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1 Perspectives

2
3 Meiosis-like FunctionsQ1 in Oncogenesis:
4 A New View of CancerQ2

5 Ramsay J. McFarlane1 and Jane A.Wakeman1

6 Abstract

7 Cancer cells have many abnormal characteristics enabling
8 tumors to grow, spread, and avoid immunologic and thera-
9 peutic destruction. Central to this is the innate ability of
10 populations of cancer cells to rapidly evolve. One feature of
11 many cancers is that they activate genes that are normally
12 associated with distinct developmental states, including germ
13 cell–specific genes. This has historically led to the proposal that
14 tumors take on embryonal characteristics, the so called embry-
15 onal theory of cancer. HoweverQ5 , one group of germline genes,
16 not directly associated with embryonic somatic tissue genesis, is
17 the one that encodes the specific factors to drive the unique
18 reductional chromosome segregation of meiosis I, which also

20results in chromosomal exchanges. Here we propose that mei-
21osis I–specific modulators of reductional segregation can con-
22tribute to oncogenic chromosome dynamics and that the
23embryonal theory for cancer cell growth/proliferation is overly
24simplistic, as meiotic factors are not a feature of most embry-
25onic tissue development. We postulate that some meiotic
26chromosome-regulatory functions contribute to a soma-to-
27germline model for cancer, in which activation of germline
28(including meiosis) functions drive oncogenesis, and we extend
29this to propose that meiotic factors could be powerful sources
30of targets for therapeutics and biomonitoring in oncology.
31Cancer Res; 1–5. �2017 AACR.

32

33 Introduction
34 Organogenesis, tissue growth/repair, and the maintenance
35 of gametogenic germ cell pools are driven by mitotic cell
36 proliferation, where the homologous chromosomes of diploid
37 cells divide equationally, ensuring that maternal/paternal alle-
38 lic heterozygosity is maintained, as uniparent disomy can
39 cause oncogenic loss of heterozygosity (LOH). Cancers can
40 arise through dysregulation of the normal regulatory con-
41 straints that ensure high fidelity chromosome segregation
42 during development and tissue homeostasis (1). These chro-
43 mosomal segregation events differ considerably to those of the
44 first meiotic division during gametogenesis, where homolo-
45 gous chromosomes of a diploid germline progenitor cell
46 conjoin via programmed genetic recombination intermediates
47 to form a bivalent, which is ultimately resolved, culminating in
48 a reductional chromosome segregation event and "shuffled"
49 genetic material (2, 3). There is now solid emerging evidence
50 to support the concept that the inappropriate activation of
51 meiotic chromosome regulator genes in mitotically dividing
52 somatic cells results in deviations in mechanisms controlling
53 chromosome maintenance and segregation (4–9).

55Activation of Meiotic Functions
56in Cancer Cells
57In humanmales,meiosis is an integral part of spermatogenesis,
58which occurs in the seminiferous tubules of the testes (10). Many
59genes that are silent in healthy somatic tissue are specifically
60activated during the spermatogenic program, providing functions
61that modulate cellular morphologic changes and meiosis. These
62genes are known as cancer/testis (CT) genes (or cancer germline
63genes) when they become aberrantly activated in cancerous tissue
64(11–13). The proteins encoded by these genes have garnered
65interest in the field of clinical oncology as they can potentially
66serve as targets for immune therapies and expression of CT
67genes can be applied to patient stratification (for examples, see
68refs. 14–16). However, there is emerging evidence that they play a
69functional role in initiating and maintaining oncogenesis. The
70requirement for tumor initiation is eluded to by the finding that l
71(3)mbt brain tumor formation in Drosophila required the activa-
72tion of germline genes (17), a gene activation profile that is also
73found in many human cancers (18). Indeed, this has led to the
74proposal that a key feature of oncogenesis is the cellular switch
75from a specific somatic designation to the acquisition of a germ-
76line cell–like state, the so called "soma-to-germline transition,"
77which reflects the functional activation of germline-specific genes
78tomeet the needs of the evolving oncogenic process in a stage- and
79environment-specific context (18).
80Following on from this, a number of CT genes have been
81demonstrated to play a role in various aspects of tumor devel-
82opment,maintenance, and spread (for examples, see refs. 19–30),
83including the fostering of genome instability, a driver of
84cancer evolution (24). However, given that the normal function
85of many CT genes in spermatogenesis is unknown, it remained
86unclear whether proteins that normally specifically orchestrate
87meiotic chromosome segregation events (such as interhomolog
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90 association/recombination and sister centromere monopolarity)
91 contribute to maintenance and/or development/progression of
92 cancers. A screen for a subclass of CT genes that are specifically
93 associatedwithmammalianmeiotic spermatocytes revealed a few
94 genes encoding functions associated with meiotic chromosome
95 dynamics, such as the gene encoding the meiotic recombination
96 hotspot activator PRDM9 and the meiosis-specific cohesin genes
97 RAD21L1 and SMC1b (31, 32). Meiotic chromosome regulator
98 genes have been previously reported as CT genes (4–7), but only
99 now is robust evidence starting to emerge to indicate that these
100 so called meiCT (meiotic cancer testis) genes (a specific subgroup
101 of the CT gene family) have an important influence on cancer
102 chromosome biology. Greenberg and colleagues found that
103 two meiosis-specific factors, MND1-HOP2, which are normally
104 required to bias meiotic recombination down an interhomolog
105 pathway (instead of inter-sister chromatid repair), function in
106 cancer cells to assist utilization of an alternative lengthening
107 of telomeres (ALT) mechanism in the absence of telomerase
108 reactivation (refs. 33, 34; Fig. 1A). This is dependent upon the
109 inherent ability of these factors to stimulate non-sister chromo-
110 some interactions. The ALT pathway operates via a recombina-
111 tion-mediated mechanism in which, in the absence of normal
112 telomerase-mediated elongation, telomeres behave like a broken
113 chromosome end, serving to stimulate RAD51 recombinase-
114 mediated strand invasion of an uncapped telomere into a non-
115 sister telomere to enable the invading end to serve as a substrate
116 forDNA replication–dependent de novo telomere elongation (35).
117 This phenomenon can not only help drive tumor formation but
118 also enables tumor cell proliferative activity and is likely to
119 contribute to tumor cell evolutionary potential (36, 37), although
120 this latter point requires experimental exploration.
121 The identification of the role of MND2-HOP1 in ALT was not
122 the first demonstration of meiotic genes driving chromosomal
123 dynamics in cancer cells. During meiosis in most eukaryotes (not
124 all) a proteinaceous, ladder-like structure of poorly defined func-
125 tion, termed the synaptonemal complex (SC), forms between
126 paired homologues to mediate synapsis (3). Miyagawa and

