ538499.1 | 93,77 | phylum: Arthropoda | order: Siphonostomatoida | Kroyeria sp. | | denovo238 | gb EU380295.1 | 99,22 | phylum: Arthropoda | order:Harpacticoida | Dactylopusia sp. | | denovo326 | gb AY627016.1 | 96,08 | phylum: Arthropoda | order: Harpacticoida | Bradya sp. | | denovo297 | gb EU380302.1 | 93,83 | phylum: Arthropoda | order: Harpacticoida | Parastenhelia sp. | | denovo103 | gb EU380309.1 | 96,87 | phylum: Arthropoda | order: Harpacticoida | Itunella muelleri | | denovo257 | gb AY627016.1 | 97,39 | phylum: Arthropoda | order: Harpacticoida | Bradya sp. | | denovo53 | gb KC815328.1 | 96,86 | phylum: Arthropoda
phylum: Arthropoda | order: Harpacticoida
order: Harpacticoida | Amphiascoides atopus | | denovo162
denovo334 | gb AY627015.1
gb AY627016.1 | 93,23
98,44 | phylum: Arthropoda | order: Harpacticoida | Bryocamptus pygmaeus
Bradya sp. | | denovo233 | gb EU380309.1 | 95,3 | phylum: Arthropoda | order: Harpacticoida | Itunella muelleri | | denovo105 | gb AY627016.1 | 97,13 | phylum: Arthropoda | order: Harpacticoida | Bradya sp. | | denovo201 | gb EU380309.1 | 97,65 | phylum: Arthropoda | order: Harpacticoida | Itunella muelleri | | denovo303 | gb EU380306.1 | 98,17 | phylum: Arthropoda | order: Harpacticoida | Argestigens sp. | | denovo163 | gb EU380285.1 | 98,69 | phylum: Arthropoda | order: Harpacticoida | Harpacticus sp. | | denovo172 | gb AY692343.1 | 96,86 | phylum: Arthropoda | order: Harpacticoida | Tisbe furcata | | denovo273 | gb EU380309.1 | 95,05 | phylum: Arthropoda | order: Harpacticoida | Itunella muelleri | | denovo338 | gb EU380309.1 | 95,06 | phylum: Arthropoda | order: Harpacticoida | Itunella muelleri | | denovo176 | gb EU380309.1 | 93,01 | phylum: Arthropoda | order: Harpacticoida | Itunella muelleri | | denovo265 | gb KC815328.1 | 97,38 | phylum: Arthropoda | order: Harpacticoida | Amphiascoides atopus | | denovo210 | gb AY627016.1 | 96,43 | phylum: Arthropoda | order: Harpacticoida | Bradya sp. | | denovo144 | gb EU380309.1 | 95,83 | phylum: Arthropoda | order: Harpacticoida | Itunella muelleri | | denovo228 | gb EU380306.1 | 97,38 | phylum: Arthropoda | order: Harpacticoida | Argestigens sp. | | denovo119 | gb EU380300.1 |
95,05 | phylum: Arthropoda | order: Harpacticoida | Paramenophia sp. | | denovo234 | gb EU380309.1 | 96,87 | phylum: Arthropoda | order: Harpacticoida | Itunella muelleri | | denovo332 | gb EU380297.1 | 95,4 | phylum: Arthropoda | order: Harpacticoida | Diarthrodes sp. | | denovo324 | gb EU380309.1 | 97,14 | phylum: Arthropoda | order: Harpacticoida | Itunella muelleri | | denovo1 | gb EU380309.1 | 93,75 | phylum: Arthropoda | order: Harpacticoida | Itunella muelleri | | denovo11 | gb EU380309.1 | 94,27 | phylum: Arthropoda | order: Harpacticoida | Itunella muelleri | | denovo132 | gb EU380309.1 | 93,99 | phylum: Arthropoda | order: Harpacticoida | Itunella muelleri | | denovo12 | gb EU380303.1 | 98,69 | phylum: Arthropoda | order: Harpacticoida
order: Harpacticoida | Ameira scotti | | denovo77 | gb EU380299.1
gb EU380306.1 | 96,08
96,82 | phylum: Arthropoda
