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Seasonal variability in the source and composition of particulate matter 
in the depositional zone of Baltimore Canyon, U.S. Mid-Atlantic Bight

Prouty1*, N.G., Mienis2, F., Campbell1, P., Roark4, E.B., Davies5, A.J., Robertson5, C.M., 
Duineveld2, G., Ross6, S.W., Rhode7, M., Demopoulos8, A.W.J. 

Highlights
 Vertical transport and lateral transport across the continental margin were the 

dominant processes driving seasonal input of particulate matter 
 n-alkane and sterol biomarker results combined with isotopes and trace metals, 

offers a multi dimensional approach for deciphering organic matter sources 
 Elevated Chlorophyll-a and sterol concentrations and contemporaneous increase 

in the particle reactive micronutrients during the spring sampling period capture 
seasonal influx of relatively fresh phytodetritus. 

 Connectivity to adjacent watershed facilitates offshore transport of “aged” 
terrestrial organic matter and nutrients
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24 Abstract 

25 Submarine canyons are often hotspots of biomass due to enhanced productivity and funneling of 

26 organic matter of marine and terrestrial origin. However, most deep-sea canyons remain poorly studied 

27 in terms of their role as conduits of terrestrial and marine particles. A multi-tracer geochemical 

28 investigation of particles collected yearlong by a sediment trap in Baltimore Canyon on the US Mid-

29 Atlantic Bight (MAB) revealed temporal variability in source, transport, and fate of particulate matter. 

30 Both organic biomarker composition (sterol and n-alkanes) and bulk characteristics (13C, 14C, Chl-a) 

31 suggest that while on average the annual contribution of terrestrial and marine organic matter sources 

32 are similar, 42% and 52% respectively, marine sources dominate.  Elevated Chlorophyll-a and sterol 

33 concentrations during the spring sampling period highlight a seasonal influx of relatively fresh 

34 phytodetritus. In addition, the contemporaneous increase in the particle reactive micronutrients 

35 cadmium (Cd) and molybdenum (Mo) in the spring suggest increased scavenging, aggregation, and 

36 sinking of phytodetrital biomass in response to enhanced surface production within the nutricline. 

37 While tidally driven currents within the canyon resuspend sediment between 200 and 600 m, resulting 

38 in the formation of a nepheloid layer rich in lithogenic material, near-bed sediment remobilization in 

39 the canyon depositional zone was minimal. Instead, vertical transport and lateral transport across the 



Prouty et al., 

2

40 continental margin were the dominant processes driving seasonal input of particulate matter. In turn, 

41 seasonal variability in deposited particulate organic matter is likely linked to benthic faunal 

42 composition and ecosystem scale carbon cycling. 

43

44 Keywords
45 Submarine canyons; deep-sea ecosystems; sediment trap; geochemical analyses; organic matter
46
47
48 1. Introduction

49 Submarine canyons play a key role in modulating the flux of particulate organic and inorganic matter 

50 to the deep ocean, particularly given that continental shelves and slopes are productive and dynamic 

51 ocean margin systems. As a result, canyons are often conduits for the transport of sediments, organic 

52 matter, and contaminants from continental margins to the abyssal plain, providing effective 

53 connections between highly productive shelf waters and the food limited deep-sea (Canals et al., 2006; 

54 Palanques et al., 2006; Costa et al., 2011; Levin and Sibuet, 2012; Puig et al., 2012).  Contemporary 

55 sedimentary processes within canyons include storm induced turbidity currents, advection through 

56 shelf resuspension, slope failures, internal waves, trawling, and dense shelf cascading (see review by 

57 Puig et al., 2014).  Through the channeling and concentrating of organic matter via dynamic physical 

58 processes, canyon fauna can experience enhanced food supply (Vetter and Dayton, 1998; Duineveld et 

59 al., 2001; De Leo et al., 2010). Therefore, submarine canyons can potentially be hotspots of 

60 biodiversity where enhanced fluxes of organic matter and deposition sustain tremendous benthic 

61 biomass in the deep sea compared with nearby open slope habitats at similar depths (Levin et al., 2001; 

62 Garcia et al., 2007; De Leo et al., 2010). Within canyons, different physical regimes can substantially 

63 alter the organic composition of sediments and the abundance of fauna thriving on these resources. For 

64 example, local deposition centers of sediment and organics are hotspots of detritivorous bottom 

65 dwelling organisms in the Portuguese Nazaré and New Zealand’s Kaikoura canyons (De Leo et al., 

66 2010). Furthermore, episodic events known to affect benthic biomass and biodiversity, such as 

67 sediment cascades enriched in organic matter (Canals et al., 2006), or increased seasonal productivity 

68 in surface waters due to upwelling along canyon edges (Soltwedel, 2000; Garcia et al., 2007; Howatt 

69 and Allen, 2013), can temporarily trigger increased sedimentation and/or food availability. 

70

71 Submarine canyons are a major feature incising the United States Atlantic continental margin, from 

72 Cape Hatteras to Atlantic Canada. In this region, canyons act as conduits and reservoirs of shelf-

73 sourced sediments, transporting this material from the shelf to the slope. The MAB shelf within or near 
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74 canyons is known for high organic inputs resulting from enhanced surface water productivity (Schaff 

75 et al., 1992; DeMaster et al., 1994; Rex and Etter, 2010). This region also contains a high diversity of 

76 unique habitats within a relatively small area, some recognized as rich coral habitats and important 

77 areas for the diversity of the MAB (Hecker, 1980; Hecker et al., 1983). The MAB is incised by 13 

78 major canyons of varying size, shape, and morphological complexity (Obelcz et al., 2014). Baltimore 

79 Canyon represents one of the best studied canyons in this region (e.g., Gardner, 1989a, b) and was the 

80 focus of a multi-year study to better understand the unique hard bottom and soft-sediment communities 

81 within and adjacent to the canyon (Brooke and Ross, 2014; Brooke et al., 2016). Recent results from 

82 Baltimore Canyon have identified discrete resuspension and deposition zones in the upper canyon and 

83 the deeper part of the canyon, respectively. Differences in benthic infaunal communities of Baltimore 

84 Canyon appear to be linked to this zonation, as previously documented in other canyon and margin 

85 settings where benthic community patterns vary with depth and organic matter (OM) content (e.g., 

86 (Carney et al., 2005; Gibson et al., 2005; Wei et al., 2010). For example, in Baltimore Canyon reduced 

87 infaunal diversity and enhanced infaunal density observed at 900 m was coincident with a zone of 

88 organically enriched, finer sediments, characterizing the depositional zone (840 to 1180 m) of the 

89 lower reaches of the canyon. In addition to spatial patterns of sediment deposition and organic 

90 composition, temporal variations in the transport of both marine and terrestrial organic matter can 

91 impact benthic community composition and trophic status (Pusceddu et al., 2009), as well as the deep-

92 sea carbon cycle through changes in ingestion, assimilation, and respiration (e.g., Vetter and Dayton, 

93 1998; Hunter et al., 2013). For example, Hunter et al. (2013) observed changes in macrofaunal feeding 

94 activity and bacterial C uptake as a result of changes in particulate organic matter (POM) composition. 

95 Therefore seasonal variations in organic matter flux are key factors influencing deep-sea ecosystems 

96 (Gooday, 2002). 

97

98 A major aim of this study is to better understand the provenance signature of particle (food) delivery 

99 within a submarine canyon by analyzing a suite of geochemical tracers (e.g., stable and radio-isotopes, 

100 lipid biomarkers, 210Pb, trace metals) collected during a 1-year sediment trap deployment and CTD 

101 profiling.  While an arsenal of biomarker compounds (e.g., n-alkanes, sterols, fatty alcohols, fatty acids, 

102 lignin phenols) exist to identify biotic sources as well as yield information on decomposition and 

103 diagenesis (e.g., Bianchi and Canuel, 2011 and references therein), ambiguities do exist when 

104 elucidating sources of organic matter based on biomarker composition given overlapping sources (e.g., 

105 Volkman et al., 2008).  Therefore, combining the n-alkane and sterol biomarker results with the other 

106 tracers (i.e., stable isotopes, trace metals, radiocarbon) presented here offers a multi dimensional 
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107 approach for deciphering organic matter sources (e.g., Wakeham and McNichol, 2014).  By building 

108 on previous research demonstrating the utility of hydrocarbons as tracers of organic matter source in 

109 the aquatic ecosystem (e.g., Volkman, 1986; Meyers, 1994; Goni et al., 1997; Wakeham et al., 1997; 

110 Eglinton and Eglinton, 2008; Wakeham and McNichol, 2014), we can investigate the primary sources 

111 of organic matter within Baltimore Canyon. Taken together this detailed study highlights for the first 

112 time key observations describing the temporal variability of organic matter flux that influences the 

113 deep-sea ecosystems within Baltimore Canyon

114

115 2. Materials and Methods

116 2.1 Study Area: Baltimore Canyon

117 Baltimore Canyon, a shelf-sourced canyon is located approximately 125 km southeast of the entrance 

118 to Delaware Bay, extends for a distance of 25 km until it merges onto the abyssal plain at a depth of 

119 1500 m (Fig. 1). Near the head of the canyon, the width is 3 km and increases to 8 km at the shelf 

120 break at a depth of 100 m. Several meanders characterize the canyon, with the canyon axis curving 

121 southward at the upper reaches and then turning eastward with increasing depth until it is oriented east-

122 west at 3000 m water depth (Obelcz et al., 2014) (Fig. 1). A series of bathymetric steps and terraces 

123 are found near the head of the canyon where the cross-sectional profile is V-shaped and transitions into 

124 a U-shaped canyon at 1000 m (Obelcz et al., 2014). 