128colleagues demonstrated that, when aberrantly produce in mitot-
129ically dividing cells, the meiosis-specific SC protein SYCP3
130impairs recombination by disrupting the function of the tumor
131suppressor recombination regulator BRCA2 (Fig. 1B; ref. 38);
132moreover, SYCP3 expression in cancer cells drives ploidy changes
133and is thus a key example of a meiotic chromosome regulator
134directly influencing chromosomal segregation in cancer cells (38).
135SYCP3 is thought to form a component part of the SC lateral
136elements (linear substructures of the SC). Although the exact role
137of SYCP3/lateral elements is unclear (39), it is likely that they
138provide a structure-induced feature, such as chromosome com-
139paction stress, needed for chromosomal cross over control (2, 3);
140this is direct evidence that a meiotic recombination–associated
141protein canmodulate genomemaintenance/segregation in cancer
142cells. Evidence for themodulation of homologous recombination
143repair in cancers by SC-associated factors is extended by the
144finding that elevated expression of the CT gene HORMAD1
145(40), which is required for SC formation and meiotic recombi-
146nation control (41, 42), alters DNA repair pathways in triple-
147negative breast cancers, and sensitizes them to homologous
148recombination–associated therapies (43).
149There are other examples of activation of meiotic recombina-
150tion regulators contributing to cancer cell survival. The meiosis-
151specific RAD51 ortholog DMC1 is activated in glioblastoma and
152it contributes to proliferative potential and genotoxic stress recov-
153ery (44). In addition, during meiosis, interhomolog recombina-
154tion is initiated by the type II topoisomerase-like activity of the
155SPO11–TOPVIBL complex, which generates a DNA double-
156strandbreak in oneparticipating chromatid (45–48). Recentwork
157in mice has demonstrated that the mammalian-specific gene
158Tex19.1 is required to promote normal levels of these meiotic
159recombination–initiating events (49). The human ortholog,
160TEX19, normally has expression restricted to the testis and embryo
161stem cells, but is also widely activated in cancer cells (31);
162importantly, this expression is required in a number of distinct
163cancer cell types tomediate proliferation and cancer stem-like cell
164self-renewal (50). While Q7the mechanism of action of TEX19 in
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Pseudomeiotic chromosome
segregation functions drive oncogenic
genomic dynamics. The schematic
represents example models for
proposed pseudomeiotic functions in
mitotically diving cells that modulate
chromosome dynamics to serve the
oncogenic program. Activation of
MND1-HOP2 (A; left; refs. 33, 34),
SYCP3 (B; middle; ref. 38), and REC8
(C; right; 63, 64) drive alternative
lengthening of telomeres, disrupt
repair recombination, and generate
loss of heterozygosity (LOH) by
reductional segregation, respectively.
BIR, break-induced replicationQ6 .
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167 cancer cells remains unknown, this work further demonstrates the
168 functional requirements diverse meiotic chromosomal modula-
169 tors, including regulators of meiotic recombination initiation, in
170 oncogenesis.
171 This emerging field has now taken on a new player, the fission
172 yeast. For many years, the fission yeast has provided an excellent
173 experimental model in which to demonstrate key features of
174 meiotic chromosome dynamics, from meiotic recombination
175 hotspot activation (51, 52) through to the control of meiosis I
176 centromericmonopolarity (53, 54).Normalmeiosis in thefission
177 yeast requires the induction and commitment of a number of
178 "tightly" meiosis-specific genes following meiotic commitment
179 (55); for example, rec8, a gene encoding ameiosis-specific cohesin
180 component (56). During mitotic proliferation, these genes are
181 suppressed at the transcriptional and posttranscriptional levels
182 through an RNA interference- and exosome-dependent pathway
183 controlled by the Mmi1 protein (57–62). Dysregulation of the
184 Mmi1 pathway in mitotically dividing cells results in inappro-
185 priate levels of meiosis-specific transcripts such as rec8 mRNA
186 (59). Recently, Grewal and colleagues noticed that Mmi1-defi-
187 cient mitotic cells (with aberrant levels of meiotic mRNAs)
188 exhibited high levels of chromosome mis-segregation events in
189 mitotically dividing diploid cells, including high levels of uni-
190 parent disomy (UPD; ref. 63). They extended this to demonstrate
191 that UPD, which can drive LOH in oncogenesis, could also be
192 induced by overexpressing only the rec8 meiotic cohesin gene in
193 mitotically dividing diploid cells (63). Rec8 is required inmeiosis
194 I for centromere monopolarity, which normally drives the reduc-
195 tional association of sister centromeres on the meiotic spindle
196 (54). Grewal and colleagues demonstrated that the expression of
197 rec8 could generate high levels of UPD associated with mitotic
198 reductional segregation of homologues in diploid cells. This
199 indicated a direct meiosis-like (pseudomeiotic) behavior of chro-
200 mosomes following activation of just a single meiotic cohesin
201 gene (63) (Fig. 1C). While it has been previously suggested that
202 oncogenesis might require, or be enhanced by, the activation of a
203 wide scale soma-to-germline transcriptional program, this sem-
204 inal finding in fission yeast opens up the possibility that the
205 activationof only a singlemeiotic regulator can alter chromosome
206 dynamics in such a fashion as to potentiate an oncogenic trans-
207 formation. Extrapolating this observation to human cells might
208 be speculative in nature, but the relevance of this finding in fission
209 yeast to human cancers is an interesting and important question.
210 The work in fission yeast is not, however, the first inference of a
211 function for this meiotic cohesin in cancer progression. Human
212 REC8 has been shown to be present in endopolyploid TP53-
213 deficient tumor cells induced by ionizing irradiation (64). It was
214 previously proposed that REC8 functions in these cells to induce
215 pseudomeiotic chromosome segregation events that enable them
216 to survive genotoxic treatment, which might infer REC8 (and
217 potentially other meiotic factors) can drive therapeutic resistance
218 in tumors (64). A screen for human CT genes specifically asso-
219 ciated with meiotic spermatocytes did not identify REC8,
220 although it did identify other meiosis-specific cohesin genes,
221 RAD21L1 and SMC1b (31). Interestingly, however, that study
222 found evidence for widespread expression of REC8 in nonmeiotic
223 somatic tissue (obtained post mortem; ref. 31). While it is
224 unknown whether this REC8 expression resulted in the produc-
225 tion of REC8 protein in these somatic tissues, others have indi-
226 cated REC8 is present in noncancerous cultured cells (9); this
227 might suggest that terminally differentiated human cells do not