phylum: Arthropoda | order: Harpacticoida | Sewellia tropica Argestigens sp. | | denovo121
denovo135 | gb EU380295.1 | 95,04
95,04 | phylum: Arthropoda | order: Harpacticoida | Dactylopusia sp. | | denovo190 | gb EU380309.1 | 96,72 | phylum: Arthropoda | order: Harpacticoida | Itunella muelleri | | denovo212 | gb EU380309.1 | 94,26 | phylum: Arthropoda | order: Harpacticoida | Itunella muelleri | | denovo226 | gb EU380309.1 | 92,72 | phylum: Arthropoda | order: Harpacticoida | Itunella muelleri | | denovo229 | gb EU380295.1 | 95,34 | phylum: Arthropoda | order: Harpacticoida | Dactylopusia sp. | | denovo291 | gb EU380295.1 | 95,48 | phylum: Arthropoda | order: Harpacticoida | Dactylopusia sp. | | denovo305 | gb EU380297.1 | 95,09 | phylum: Arthropoda | order: Harpacticoida | Diarthrodes sp. | | denovo307 | gb EU380309.1 | 95,6 | phylum: Arthropoda | order: Harpacticoida | Itunella muelleri | | denovo280 | gb AY118078.2 | 100 | phylum: Arthropoda | order: Calanoida | Ctenocalanus citer | | denovo99 | gb FJ372639.1 | 93,75 | phylum: Arthropoda | infraclass: Paraneoptera | Saldula sp. | | denovo2 | emb AJ238061.1 | 100 | phylum: Arthropoda | genus: Artemia | Artemia franciscana | | denovo283 | gb JQ000095.1 | 99,22 | phylum: Arthropoda | family: Glycyphagidae | Marsupialichus brasiliensis | | denovo179 | gb GU902153.1 | 100 | phylum: Annelida | Clitellata | Grania sp. | | denovo206 | gb AF411887.1 | 99,74 | phylum: Annelida | Clitellata | Heronidrilus gravidus | | denovo157 | gb JN936459.1 | 99,23 | phylum: Annelida | class: Polychaeta | Tharyx sp. | | denovo309 | gb AF448150.1 | 98,73 | phylum: Annelida | class: Polychaeta | Apistobranchus typicus | | denovo6 | gb JN852836.1 | 100 | phylum: Annelida | class: Polychaeta | Neopolynoe paradoxa | | denovo329 | gb GU179368.1 | 100 | phylum: Annelida | class: Polychaeta | Aglaophamus trissophyllus | | denovo158 | gb EU418858.1 | 98,74 | phylum: Annelida | class:Polychaeta | Polycirrus sp. | | denovo331 | gb JF509728.1 | 96,34 | phylum: Annelida | class: Polychaeta | Capitella teleta | | denovo182 | gb AY525627.1 | 94,85 | phylum: Annelida | class: Polychaeta | Eulalia viridis | | denovo192 | gb AF508126.1 | 96,15 | phylum: Annelida | class: Polychaeta | Scoloplos johnstonei | | denovo104 | gb DQ153064.1 | 99,74 | phylum: Annelida | class:Polychaeta | Polygordius jouinae | | denovo259 | gb AY532362.1 | 92,33 | phylum: Annelida | class: Polychaeta | Phylo michaelseni | | denovo145 | gb KF511823.1 | 99,74 | phylum: Annelida | class: Polychaeta | Ophelina sp. | | denovo73 | gb KC984696.1 | 100 | phylum: Mollusca | class: Bivalvia | Yoldia eightsi | | denovo127 | gb KC429382.1 | 100 | phylum: Mollusca | class: Bivalvia | Cyamiomactra laminifera | | denovo164 | gb JQ611498.1 | 100 | phylum: Mollusca | class: Bivalvia | Pecten jacobaeus | | denovo111 | dbj AB714767.1 | 97,69 | phylum: Mollusca | class: Bivalvia | Nipponomontacuta actinariophila | | denovo312 | gb KC429372.1 | 99,74 | phylum: Mollusca | class: Bivalvia | Mysella charcoti | | denovo56 | gb KC429331.1 | 100 | phylum: Mollusca | class: Bivalvia | Mytilus edulis | | denovo40 | gb KC984695.1 | 95,66 | phylum: Mollusca | class: Bivalvia | Neilonella whoii | | denovo221 | gb KC429382.1 | 97,49 | phylum: Mollusca | class: Bivalvia | Cyamiomactra laminifera | **Supplementary Table S1.3-** Closest BLAST matches of Operational Taxonomic Units (OTUs) retrieved from Rothera sample sites, assigned to Platyhelminthes, up to genus or species levels (Description) using SILVA 1.11 database. Depicted are the public accession numbers (AcNumber), BLAST identity percentage against SILVA (BLAST % ID), Phylum and other Taxa ranking. | OTU# | AcNumber | BLAST % ID | Phylum | Taxa Rank | Description | |-----------|------------------|------------|-------------------------|---------------------------|-----------------------------| | denovo47 | emb AJ012531.1 | 95,84 | phylum: Platyhelminthes | order: Macrostomida | Paromalostomum fusculum | | denovo230 | emb AJ012531.1 | 93,54 | phylum: Platyhelminthes | order: Macrostomida | Paromalostomum fusculum | | denovo34 | emb AJ012531.1 | 93,75 | phylum: Platyhelminthes | order: Macrostomida | Paromalostomum fusculum | | denovo74 | emb AJ012531.1 | 93,51 | phylum: Platyhelminthes | order: Macrostomida | Paromalostomum fusculum | | denovo262 | emb AJ012531.1 | 92,45 | phylum: Platyhelminthes | order: Macrostomida | Paromalostomum fusculum | | denovo260 | emb AJ012531.1 | 93,51 | phylum: Platyhelminthes | order: Macrostomida | Paromalostomum fusculum | | denovo14 | gb KC869790.1 | 94,59 | phylum: Platyhelminthes | order: Macrostomida | Macrostomum sp. | | denovo79 | emb AJ012531.1 | 92,99 | phylum: Platyhelminthes | order: Macrostomida | Paromalostomum fusculum | | denovo94 | emb AJ012531.1 | 93,77 | phylum: Platyhelminthes | order: Macrostomida | Paromalostomum fusculum | | denovo175 | emb AJ012531.1 | 94,06 | phylum: Platyhelminthes | order: Macrostomida | Paromalostomum fusculum | | denovo243 | emb AJ012531.1 | 93,01 | phylum: Platyhelminthes | order: Macrostomida | Paromalostomum fusculum | | denovo218 | gb KC529506.1 | 96,13 | phylum: Platyhelminthes | suborder: Dalyellioida | Pogaina sp. | | denovo50 | gb KC602396.1 | 94,85 | phylum: Platyhelminthes | suborder: Kalyptorhynchia | Acrorhynchides robustus | | denovo67 | gb KJ887470.1 | 95,03 | phylum: Platyhelminthes | suborder: Kalyptorhynchia | Uncinorhynchus flavidus v | | denovo33 | gb KC529411.1 | 96,34 | phylum: Platyhelminthes | suborder: Neodalyellida | Proxenetes puccinellicola | | denovo16 | gb KC529435.1 | 93,93 | phylum: Platyhelminthes | suborder: Neodalyellida | Byrsophlebs delamarei | | denovo186 | gb AY775738.1 | 97,91 | phylum: Platyhelminthes | suborder: Kalyptorhynchia | Stradorhynchus sp. | | denovo203 | gb AY775741.1 | 94,04 | phylum: Platyhelminthes | suborder: Kalyptorhynchia | Mesorhynchus terminostylus | | denovo340 | gb KJ887440.1 | 98,95 | phylum: Platyhelminthes | suborder: Kalyptorhynchia | Odontorhynchus aculeatus | | denovo7 | gb KJ887470.1 | 97,9 | phylum: Platyhelminthes | suborder: Kalyptorhynchia | Uncinorhynchus flavidus | | denovo17 | emb AJ012507.1 | 91,67 | phylum: Platyhelminthes | suborder: Kalyptorhynchia | Cheliplana cf. orthocirra | | denovo61 | gb KJ887445.1 | 94,52 | phylum: Platyhelminthes | suborder: Kalyptorhynchia | Opisthocystis goettei | | denovo282 | gb KC529506.1 | 94,07 | phylum: Platyhelminthes | suborder: Dalyellioida | Pogaina sp. 3 | | denovo98 | gb KC529523.1 | 95,63 | phylum: Platyhelminthes | suborder: Dalyellioida | Dalyellioida sp. | | denovo279 | gb GU936108.1 | 93,19 | phylum: Platyhelminthes | suborder: Kalyptorhynchia | Schizorhynchidae sp. | | denovo239 | gb KJ887448.1 | 94,79 | phylum: Platyhelminthes | suborder: Kalyptorhynchia | Thylacorhynchus conglobatus | | denovo320 | gb KC602396.1 | 93,56 | phylum: Platyhelminthes | suborder: Kalyptorhynchia | Acrorhynchides robustus | | denovo41 | gb KC602396.1 | 93,04 | phylum: Platyhelminthes | suborder: Kalyptorhynchia | Acrorhynchides robustus | | denovo63 | gb AY775746.1 | 100 | phylum: Platyhelminthes | suborder: Kalyptorhynchia | Schizochilus choriurus | | denovo107 | gb KC529518.1 | 93,79 | phylum: Platyhelminthes | suborder: Dalyellioida | Wahlia macrostylifera | | denovo146 | gb KC529521.1 | 92,98 | phylum: Platyhelminthes | suborder: Typhloplanoida | Austradenopharynx sp. | | denovo185 | gb KC529506.1 | 96,66 | phylum: Platyhelminthes | suborder: Dalyellioida | Pogaina sp. | | denovo271 | gb KC869833.1 | 92,54 | phylum: Platyhelminthes | suborder: Dalyellioida | Baicalellia canadensis | | denovo290 | gb KC869833.1 | 96,39 | phylum: Platyhelminthes | suborder: Dalyellioida | Baicalellia canadensis | | denovo313 | gb U70077.1 ARU7 | 0 92,23 | phylum: Platyhelminthes | order: Proseriata | Archiloa rivularis | | denovo268 | gb AY775733.1 | 99,74 | phylum: Platyhelminthes | order: Proseriata | Cirrifera sopottehlersae | | denovo199 | gb AY222124.1 | 94,72 | phylum: Platyhelminthes | order: Plagiorchiida | Enenterum aureum | **Supplementary Table S2:** Overview of the Antarctic sampled sites *in silico* statistics for the NGS of 18S rRNA gene region used. Each replicated sampled site had a 8 nucleotide multiplex-identification tag (MID), depth in meters (m), abbreviated description of the sample, post-quality control and chimera checked number of reads and total number of OTUs at the 97% threshold. | Location | MIDTag | Depth (m) | Description | No Reads | QC/ Chimera check reads | Total OTUs | |-----------------|----------|-----------|-------------|----------|-------------------------|------------| | Hangar_1 | TCGTCTAC | 18 | HC.1 | 1224 | 970 | 49 | | Hangar_2 | AGACAGAC | 18 | HC.2 | 13007 | 10399 | 104 | | Hangar_3 | CTGTTCAC | 18 | HC.3 | 4160 | 3076 | 117 | | Rothera Point_1 | AGTCAGAG | 15 | RP.1 | 402 | 341 | 37 | | Rothera Point_2 | TCAGCTCT | 15 | RP.2 | 478 | 376 | 30 | | Rothera Point3 | ACTCAGAC | 15 | RP.3 | 7230 | 6181 | 79 | | Islands_1 | CTAGTCCT | 13 | I.1 | 19716 | 16730 | 157 | | Islands_2 | CAGTTGAC | 13 | 1.2 | 549 | 455 | 54 | |
Islands_3 | TAGGTTGC | 13 | 1.3 | 3617 | 2924 | 50 | | South cove_1 | TCTGCTCA | 8 | SC.1 | 424 | 337 | 21 | | South cove_2 | ATCGTAGC | 8 | SC.2 | 4767 | 4034 | 51 | | South cove_3 | CATGTGCA | 8 | SC.3 | 549 | 3832 | 69 |