125

126 Sediment supply to Baltimore Canyon is from the pelagic zone and reworked shelf sediment (Gardner, 

127 1989b) mainly transported via off-shelf spill in canyon heads, failure of the steep canyon walls, and 

128 resuspension by bottom currents and internal waves (Obelcz et al., 2014), as well as small-scale mass 

129 wasting events triggered by bioerosion (Valentine et al., 1980). Within the canyon, currents focused by 

130 the canyon axis in the form of tidal bores and internal waves resuspend sediment between 

131 200 and 600 m and sometimes down to 800 m allowing these sediments to be transported down canyon 

132 along density surfaces (Gardner, 1989a, b). Resuspension occurs primarily during flood and to a lesser 

133 extent during ebb flows and is most intense and episodic when the water is poorly stratified 

134 (i.e., during late winter and early spring), though episodic events may occur at other times of the year 

135 (Gardner, 1989a, b).

136

137 2.2 Sediment Traps

138 Two benthic landers, each consisting of an aluminum tripod frame approximately 2 m in height 

139 equipped with twin acoustic releases and eight buoyancy spheres were deployed on September 5, 2012 
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140 at a depth of 603 m (38° 09.024 N, 73° 50.954 W, described as the shallow lander) and at 1318 m (38° 

141 02.543 N, 73° 44.153 W, described as the deep lander) (Fig. 1). Each lander was equipped with a 

142 Technicap PPS 4/3 sediment trap programmed to rotate a 250 mL sample bottle at either 20 or 30-day 

143 intervals, delivering 12 samples during the 1-year deployment. Temperature, salinity, turbidity, 

144 dissolved oxygen, and bottom currents were measured using an Aanderaa (RCM) string logger. All 

145 RCM probes were mounted approximately 1.5 m off bottom with the exception of the current meter, 

146 which was approximately 2 m off the bottom. In addition, a mooring was deployed August 18, 2012 at 

147 1082 m (38° 04.657 N, 73° 46.957 W, described as the mid-mooring) (Fig. 1). The mooring was 

148 equipped with a Honjo Parflux sediment trap with thirteen 500 mL bottles mounted 4 m above bottom 

149 programmed to rotate on a 30-day interval. The sampling design enabled the examination of canyon 

150 characteristics, including the movement of particulate material up and down canyon, propagation of 

151 internal waves, water parameter variability, and particle fluxes.

152

153 Biological activity in the sediment traps was inhibited by treating the traps with a pH buffered solution 

154 of mercuric chloride (HgCl2) in seawater, which has been shown to be an effective means to limit 

155 microbial activity and subsequent alteration of organic matter  (e.g., Lee et al., 1992). While not 

156 immune to diagenesis/degradation within the water column (e.g., Wakeham et al., 1997; Tolosa et al., 

157 2003), the retention of a “biological heritage” of lipid extraction (e.g., n-alkanes and sterols) from 

158 sediments is less sensitive to alteration and degradation and represents important organic geochemical 

159 proxies that are preferentially preserved relative to other classes of biomarkers (see reviews by 

160 Volkman, 1986; Meyers, 1994; Eglinton and Eglinton, 2008). Early on Prahl et al. (1980) 

161 demonstrated a decrease in aliphatic hydrocarbon distribution in surface sediments relative to trap 

162 sediment.  Similarly, previous work has demonstrated the preferential removal of labile components 

163 and enrichment of residual recalcitrant matter in surface sediment relative to trap material (e.g., 

164 Wakeham and Canuel, 2006; Wakeham and McNichol, 2014).

165

166 The complete time-series from the shallow (603 m) and mid-depth (1082 m) trap sites were 

167 compromised by mass flux events (in October 2012) that filled the trap funnels completely, leaving 

168 only a few samples intact. The flux estimate may be unreliable since the elevated current speeds 

169 surpass the settling velocity of particles (Knauer and Asper, 1989). The only sediment trap with an 

170 almost complete sampling series was retrieved from the deepest Baltimore Canyon lander site (1318 

171 m). The missing dates represent sediment trap bottles that were partially open upon retrieval, therefore 

172 precluding accurate flux measurements and sample preservation.   Sediment trap samples were split 
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173 into five equal splits with a rotor splitter at the Royal Netherlands Institute for Sea Research (NIOZ).  

174 Two splits were rinsed thoroughly to remove sea salt and HgCl2, after which they were frozen, freeze 

175 dried, and weighed to calculate mass fluxes and prepared for geochemical analyses. To keep samples 

176 intact for pigment analysis, another split was rinsed with filtered seawater from the deployment site 

177 after which it was freeze dried.

178

179 2.3 Water column properties 

180 Vertical profiles were made of the water column properties using a CTD-rosette (SBE 911plus CTD 

181 profiler and a rosette containing twelve 5 L Niskin bottles) deployed inside Baltimore Canyon to 

182 establish if the canyon acts as conduit for suspended and dissolved material. One CTD transect was 

183 taken down the axis of the canyon, and during these casts, the CTD array was lowered from the surface 

184 to as close to the bottom as feasible (usually about 10 m above bottom) (Fig. 1). Seawater samples 

185 were collected during the upcast of the CTD at shallow (250 m), mid (644 m), and deep (1140 m) sites 

186 within Baltimore Canyon, as well as at mid-depth shelf sites (678 m) outside the canyon for 

187 measurements of nutrient concentrations, trace metals, and POM (>0.45 µm). Seawater was filtered 

188 directly from the Niskin bottles using acid-cleaned Teflon coated tubing attached to a polypropylene 

189 filter holder that was preloaded with an acid-cleaned polysulfone filter and attached to a vacuum pump. 

190 Filters were pre-cleaned by soaking in trace metal grade HCl in a 1 L low-density polyethylene bottle. 

191 Replicate water samples were collected from two 5 L Niskin bottles at each sampling depth. Water 

192 column particulate matter for trace element measurements was collected by filtering approximately 5 L 

193 of seawater on acid-cleaned 0.45 µm polysulfone filters (47 mm) given low blank concentrations 

194 (Planquette and Sherrell, 2012). The filter holders with preloaded filters were double bagged in 

195 polyethylene zip-lock bags and kept frozen for transport back to the laboratory. 

196

197 Seawater samples collected for dissolved nutrient analysis were stored in acid-cleaned high-density 

198 polyethylene 20 mL scintillation vials, which were triple washed with extra filtrate before saving the 

199 final sample for analysis. These samples were frozen immediately until analyzed at the Geochemical 

200 and Environmental Research Group at Texas A&M University, College Station. Nutrient samples were 

201 analyzed on an Astoria-Pacific auto-analyzer. The nitrate/nitrite/silicate methods are based on 

202 Armstrong et al. (1967). Phosphate methods are based on Bernhardt and Wilhelms (1967). Ammonium 

203 methods are based on Harwood and Kühn, (1970). The dissolved inorganic nitrogen (DIN) 

204 concentrations were calculated as the sum of nitrite, nitrate, and ammonium concentrations. Analytical 
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205 detection limits were 0.01 M for phosphate, 0.003 M for nitrite, 0.05 M for nitrate and silicate, and 

206 0.08 M for ammonium.

207

208 2.4 Geochemical Analyses

209 Sediment organic carbon and nitrogen content were measured on a Thermo Organic Elemental 

210 Analyser Flash 2000, and stable carbon and nitrogen isotopes were measured on a Thermo Delta V 

211 Advantage Isotope Ratio MS at NIOZ. Prior to analysis, samples for Corg and 13C analysis were 

212 acidified with HCl to remove all inorganic carbon. Standards used for C were acetanilide and benzoic 

213 acid, respectively (analytical detection limits 13C =0.3‰).  Samples for %N and 15N analysis were 

214 not acidified and standards used were acetanilide and urea respectively (analytical detection limits 15N 

215 =0.1‰). Trace element concentrations of the suspended particulate matter and sediment trap material 

216 were determined by ICP-MS at the USGS Mass Spectrometry Facilities in Denver, Colorado.  Filters 

217 were digested following procedures outlined in Planquette and Sherrell (2012). Data presented here 

218 were reported in µg g-1 following blank correction, as determined from digesting procedural filter 

219 blanks, and sample and filter weight corrections (Prouty et al., 2016).  For the sediment traps, 50 to 

220 100 mg of sediment was digested using a 4-acid procedure (HF + HCl + HNO3 + HClO4), taken to 

221 dryness, and the residue dissolved in 5 to 20 mL of 5% to 13% HNO3 with a dilution factor of 103 to 

222 104 (Briggs and Meier, 2002).

223

224 Concentrations of chlorophyll a and its derivatives (phaeophorbides, phaeophytines) were determined 

225 with reverse-phase HPLC according to the method outlined by Witbaard et al., (2000). Phytopigments 

226 were identified and quantified using a library based on pigment standards (DHI, Denmark). From the 

227 results of the pigment analysis, intact chlorophyll-a concentrations were taken as a proxy for fresh 

228 phytodetritus biomass. The chlorophyll-a/phaeopigment ratio was used to indicate the freshness of the 

229 trapped phytodetritus.  The activity of 210Pb was determined by alpha spectrometry from 210Po using a 

230 Canberra alpha detector, which was extracted from the sample by leaching with concentrated HCl 

231 (Boer et al., 2006). The 210Pb activity of sediment trap samples was used as an indicator for the relative 

232 proportion of suspended and freshly settled material. Fresh settled material has a high 210Pb signal, 

233 while resuspended material shows lower values due to radioactive decay.

234

235 Sediment radiocarbon (14C) ages were determined at the National Ocean Sciences Accelerator Mass 

236 Spectrometry (NOSAMS) facility, Woods Hole, MA USA. Approximately 50 mg of acidified (1.2N 

237 HCl) bulk sediment was converted to CO2 and graphitized for accelerator mass spectrometry (AMS) 
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238 (Vogel et al., 1987). Radiocarbon ages were calculated using the Libby half-life of 5568 years. The 

239 D14C values (i.e., radiocarbon values without age correction) were age corrected to account for decay 

240 that took place between collection (or death) and the time of measurement using the following 

241 equation: Δ14C = (Fm*age correction)-1)*1000 where age correction is defined as exp((1950-year of 

242 measurement)/8267), and Fm is fraction modern (Stuiver and Polach, 1977). Radiocarbon results are 

243 reported as Δ14C (‰) and conventional radiocarbon age after applying a measured 13C correction 

244 (Stuiver and Polach, 1977).

245

246 Molecular composition of the sediment trap samples was determined by gas chromatography-mass 

247 spectrometry (GC-MS) at the USGS Pacific Coastal Marine Science Center’s (PCMSC) Organic 

248 Geochemistry laboratory in Santa Cruz, California as described in Prouty et al. (2016). Approximately 

249 1-2 g of freeze-dried organic matter was extracted by pressurized solvent extraction (ASE, Dionex 

250 Corp., CA, USA). Samples were extracted with a hexane:acetone (1:1) solvent mixture followed by a 

251 second extraction in dichloromethane:methanol (2:1) solvent mixture. Internal standards (5-α-

252 androstane, 5-α-androstan-3-β-ol) were added to samples prior to extraction.  All glassware was 

253 washed, solvent rinsed (methanol, hexane, and dichloromethane), and combusted at 400°C overnight.  

254 Blanks were run for the entire procedure, including extraction, solvent concentration, and purification. 

255 After evaporation of extracts to 5 ml volume utilizing TurboVap Evaporation Concentrator (Zymark 

256 Corp., NC,USA), samples were loaded onto liquid chromatography columns for compound class 

257 separation. Each column was layered with 2.5 g of 5% deactivated alumina, 2.5 g of 62 silica gel and 

258 5.0 g of 923 silica gel, which had previously been activated at 500o C for 8 h and then, in the case of 

259 the alumina, partially deactivated with ultrapure water (5% w/w). Three separate fractions were 

260 collected: F1-saturate (100% hexane eluent); F2-aromatic (30% DCM : 70% hexane eluent); and, F3- 

261 polar (50% ethyl acetate: 50% hexane) and reduced in volume to 1.0 ml.  The polar fraction (F3) was 

262 further derivatized with BSTFA (N,O-bis(trimethylsilyl) trifluoroacetamide) containing 2% TMCS 

263 (trimethylchlorosilane) and anhydrous acetonitrile.  Extracts were analyzed by splitless injection onto 

264 an Agilent 6890 gas chromatograph interfaced to an HP 5973 mass spectrometer (GC-MS) at the 

265 USGS PCMSC Organic Geochemistry Laboratories in Santa Cruz, CA.  The gas chromatograph oven 

266 program had an initial temperature of 90°C which was held for 4.0 min then ramped at 5°C min -1 to a 

267 final temperature of 310°C which was held at this final temperature for 10 min.  The capillary column 

268 (DB-5MS: 30 m length, 0.25 mm id with a 25 µm phase thickness) was directly interfaced to the ion 

269 source of the mass spectrometer.  Hexane instrument blanks and procedural sample duplicates were 

270 run and analyzed for every 10 samples. Compound identifications were made by comparison with 
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271 known analytical standards and/or published reference spectra (Fig. S1). Concentrations of individual 

272 lipids are blank corrected values. Lipid biomarkers (sterol and n-alkane) concentrations (g g-1) are 

273 reported normalized to organic carbon of dry sediment as measured by a coulometer at the PCMSC.  

274

275 Major organic matter sources to the sterol and n-alkane molecular signatures were investigated by 

276 calculating relative proportions of marine, terrestrial, and anthropogenic/petroleum contributions. 

277 Relative contributions from natural (marine versus terrestrial) and anthropogenic organic matter n-

278 alkane and sterol sources were calculated following a modified designation from Pisani et al. (2013). 

279 Terrestrial organic matter composition of sediments was quantified using concentrations of 

280 odd-numbered n-alkanes in the C21 to C31 range as well as the sterols campesterol, stigmasterol, 

281 β-sitosterol and stigmastanol (the reduced from of stigmasterol). Marine components were determined 

282 using concentrations of the sterols cholesterol, 22-dehydrocholesterol, brassicasterol, and cholestanol 

283 (reduced form of cholesterol) as well as odd- and even-numbered n-alkanes in the C15 to C19 range. 

284 The anthropogenic components were determined using the sterol composition of coprostanol, 

285 epicoprostanol, and the ketone, 5-β-coprostanone, in addition to the isoprenoid hydrocarbons pristane 

286 and phytane. 

287
288 3. Results and Discussion
289
290 3.1 Environmental and Water Column Variability

291 The three benthic observatories positioned throughout the canyon recorded decreases in current speed, 

292 turbidity, and temperature with depth (Fig. 2). The shallow lander (603 m) was positioned in the most 

293 dynamic area of the canyon, with temperatures fluctuating between 4.5- 8.6 °C and a mean of 5.4 °C 

294 (standard deviation [SD] 0.47 °C). The intensity of the current also varied greatly, with peak current 

295 velocity reaching 66.2 cm s-1 and a mean of 13.7 cm s-1 (SD 9.03 cm s-1). Peaks in turbidity appeared 

296 to correspond with temperature fluctuations (Spearman’s Rank Correlation on 24 hour moving average 

297 data for first deployment, r = 0.48, p < 0.001). In contrast, the mid-mooring area (1082 m) was cooler 

298 (temperatures between 4 °C-5.1° C and a mean of 4.5 °C [SD 0.16 °C]) and had a lower current 

299 velocity (maximum current velocity: 42.3 cm s-1, and mean: 8.7 cm s-1 [SD 5.6 cm s-1]). Current 

300 velocity and temperature were positively correlated at the mid-mooring location (Spearman’s Rank 

301 Correlation on 24 hour moving average data for first deployment, r = 0.43, p < 0.001). The deeper 

302 region of Baltimore Canyon (1318 m) was cooler and had lower current velocities (temperatures 

303 between 3.8-4.74 °C with a mean of 4.2 °C [SD 0.16 °C]) relative to the shallower deployments. 

304 Maximum current velocity was 29.2 cm s-1, with a mean speed of 6.6 cm s-1 [SD 3.27 cm s-1]. At the 
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305 deep site, peaks in turbidity were positively correlated with current velocity (Spearman’s Rank 

306 Correlation on 24 hour moving average data for first deployment, r = 0.62, p < 0.001), and there was a 

307 strong positive relationship between current velocity and temperature (Spearman’s Rank Correlation 

308 on 24 hour moving average data for first deployment, r = 0.75, p < 0.001), consistent with the patterns 

309 recorded by the shallow and mid-canyon instruments. All sites indicated that warmer, sediment-laden 

310 waters are transported to the deeper parts of the canyon during part of the tidal cycle.  Current driven 

311 bed shear stress (>0.1 N m-2) was calculated from the sediment density and grain size, as well as the 

312 kinematic viscosity and density of the seawater.  Based on this calculation, sediment remobilization 

313 varied throughout the canyon, with current driven bed shear stress sufficient to resuspend fine-grained 

314 material (i.e. <34 m) 15% of the time at the shallow area of the canyon, but only 1% at the mid 

315 canyon and less than 0.02% in the deeper area.  Plots of progressive current vectors demonstrated a 

316 strong tidal flow at the shallow lander station, with a general movement towards the northeast, up 

317 canyon. However, some disruption to this pattern was observed during certain periods throughout the 

318 year when flow moved down canyon (Fig. 1). The canyon walls steered water movement within the 

319 mid-canyon station, but disruption to the general up-canyon movement was detected during September 

320 to November and January to March (Fig. 1b). During the periods of October to November 2012 and 

321 March to May 2013, turbidity events in the shallow lander site were followed by a 2 °C temperature 

322 increase, and accentuated by elevated current speeds and flow to the north (Fig. S2), suggesting a 

323 possible link to benthic storms associated with Gulf Stream meanders and rings (Gardner et al., 2017).  

324 This signal was less distinct in the deeper sites where temperature fluctuations were substantially 

325 smaller.  The deep lander had the most consistent residual flow that was identical in direction to the 

326 shallow station (Fig. 1a and c). However, such transport was less tidally regulated than in the shallow 

327 station demonstrating a greater movement to the northeast.

328

329 The CTD transects conducted in Baltimore Canyon reveal a large intermediate nepheloid layer 

330 extending from the mouth of the canyon from 200 m to approximately 900 m (Fig. 3), with enhanced 

331 turbidity during both up and down canyon flow. This nepheloid layer was also observed by Gardner, 

332 (1989a, b), and likely forms a permanent feature in Baltimore Canyon in response to internal wave 

333 energy at tidal frequencies.  The nepheloid layer, between 400 and 800 m, and a second, smaller patch 

334 in the surface water near the canyon wall (8 km down canyon) (Fig. 3), was characterized by increased 

335 lithogenic material, specifically aluminum (Al), neodymium (Nd), Iron, (Fe), and lanthanum (La) (Fig. 

336 4).  Particulate (>0.45 µm) element concentrations were enriched at the shallow (NF-2012-138; 261 m) 

337 and mid-depth (NF-2012-128; 644 m) CTD stations whereas trace element profiles at the deep (NF-
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338 2012-130; 1140 m) and slope (NF-2012-149; 668 m) CTD stations did not exhibit elevated trace metal 

339 particulate concentrations at 600 m (Fig. 4). Trace element composition for the Baltimore Canyon 

340 slope site was consistently low and the deep site only showed a slight enrichment near the bottom (NF-

341 2012-130; 1140 m). These results indicate that the nepheloid layer appears restricted to within the 

342 canyon and to a depth of 850 m. 

343

344 Nutrient profiles in Baltimore Canyon displayed surface-water depletion and bottom-water enrichment 

345 in nitrate, phosphate, and dissolved silicate (Fig. 5). These results illustrate the uptake of nutrients 

346 within the nutricline due to biological processes, particularly the growth of phytoplankton in the photic 

347 zone. The interaction between phytoplankton growth and nutrient uptake is illustrated in the inverse 

348 relationship between the nutrient and dissolved oxygen (O2) profiles (Fig. 5). Below the mixed layer, 

349 concentrations of nitrate, phosphate, and dissolved silicate were conservative and exhibited a 

350 homogenous distribution at depth. The nutricline in Baltimore Canyon was defined from nutrient 

351 profiles collected during the August 2012 sampling cruise. Maximum nutrient concentrations occurred 

352 at ~250–300 m, consistent with the thermocline depth in Baltimore Canyon, and agrees with those 

353 derived from Ocean Data Viewer (latitude 73° 49.36 N, longitude 38°23.24 W; Schlitzer, 2016). Given 

354 the similarity between the individual depth profiles down canyon, the nutricline appears to be 

355 homogenous along the length of the canyon with little spatial variability. 

356

357 3.2 Sediment Traps

358 The sediment trap data at the deep site illustrate a narrow range of mass fluxes during the first seven 

359 months (4.7 to 9 g m-2 d-1) and slightly lower mass flux during the last three months (Fig. 6). There 

360 were two periods of relatively elevated mass flux, September−October 2012 and January−February 

361 2013. The increase in mass flux in September−October 2012 at the deep trap site indicates a 

362 resuspension or mass-wasting event, potentially, linked to increase mass fluxes at the shallow and mid-

363 depth sites, and subsequent overfilling of the funnels at these shallower depths. Similar sediment trap 

364 overfilling was observed in Nazare Canyon, in response to storm-induced turbidity currents (Martín et 

365 al., 2011).  However, we did not observe overfilling at the deep sediment trap site, suggesting that 

366 sediment loading in the shallow and mid-depth regions may not necessarily be transported along the 

367 canyon thalweg to the deeper region, and that localized overspill from the canyon walls can help 

368 explain asynchronous mass fluxes within the canyon.  At the deep trap site, percent Corg and total N did 

369 not vary significantly between periods and patterns of C and N fluxes and therefore closely resembled 

370 those of the mass flux, with a small range in C:N ratios (8.8 to 10.6) (Table 1). 210Pb activity at the 
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371 deep trap site displayed an inverse temporal pattern relative to mass flux. Higher mass fluxes 

372 corresponded to low 210Pb values (R=-0.90), indicating trapping of resuspended material (Fig. 6a). 

373 Chlorophyll-a concentrations showed more variability between successive samples. Peak Chl-a flux 

374 occurred in May−June 2013, coincident with elevated %Corg values and highest Chl- a /phaeopigment 

375 ratio, indicating a supply of relatively fresh phytodetritus from the spring phytoplankton bloom (see 

376 below). A secondary peak in Chl- a flux and 210Pb was observed in October−November 2012, 

377 indicating enhanced transport of phytodetritus (Fig. 6b). 

378

379 There was a narrow range in stable carbon (13C) and nitrogen (15N) isotope values -22.8‰ (SD 0.15) 

380 and 4.83‰ (SD 0.23) (Table 1), consistent with a marine signature (Meyers, 1994). The 13C range 

381 was consistent with that reported for POM in the surface and mid-water depths, and 15N values were 

382 consistent with surface POM values on the Northwest Continental Shelf (Oczkowski et al., 2016).  The 

383 trap material most likely reflects a combination of freshly exported material and suspended POM. 

384 Romero-Romero et al. (2016) were able to use stable isotope signatures to distinguish organic matter 

385 sources in the Aviles submarine canyon. However, in our study it was difficult to distinguish between a 

386 mixture of marine algae plus terrestrial C3 plants given the narrow range of sediment trap bulk 13C 

387 values (-22.8 to -22.0 ‰). The enriched C:N ratios relative to the Redfield ratio (6.7; Table 1) suggests 

388 a mixture of sources of both marine phytodetritus and land-derived organic debris. As shown in Figure 

389 7, the sediment trap samples fall along a mixing line between marine algae and C3-vascular plants 

390 according to 13C and C:N values (Goñi et al., 2003; Tesi et al., 2007). 

391

392 The total concentration of n-alkanes for sediment trap samples from the deep lander site represents a 

393 resolved n-alkane range from C14 to C32 as well as detectible amounts of the isoprenoid hydrocarbons 

394 pristane (pr) and phytane (ph) (Table 2a). Total n-alkane concentrations ranged from <1 to 12 µg g- 1 

395 dry weight normalized to organic carbon (µg g- 1 C), with September/October 2012 yielding elevated 

396 n-alkane concentrations (Fig. 6b). Overall, the molecular composition was dominated (95%) by higher 

397 molecular weight (HMW, >C21) n-alkanes, particularly n-C29 and n-C27, except in February 2013 when 

398 n-C24 was anomalously elevated (Table 2a). The Carbon Preference Index (CPI) is often used to 

399 identify organic matter source by describing the molecular distribution of odd number n-alkanes 

400 relative to even number n-alkanes (Bray and Evans, 1961). Overall, there was a strong odd-to-even 

401 predominance, with a CPI consistently >1.0, particularly in September/October and June/July (Table 

402 2a), suggesting increased OM originating from land plant material (Hedges and Parker, 1976). The 

403 dominance of terrestrial plant input relative to aquatic macrophytes is also expressed through the 
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404 Alkane Proxy (Paq) (Ficken et al., 2000).  The Paq values were consistently <1, revealing the 

405 dominance of long chain-length n-alkanes. Phytane was detected in the samples from 

406 September/October of 2012, but was absent from the other months. The sediment trap sample from 

407 May 2013 contained enriched pristane relative to the other months, but overall both pristane and 

408 phytane concentrations were <1 µg g-1 C (Table 2a). Total sterol concentrations ranged from 1 to 30 µg 

409 g-1 C (Table 2b), and were dominated by cholesterol. In comparison, the smallest contribution was 

410 from the anthropogenic-sourced sterols, specifically coprostanol and epicoprostanol. Sterol 

411 concentrations were elevated in October 2012 when cholesterol contributed 30% of the total sterol 

412 concentration. A second peak in sterol concentration occurred in May 2013 and was dominated by both 

413 cholesterol and cholestanol, comprising over 60% of the total sterol composition. Both sterols have 

414 marine biological sources, such as biosynthesis of plankton organisms and zooplankton (Volkman, 

415 1986). The sterol enrichment in the spring is tightly coupled to the peak in Chl-a concentrations (Fig. 

416 6b), illustrating the influx of relatively fresh phytodetritus. The influx of fresh phytodetritus is also 

417 consistent with the phytoplankton blooms in the spring when net primary productivity exceeded 700 g 

418 C m-2 d-1 (Fig. 6d), as calculated per Behrenfeld and Falkowski (1997) for a 20 km2 surrounding 

419 Baltimore Canyon. In comparison, lower sterol and n-alkane concentrations during the winter months 

420 reflect a reduction in surface water primary productivity (< 300 g C m-2 d-1) during the winter season.

421

422 The distribution of biomarkers in the sediment trap organic matter indicates that delivery to the deep 

423 area of Baltimore Canyon is a composite of sources (e.g., algal/phytoplankton/zooplankton 

424 productivity and land-plant productivity). Anthropogenic sources were minimal, with an annual 

425 average contribution of 6%, and the greatest contribution occurring in September 2012. Although high 

426 pristane concentrations in sediment can be derived from zooplankton, the pristane/phytane ratios 

427 observed in this study are used as indicators of a petrogenic, anthropogenic source (Blumer et al., 

428 1963).  While on average the contributions from marine (43%) and terrestrial (52%) organic matter 

429 sources were similar, seasonal variability in source contribution was observed in the biomarker time 

430 series (Table 3). For example, September 2012 and May 2013 were dominated by terrestrial (76%) and 

431 marine (71%) sources, respectively. Dominance by terrestrial sources in September 2012 was 

432 potentially associated with a resuspension event as captured in the increased mass flux and reduced 

433 210Pb values, and potentially linked to enhanced turbidity from overspill of the canyon walls.  In 

434 contrast, the peak in marine sources in May 2013 is attributed to increased primary production during 

435 the spring bloom (Fig. 6d), when freshwater transport is at a maximum during spring discharge (Choi 
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436 and Wilkin, 2007), and facilitates offshore transport of both nutrients and terrestrially derived organic 

437 matter. 

438

439 A suite of trace elements was measured from the sediment trap samples collected at the deep lander 

440 site (Table 4). Iron (Fe) and aluminum (Al) dominated the trace element composition of the sediment 

441 traps, but showed little variability throughout the deployment period with average monthly Fe and Al 

442 concentrations of 56 and 32 mg g-1, respectively. After Fe and Al, barium (Ba), phosphorous (P), 

443 strontium (Sr), and manganese (Mn) contributed to the elemental composition. Variability, evaluated 

444 as percent contribution of standard deviation to total elemental concentration, was greatest for 

445 cadmium (Cd) and molybdenum (Mo) at 4% and 3%, respectively. Peak values for the particle reactive 

446 micronutrients Cd and Mo, occurred in April and May, with a smaller enrichment in October (Fig. 6c). 

447 The spring and fall periods are also characterized by enrichment in total sterol concentration as 

448 discussed above. During the deployment period, net primary production for the months of April 

449 through June 2013 was 721, 698, and 775 g C m-2 d-1 respectively, whereas net primary production in 

450 the fall months of Sept. through Nov. 2012 was 372, 429, and 422 g C m-2 d-1 respectively (Fig. 6d). 

451 Hence, the spring phytoplankton bloom could have fueled the increase and export of fresh organic 

452 matter (e.g., phytodetritus) in the canyon during this season. The elevated pigment fluxes correspond to 

453 increased biomarker concentrations (especially sterols), indicating greater primary production and 

454 export of marine-derived organic matter. The simultaneous increase in the phytoplankton essential 

455 micronutrients of Cd and Mo during this period suggests increased scavenging, aggregation, and 

456 sinking of biomass during seasonal blooms in response to enhanced surface production within the 

457 nutricline (Wangersky et al., 1989; Pohl et al., 2004). The synchronous timing of the surface water 

458 primary productivity signal relative to the sediment trap geochemistry time series suggests rapid export 

459 and sinking of fresh particulate organic matter to the depositional zone of Baltimore Canyon. This 

460 corresponds to a spring maximum at the shelf break/slope waters (Ryan et al., 1999; Xu et al., 2011), 

461 and an increase in biomass on the MAB shelf during the spring and summer relative to the late fall 

462 (Mouw and Yoder, 2005).  

463

464 Radiocarbon ages of sediment trap material recovered from the Baltimore Canyon deep lander site 

465 ranged between 980 (SD 15) and 1280 (SD 20) 14C YBP with an average age of 1096 14C YBP 

466 (SD 18) (Table 5). The most negative 14C value (-153.75‰) occurred in the first month of the 

467 deployment (September 2012), with little variability in  14C (14C of 30‰) observed throughout the 

468 remaining part of the year. In comparison, fresh organic matter, as defined by coral tissue 14C values, 
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469 was 30‰, consistent with surface water dissolved organic carbon 14C values, ranging from 21 to 

470 47‰. Therefore, the relatively “aged” material present in the trap suggests a mixture of marine and 

471 terrestrial sources, as well as potential input from laterally advected refractory material (e.g., Druffel et 

472 al., 1986; Gordon and Goñi, 2003; Hwang and Druffel, 2003). The aged radiocarbon dates reflect 

473 organic carbon that was photosynthetically fixed thousands of years ago, such as riverine carbon 

474 exported from the Hudson River Watershed that has a 14C signature of -350‰ (Raymond and Bauer, 

475 2001). Fingerprinting and mixing approaches have been used in submarine canyons of the 

476 Mediterranean Sea to identify relative source contributions (Tesi et al., 2010; Pasqual et al., 2013). In 

477 our study, results of a two end-member 14C mixing model yielded an annual average contribution 

478 from terrestrial-derived carbon of ~48%, with the remaining ~52% attributed to autochthonous organic 

479 matter produced from marine primary production. While selective degradation/preservation can alter 

480 the source 14C signature (Hwang et al., 2010), results from the isotope mixing model are consistent 

481 with annually averaged estimates based on molecular composition (Table 3). 

482

483 Distal sources of terrestrial organic matter can be delivered via aeolian transport (Conte and Weber, 

484 2002). However, surface sediment neodymium (Nd) isotope values from Baltimore Canyon and the 

485 adjacent slope indicate that terrestrial sediment is primarily sourced from nearby riverine systems, such 

486 as the Hudson River, where surface water moves southward, advecting riverine discharge towards 

487 Baltimore Canyon and facilitating connectivity with adjacent watersheds (Ingham, 1992). Surface 

488 sediments (0-0.5 cm) in the canyon were also enriched in terrestrial-derived sources of organic matter 

489 relative to surface sediments on the slope (Supplementary Tables), demonstrating the accumulation of 

490 terrestrial organic matter in the canyons relative to the slope.  Transport of organic matter from 

491 terrestrial sources is further facilitated by the presence of low-salinity, buoyant plume shelf waters on 

492 the MAB (Churchill and Berger, 1998). This connectivity helps explain the terrestrial-derived organic 

493 matter signature in the sediment trap samples and supports the hypothesis that submarine canyons 

494 serve both as a conduit and reservoir of terrestrial organic matter to the deep sea (e.g., Tesi et al., 

495 2010).

496

497 3.3 Canyon Zonation

498 Substantial sedimentation/turbidity events prevented the collection of a complete time series for the 

499 shallow and mid-depth sediment traps, precluding a comparison amongst the three deployments. 

500 However, relative changes were detected for the period of overlap during the first two months 

501 (September – October) that each trap was deployed. At the shallow site, mass fluxes were the greatest 
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502 and 210Pb values were the lowest among the three trap sites (Table 1b), highlighting that resuspension 

503 dominates the shallow region. This is consistent with prior work demonstrating a zone of net 

504 convergence where internal tides travel up and down canyon, creating a region of elevated turbidity 

505 (Gardner, 1989a, b). Within this depth zone (~ 600 m), surface sediment samples consisted of coarse 

506 sand, small pebbles, and shell fragments at the sediment surface, presumably the result of local 

507 winnowing of the surface layer removing the fines. Bulk geochemical characteristics from the shallow 

508 and mid-depth traps were within the range observed at the deep site, indicating a mixture of marine and 

509 terrestrial derived matter throughout the canyon. This is represented by the trap material data from the 

510 shallow and mid-depth sites that plot along a mixing line, as reported above. Higher N:C ratios from 

511 the shallow-depth mooring site could suggest both greater proportion of marine-derived organic matter 

512 compared to the other sites and the dominance of fine-grained material in the deposition zones (Fig. 

513 7b). 

514

515 The relative molecular composition of the n-alkanes and sterols from the mid and shallow sites were 

516 similar to those reported for the deep site (Table 3). For example, n-C27 dominated the n-alkanes 

517 composition in the shallow and mid-depth trap sites, and cholesterol was the dominant sterol. 

518 However, the comparison between the three sediment traps also illustrates the accumulation and 

519 channeling of terrestrial organic matter farther down canyon with total n-alkane concentrations an 

520 order of magnitude greater at the deep site relative to the shallow and mid-depth sites, particularly the 

521 HMW n-alkanes (Table 2a). The hydrocarbons pristane and phytane were either below detection or at 

522 minimal concentrations at the shallow and mid-depth sites. Total sterol concentrations during the first 

523 two months were elevated at the shallow and mid-depth sites relative to the deep site, reflecting higher 

524 marine-sourced sterols exported from the nutricline (e.g., cholesterol and cholestanol). While limited in 

525 scope, the down canyon comparison captures spatial variability consistent with previously reported 

526 canyon depth zonation patterns.   In addition, relative to surface samples (0-0.5 cm) from the canyon, 

527 surface samples from the adjacent slope yield lower terrestrial contribution, and an anthropogenic 

528 component was absent from the slope surface sediment samples (Supplementary Table S4), supporting 

529 the notion that canyons may serve as a conduit of terrestrial organic matter and contaminants.  These 

530 observations reflect the interplay of hydrodynamics and geomorphology, which channel and 

531 concentrate sediment and organic matter within the canyon, leading to differences in organic matter 

532 composition in Baltimore Canyon.

533

534 4. Summary
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535 By examining a unique set of geochemical variables, this study demonstrated the relationship between 

536 particulate matter composition in the context of seasonal variation in surface water biological 

537 production and export through the nutricline in Baltimore Canyon. The sediment trap biomarker 

538 compositions, together with bulk characteristics, indicate that both terrestrial OM and marine derived 

539 OM are important food sources, suggesting that both vertical and lateral transport across the 

540 continental margin are important processes to the deposition zone of Baltimore Canyon. However, 

541 details in the temporal variability of the OM provenance reveal a larger contribution from marine-

542 derived OM in the spring, which is characterized by increased scavenging, aggregation, and sinking of 

543 fresh, recently exported OM from the upper water column during a spring bloom. Connectivity to 

544 adjacent watershed also facilitates offshore transport of “aged” terrestrial organic matter and nutrients. 

545 Results presented here demonstrate how OM content and OM provenance signature can be linked to 

546 seasonal events (e.g., surface productivity blooms), episodic events (e.g., resuspension), as well as 

547 those processes occurring permanent, such as the presence of the nepheloid layer.  Therefore, 

548 variability is a key feature influencing the deep-sea food web, with faunal composition and carbon 

549 cycling influenced by seasonal or episodic fluxes in particulate matter composition. Such deposition 

550 patterns in turn may be the greatest contributors to canyons exhibiting biodiversity and productivity 

551 maxima. With the majority of deep-sea canyons being poorly sampled, results presented here suggest 

552 that the submarine canyons of the MAB region are a key contributor to global estimates of benthic 

553 biomass and productivity in the deep sea by serving as conduits for transport of terrestrial and marine 

554 derived organic matter. 

555
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568
569 Figures
570 Figure 1

571 Multibeam bathymetry of Baltimore Canyon showing position of benthic landers (white plus sign) and 

572 mooring (white star) at the shallow (a), mid (b) and deep (c) sites. Progressive vector plots show the 
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573 cumulative movement of water at shallow (a), mid (b) and deep (c) sites, split into 60 day subsets 

574 (black lines indicating Sept-Nov, green Nov-Jan, grey Jan-Mar, red Mar-May). Grey line and circles (i) 

575 show the individual CTD casts that make up the transect along the axis of the canyon (two stations 

576 were used for water sampling, ii=NF-2012-036 and iii=NF-2012-040) as shown in Figure 3. Black 

577 triangles represent CTD casts used for water and trace element sampling (iv=NF-2012-138, v=NF-

578 2012-128, vi=NF-2012-051, vii=NF-2012-130, viii=NF-2012-149, ix=NF-2012-073). Note some 

579 stations are shown with an offset line for clarity. Inset figure shows the location of Baltimore Canyon 

580 (black box) with respect to the Mid-Atlantic Bight and neighboring states of Maryland (MD), Virginia 

581 (VA) and Delaware (DE). Contour lines show depth in meters.

582

583 Figure 2 

584 Oceanographic variables (y-axis) recorded by the shallow lander (603 m), mid-mooring (1082 m, note 

585 no turbidity sensor) and deep lander (1318 m) in Baltimore Canyon. Black or white lines represent a 

586 24-hour moving average. For the shallow and deep landers all sensors recorded at 1.5 m above bottom 

587 except for currents at 2 m above bottom, which were recorded at a 15 min interval. For the mid-

588 mooring, current data was obtained at 14 m above bottom and temperature at 9 m above bottom. 

589 Currents were recorded at a 15-minute interval. Temperature was recorded at a 5-minute interval and 

590 was resampled to a 15-minute interval to match other sensors.

591

592 Figure 3 

593 Baltimore Canyon nepheloid layer distribution along the canyon axis, derived from CTD profiles with 

594 overlaid isopycnals (kg m-3). Vertical lines show the position of CTD casts along the transect, 

595 including extreme margins in the plot (number of casts = 9). Turbidity expressed as relative Formazin 

596 turbidity units (FTU). 

597

598 Figure 4 

599 Trace element concentrations (g g-1; neodymium [Nd], lanthanium [La], aluminum [Al], and iron 

600 [Fe]) in suspended particulate matter filtered (>0.45 µm) at discrete water column depths from CTD 

601 casts in Baltimore Canyon and adjacent slope. Gray bar indicates zones of elevated turbidity derived 

602 from CTD casts.

603

604 Figure 5 
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605 Nutrient vertical depth profiles from Baltimore Canyon sampled in 2012 along a down-canyon transect 

606 for (a) nitrate, (b) phosphate, and (c) silicate (mol L-1) at four CTD stations, including NF12-036, 

607 NF12-040, N12-051, and NF12-073. Dissolved oxygen (black line) derived from the CTD sensor is 

608 shown for the Baltimore Canyon deep station (NF-12-040). Gray bar indicates depth of nutricline 

609 defined from nutrient profiles collected during the August 2012 sampling cruise. (d) Down canyon 

610 temperature (°C) profile derived from CTD casts.  

611

612 Figure 6

613 Time-series for bulk sediment measurements and molecular biomarker composition derived from 

614 ~monthly sediment trap samples deployed from September 5, 2012 to June 23, 2013. Results are 

615 shown for (a) mass flux (g m-2 d-1) and 210Pb (mBq g-1), (b) total sterol and n-alkane concentration (µg 

616 g- 1 C) and chlorophyll-a (mg g-1), (c) cadmium (Cd) and molybdenum (Mo) (μg g-1), and (d) net 

617 primary production (g C m-2 d-1; http://www.science.oregonstate.edu/ocean.productivity/index.php). 

618

619 Figure 7

620 (a) Stable isotope composition of carbon (13C; ‰) versus total nitrogen:organic carbon (N:C) ratio 

621 from the deep sediment trap (1318 m) samples. The potential sources of organic carbon (C3 vascular 

622 plants, C3 soil organic matter, heterotrophic bacteria, and marine phytoplankton) are shown to 

623 highlight mixed sources of organic matter to the deep-sea sediment samples.  The N:C ratio is plotted 

624 versus 13C rather than the C:N ratio because the N:C ratio behaves linearly in a mixing model (Goñi 

625 et al., 2003). (b) Results from the shallow (603 m) and mid-depth (1082) sites relative to the deep site 

626 for the months of overlap (Aug-Sept. 2012).

627
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Start-Date Mass Flux 
(g m-2 d-1) N (%) δ15N (‰) Corg (%) δ13C (‰) C:N 

(atomic)
210Pb

(mBq g-1)
Chl-a

(μg m-2 d-1)
6-Sep-12 6.7 0.37 5 3.61 -22.4 9.8 1159 0.9
26-Sep-12 9 0.41 5 4.05 -22.5 9.9 1141 4.3
26-Oct-12 5.5 0.41 4.9 3.64 -22.0 8.8 1243 10.5
25-Nov-12 6 0.39 4.9 4.15 -22.0 10.6 1284 3.7
25-Dec-12 7.1 0.39 5 3.74 -22.2 9.6 1184 1.9
24-Jan-13 9.1 0.43 5 3.81 -22.1 8.9 1164 5.4
23-Feb-13 4.7 0.43 4.8 4.32 -22.3 10.1 1268 6
24-Apr-13 2.5 0.41 4.6 4.36 -22.2 10.5 1514 3.1
24-May-13 4 0.42 4.3 3.95 -22.8 9.3 1417 16.1
23-Jun-13 5.4 0.4 4.8 3.75 -22.4 9.4 1296 7.4

Table 1a
Mass fluxes and bulk geochemical measurements from monthly sediment trap samples deployed at 1318 m in Baltimore Canyon, Mid-Atlantic 
Bight. 

Start-Date Mass Flux 
(g m-2 d-1) N (%) δ15N (‰) Corg (%) δ13C (‰) C:N 

(atomic)
210Pb

(mBq g-1)
Chl-a

(μg m-2 d-1)
7-Sep-12 16.5 0.39 4.9 3.73 -22.6 9.5 890 n/a

26-Sept-12 52.2 0.38 4.9 3.7 -22.2 9.7 713 n/a
Table 1b
Mass fluxes and bulk geochemical measurements from sediment trap samples deployed at 603 m in Baltimore Canyon, Mid-Atlantic Bight. 

Start-Date Mass Flux 
(g m-2 d-1) N (%) δ15N (‰) Corg (%) δ13C (‰) C:N 

(atomic)
210Pb

(mBq g-1)
Chl-a

(μg m-2 d-1)
27-Aug-12 4.5 0.42 4.6 3.85 -22.2 9.1 1107 n/a
26-Sept-12 3.9 0.36 4.9 3.21 -22.1 8.9 1115 n/a

Table 1c
Mass fluxes and bulk geochemical measurements from sediment trap samples deployed at 1082 m in Baltimore Canyon, Mid-Atlantic Bight. 



Start-Date n-C14 n-C15 n-C16 n-C17 pr n-C18 ph n-C19 n-C20 n-C21 n-C22 n-C23 n-C24 n-C25 n-C26 n-C27 n-C28 n-C29 n-C30 n-C31 n-C32 Σ CPI P(aq)

6-Sep-12 n/d n/d 0.1 n/d 0.09 0.27 0.12 n/d 0.14 0.1 0.16 0.15 0.43 0.36 0.38 0.69 0.46 0.57 0.19 0.19 n/d 4.19 2.42 0.4

26-Sep-12 n/d 0.04 0.03 n/d n/d 0.08 0.03 n/d 0.04 0.03 n/d 0.06 0.5 0.3 0.7 1.56 1.94 2.55 1.75 1.32 0.53 11.43 5.26 0.09

26-Oct-12 n/d 0.02 0.05 0.03 0.03 0.02 0.07 n/d 0.06 0.04 0.07 0.08 0.07 0.13 0.09 0.15 0.06 0.1 n/d n/d n/d 0.97 1.24 0.68

25-Nov-12 n/d 0.02 n/d 0.01 0.01 0.02 n/d 0.03 n/d 0.19 n/d n/d n/d n/d n/d n/d n/d n/d n/d n/d n/d 0.27 n/a n/a

25-Dec-12 0.07 0.08 0.06 n/d n/d 0.05 n/d n/d 0.04 0.05 n/d 0.07 0.07 0.11 0.06 0.17 n/d 0.2 n/d n/d n/d 1.03 2.33 0.47

24-Jan-13 n/d 0.08 0.07 0.04 0.04 0.08 n/d 0.05 0.07 0.06 0.05 0.09 0.07 0.13 0.07 0.18 0.05 0.22 n/d 0.07 n/d 1.38 2.69 0.43

23-Feb-13 0.02 0.06 0.06 0.02 0.03 0.05 n/d 0.03 0.04 0.03 0.05 0.05 3.67 0.08 0.03 0.09 n/d 0.09 n/d 0.04 n/d 4.41 1.63 0.5

24-Apr-13 0.02 0.12 0.1 0.04 0.06 0.07 n/d 0.03 0.08 0.06 0.04 0.05 0.04 0.07 0.01 0.06 0.01 0.07 n/d n/d n/d 0.87 1.87 0.63

24-May-13 0.01 0.01 n/d n/d 0.19 n/d n/d 0.06 n/d 0.14 0.02 0.21 0.07 0.24 0 0.27 n/d 0.37 n/d 0.19 n/d 1.59 n/a 0.45

23-Jun-13 n/d n/d n/d 0.03 0.03 0.02 n/d 0.02 0.01 0.02 0.02 0.06 n/d 0.09 0.02 0.1 0.01 0.1 n/d 0.05 0.01 0.56 7.21 0.5

7-Sept-121 n/d 0.015 n/d 0.014 0.025 0.046 0.013 0.018 n/d 0.022 n/d 0.075 0.166 0.241 n/d 0.255 0.087 0.167 n/d n/d n/d 1.11 n/a n/a

26-Sept-121 n/d n/d n/d n/d 0.026 n/d n/d 0.048 0.021 0.024 0.034 0.036 0.064 0.042 n/d 0.116 n/d 0.046 n/d n/d n/d 0.43 n/a n/a

27-Aug-122 n/d 0.008 0.004 0.007 0.018 n/d n/d 0.006 0.009 0.01 n/d 0.025 0.049 0.072 n/d 0.1 0.049 0.06 n/d n/d n/d 0.4 n/a n/a

26-Sept-122 n/d 0.006 0.005 0.008 0.019 0.007 0.008 n/d 0.006 0.009 0.012 0.02 n/d n/d n/d n/d n/d n/d n/d n/d n/d 0.07 n/a n/a

Table 2a
Concentration of total (Σ) and select n-alkane concentrations normalized to organic carbon (g g-1 C), and parameters including Carbon 
Preference Index (CPI), and the Alkane Proxy (Paq) in ~monthly sediment trap samples from the deep site (1182 m).  Note: n/d=below 
detection limit and n/a=calculation not valid due to n/d values. Paq=(nC23+nC25)/(nC23+nC25+nC29+nC31) (Ficken et al., 2000); CPI=0.5 * 
[(nC25 + nC27 + nC29 + nC31) /(nC24 + nC26 + nC28+ nC30)] + [(nC25 + nC27 + nC29 + nC31)/ (nC26 + nC28 + nC30+ nC32)] (Bray and Evans 
1961).  1Data from the shallow (603 m) trap site. 2Data from the mid-depth (1082 m) trap site. Pr = pristane; ph = phytane



Table 2b
Concentration of total (Σ) and individual sterols normalized to organic carbon (g g-1 C) in ~monthly sediment trap samples from the deep site 
(1182 m). Note: n/d=below detection limit.  1Data from the shallow (603 m) trap site. 2Data from the mid-depth (1082 m) trap site.

Start -Date coprostanol epicoprostanol 5-β-coprostanone 22-dehydrocholesterol cholesterol cholestanol brassicasterol campesterol stigmasterol β-sitosterol stigmastanol Σ

6-Sep-12 n/d n/d 0.72 1.27 3.80 1.21 2.31 0.42 1.10 1.74 1.13 13.71
26-Sep-12 n/d 0.41 0.87 n/d 0.81 n/d n/d 0.25 0.27 0.83 n/d 3.43
26-Oct-12 n/d n/d n/d 3.85 9.02 n/d 6.75 3.61 2.85 3.51 0.89 30.48
25-Nov-12 n/d n/d 0.34 0.62 2.30 0.57 0.90 0.33 0.71 1.09 0.29 7.16
25-Dec-12 n/d n/d 0.63 0.67 2.17 0.92 1.10 0.54 1.02 1.31 0.36 8.71
24-Jan-13 n/d n/d 0.55 6.15 3.01 0.95 2.79 1.05 1.62 2.90 0.58 19.61
23-Feb-13 0.12 0.23 n/d n/d 0.37 2.36 n/d 0.57 0.27 0.32 0.58 4.82
24-Apr-13 n/d n/d 0.11 n/d 0.16 0.12 n/d 0.11 0.27 0.20 0.35 1.31
24-May-13 0.13 0.18 0.21 0.94 5.44 8.37 1.44 0.35 1.18 1.52 1.58 21.34
23-Jun-13 n/d n/d 0.05 n/d 0.28 0.60 0.08 0.10 0.08 0.09 0.07 1.33
7-Sept-121

0.00 0.34 1.15 1.98 10.35 3.30 5.85 2.23 3.46 4.63 2.95 36.23
26-Sept-121

0.05 0.05 0.73 0.30 2.83 1.18 1.84 0.24 0.89 1.48 0.47 10.06
27-Aug-122

0.09 0.00 1.07 0.53 3.99 1.78 2.87 0.38 1.40 2.20 1.46 15.77
26-Sept-122

0.20 0.17 2.05 0.93 7.64 3.40 5.72 0.93 2.99 4.74 2.95 31.73



Table 3
Major organic matter sources to the sterol and n-alkane molecular signatures were investigated by calculating relative proportions of marine, 
terrestrial higher plants, and anthropogenic/petroleum contributions.  Relative contributions from natural (marine versus terrestrial) and 
anthropogenic organic matter n-alkane and sterol sources were calculated following modified designations from Pisani et al. (2013).  
Terrestrial organic matter composition of sediments was quantified using concentrations of odd-numbered n-alkanes in the C21 to C31 range as 
well as the sterols campesterol, stigmasterol, β-sitosterol and stigmastanol.  Marine components were determined using concentrations of the 
sterols cholesterol, cholestanol, 22-dehydrocholesterol, and brassicasterol as well as odd- and even-numbered n-alkanes in the C14 to C19 range.  
The anthropogenic components were determined using the sterol composition of coprostanol, epicoprostanol, and 5-β-coprostanone and the 
isoprenoid hydrocarbons pristane and phytane.1Data from the shallow (603 m) trap site. 2Data from the mid-depth (1082 m) trap site.

Start -Date %Terrestrial %Marine %Anthropogenic
6-Sep-12 40 55 6
26-Sep-12 76 10 14
26-Oct-12 36 63 0
25-Nov-12 35 60 5
25-Dec-12 40 53 7
24-Jan-13 33 64 3
23-Feb-13 38 55 7
24-Apr-13 60 32 8
24-May-13 26 71 3
23-Jun-13 40 55 5
7-Sept-121 37 56 7
26-Sept-121 37 55 8
27-Aug-122 37 59 4
26-Sept-122 31 61 8



Start -Date Al P V Cr Mn Fe Cu Zn Sr Mo Cd Cs Ba La Tl Pb Th U

6-Sep-12 58200 837 92.9 69.6 538 33600 29.7 91.4 279 0.66 0.12 4.5 449 31.3 0.51 25.9 9.31 2.05

26-Sep-12 56800 870 92 69.4 530 32700 27.5 85.7 283 0.88 0.14 4.5 415 31.3 0.5 28 9.15 2.16

26-Oct-12 55200 886 89.3 66.9 476 31900 28.3 85 298 1.1 0.15 4.4 418 30.4 0.5 26.8 8.84 2.07

25-Nov-12 57300 841 91.6 69.4 648 3 900 28.5 85.4 298 0.79 0.13 4.5 428 32.3 0.51 28.9 9.38 2.18

25-Dec-12 57000 834 91.1 68.3 696 32800 27.9 84.6 285 0.85 0.1 4.5 424 33.4 0.51 28.6 9.65 2.13

24-Jan-13 54200 872 85.2 67.5 568 31700 25 82.8 266 0.91 0.11 4.3 386 31.6 0.48 28 9.23 2.04

23-Feb-13 56200 943 91.6 73.6 501 33100 29.1 88.9 287 0.96 0.14 4.7 422 32.8 0.5 28.4 9.25 2.16

24-Apr-13 55800 948 90.7 68.2 465 32900 30.7 89.7 318 1.4 0.23 4.7 475 32.6 0.52 29.4 9.44 2.26

24-May-13 56800 859 91.4 69.1 440 33600 30.3 86 306 1.8 0.34 4.8 469 33.5 0.53 28.9 9.3 2.18

23-Jun-13 55800 877 90.9 67.4 405 32600 30 82.5 290 0.88 0.2 4.7 466 32.4 0.5 27.1 8.81 2.04

7-Sept-121 54800 858 89.8 68.4 392 32000 26.9 82.4 264 0.97 0.13 4.4 406 33.8 0.49 23.2 9.17 2.23
26-Sept-121 51900 754 82.3 62.3 424 30500 23.4 77.7 274 0.91 0.11 4.2 408 33 0.49 23.4 9.29 2.26
27-Aug-122 55500 809 90.4 66.8 447 32300 27.8 109 277 0.79 0.13 4.6 436 32.1 0.5 24.5 9.29 2.13

26-Sept-122 56600 830 91.5 69.5 439 33000 29.1 83.8 276 0.77 0.16 4.7 438 32.9 0.51 25.5 9.2 2.2

Table 4
Sediment trap trace element concentrations (µg g-1) in ~monthly sediment trap samples from the deep site (1182 m).  Al = aluminum; Ba = 
barium; Cd = cadmium; Cr = chromium; Cs = cesium; Cu = copper; Fe = iron; La = lanthanum; Mn = manganese; Mo = molybdenum; 
P = phosphorus; Pb = lead; Sr = strontium; Th = thorium; Tl = thallium; U = uranium; V = vanadium; Zn = zinc.  1Data from the shallow (603 
m) trap site. 2Data from the mid-depth (1082 m) trap site.



Start -Date
Lab ID F Modern Fm Err CRA 

(years)
CRA error 

(years) 14C (‰) 14C error 
(‰) 13C (‰)

6-Sep-12 126887 0.8526 0.002 1280 20 -153.75 2.00 -21.68
26-Sep-12 126888 0.8719 0.0018 1100 15 -134.65 1.80 -21.80
26-Oct-12 126889 0.885 0.0019 980 15 -121.57 1.90 -21.58
25-Nov-12 126890 0.8744 0.0018 1080 15 -132.12 1.80 -21.56
25-Dec-12 126891 0.8713 0.002 1110 20 -135.2 2.00 -21.57
24-Jan-13 126892 0.8805 0.0028 1020 25 -126.07 2.80 -21.59
23-Feb-13 126893 0.8754 0.0019 1070 15 -131.13 1.90 -21.73
24-Apr-13 126894 0.8703 0.0019 1120 15 -136.23 1.90 -21.76
24-May-13 126895 0.8758 0.0018 1070 15 -130.77 1.80 -22.15
23-Jun-13 126896 0.8689 0.0024 1130 20 -137.55 2.40 -21.76

Table 5
Radiocarbon results from sediment trap samples from the deep site (1182 m) with fraction modern (Fm) and Fm error (±), with modern 
defined as 1950, Conventional Radiocarbon Age (CRA) and CRA age error (years), and radiocarbon (14C; ‰) values.



Figure S1
GC-MS total ion chromatogram (TIC) of sediment trap organic matter extracted and fractionated into F1 n-alkane fraction (131-2: 10.20.2012) 
and F3 sterol and fatty alcohols fraction (131-6: 2.17.2013) extracts. a. aliphatic hydrocarbons, internal standards: 5α androstane b. fatty 
alcohol/sterol, internal standards: 5α-androstan-3β-ol.

Figure S2
Oceanographic variability in temperature, turbidity and north current speed component for the shallow lander in Baltimore Canyon across two 
time periods, a. October to November 2012 and b. March to May 2013. Note the mechanism, initially a high turbidity event is followed by 
approximately 2°C fluctuations in temperature, these spikes are associated with high current speeds.

Station Sample Type Depth (m) %Corg
NF-2012-107 Surface sediment (0−0.5 cm) canyon 283 0.4
NF-2012-114 Surface sediment (0−0.5 cm) canyon 652 0.4
NF-2012-054 Surface sediment (0−0.5 cm) canyon 1180 3.9
NF-2012-065 Surface sediment (0−0.5 cm) slope 170 0.1
NF-2012-070 Surface sediment (0−0.5 cm) slope 515 0.3
NF-2012-084 Surface sediment (0−0.5 cm) slope 990 1.1
NF-2012-091 Surface sediment (0−0.5 cm) slope 1186 1.5
Supplementary Table S1
Surface (0-0.5 cm) sediment samples collected within Baltimore Canyon and adjacent slope and respective percent organic carbon (%Corg).

Sample ID n-C14 n-C15 n-C16 n-C17 pr n-C18 ph n-C19 n-C20 n-C21 n-C22 n-C23 n-C24 n-C25 n-C26 n-C27 n-C28 n-C29 n-C30 n-C31 n-C32 Σ

NF-2012-107 0.49 1.59 0.81 0.78 0.25 1.2 0.44 1.59 1.54 1.32 n/d 0.71 n/d n/d n/d 0.61 n/d 0.39 n/d n/d n/d 11.03

NF-2012-114 1.96 n/d 3.02 2.65 1.39 2.43 n/d 6.84 4.99 4.79 5.62 13.22 19.32 38.55 44.79 68.61 51.06 71.75 34.55 49.19 14.37 437.71

NF-2012-054 0.12 0.38 0.3 0.43 0.26 0.38 0.32 1.13 0.58 0.63 0.36 0.35 n/d 0.66 0.48 1.08 n/d 0.98 n/d 0.31 n/d 8.19

NF-2012-065 7.38 7.89 4.95 3.9 n/d 4.35 n/d 5.41 5.35 n/d n/d n/d n/d 4.05 n/d n/d n/d n/d n/d n/d n/d 43.28

NF-2012-070 n/d 2.37 2.16 n/d n/d 2.13 n/d 3.59 3.46 2.67 1.74 n/d 2.41 2.76 n/d n/d n/d n/d n/d n/d n/d 23.29

NF-2012-084 n/d n/d 13.27 n/d n/d 18.81 n/d 32.49 30.48 n/d n/d n/d n/d n/d n/d n/d n/d n/d n/d n/d n/d 95.04

NF-2012-091 0.34 n/d 1.19 n/d n/d 1.1 n/d 1.88 n/d n/d n/d n/d n/d n/d n/d n/d n/d n/d n/d n/d n/d 4.51 

Supplementary Table S2
Concentration of total (Σ) and select n-alkane concentrations normalized to organic carbon (g g-1 C) in surface (0-0.5 cm) sediment samples 
in Baltimore Canyon and adjacent slope. Note: n/d=below detection limit



Sample ID coprostanol epicoprostanol
5-β-

coprostanone
22-dehydrocholesterol cholesterol cholestanol brassicasterol campesterol stigmasterol β-sitosterol stigmastanol Σ

NF-2012-107 n/d n/d n/d n/d 1.4 0.76 1.04 3.84 0.75 0.8 0.49 9.08

NF-2012-114 n/d 0.24 n/d n/d 1.47 2.98 1 2.42 1.21 1.24 n/d 10.56

NF-2012-054 n/d n/d n/d n/d 0.94 0.49 0.87 0.78 0.08 1.26 0.35 4.78

NF-2012-065 n/d n/d n/d n/d 2.6 0.87 n/d 13.1 4.39 1.5 2.13 24.59

NF-2012-070 n/d n/d n/d n/d 2.38 1.21 1.31 2.08 1.36 1.18 1.42 10.95

NF-2012-084 n/d n/d n/d n/d n/d n/d n/d n/d n/d n/d n/d n/d

NF-2012-091 n/d n/d n/d n/d n/d n/d n/d n/d n/d n/d n/d n/d

Supplementary Table S3
Concentration of total (Σ) and individual sterols normalized to organic carbon (g g-1 C) in surface (0-0.5 cm) sediment samples in Baltimore 
Canyon and adjacent slope. Note: n/d=below detection limit

Site %Terrestrial %Marine %Anthropogenic
NF-2012-107 46 50 4
NF-2012-114 91 8 1
NF-2012-054 54 42 5
NF-2012-065 40 60 0
NF-2012-070 43 57 0
NF-2012-084 n/a n/a n/a
NF-2012-091 n/a n/a n/a

Supplementary Table S4
Major organic matter sources to the sterol and n-alkane molecular signatures were investigated by calculating relative proportions of marine, 
terrestrial higher plants, and anthropogenic/petroleum contributions in surface sediment samples in Baltimore Canyon and adjacent slope.  
Relative contributions from natural (marine versus terrestrial) and anthropogenic organic matter n-alkane and sterol sources were calculated 
following modified designations from Pisani et al. (2013).  Terrestrial organic matter composition of sediments was quantified using 
concentrations of odd-numbered n-alkanes in the C21 to C31 range as well as the sterols campesterol, stigmasterol, β-sitosterol and 
stigmastanol.  Marine components were determined using concentrations of the sterols cholesterol, cholestanol, 22-dehydrocholesterol, and 
brassicasterol as well as odd- and even-numbered n-alkanes in the C14 to C19 range.  The anthropogenic components were determined using the 
sterol composition of coprostanol, epicoprostanol, and 5-β-coprostanone and the isoprenoid hydrocarbons pristane and phytane.  Note: 
n/a=Source contributions were not calculated due to non-detect sterol and select n-alkane concentrations  (Table S2). 
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