229have such a tight requirement to constrain expression of meiotic
230genes as actively dividing cells, such as cultured fission yeast cells
231(i.e., there is no need for a strict Mmi1-like system in terminally
232differentiated cells). Given that such cells are largely nonproli-
233ferative in adult somatic tissue, it is assumed that expression of
234genes such as REC8 would have little/no influence on ploidy
235[although cohesins have been implicated in other processes, such
236asDNAdamage recovery and transcriptional control; refs. 65, 66].
237So, it might be the case that nonproliferative, terminally differ-
238entiated cells do not require an Mmi1-like activity to degrade
239meiotic transcripts as cells can tolerate these mRNAs due to them
240being functionally inert, possibly even remaining untranslated.
241This said, themeiosis-specific cohesion geneRAD21L1has expres-
242sion tightly restricted to the testis in humans (31); interestingly,
243production of an ectopic GFP-fused Rad21L1 in mitotically
244dividing murine primary fibroblasts increases adjacency of
245homologous chromosomes, a clear pseudomeiotic activity with
246oncogenic and tumor evolutionary potential (67).

247Pseudomeiotic Functions Distinguish the
248Soma-to-Germline Oncogenic Model from
249the Embryologic Model of Oncogenesis
250Cancers, or at least the so called cancer stem-like cells within
251tumors, have long been thought of as being embryo-like, con-
252tributing to a long established embryologic theory of cancer,
253which espouses the view that tumors have extensive embryo-like
254characteristics (e.g., cellular self-renewal and differentiation
255capacity with some cancer cells capable of differentiating to give
256rise to the major germline cell layers; see ref. 8 and citations
257therein). CT genes contribute to a wide range of these embryonal
258cell–like processes, including an ability to migrate, extensive
259proliferative potential, and change cellular morphology (13).
260However, embryonic cells in normal embryo development exe-
261cute these characteristics and developmental changes in a highly
262orchestrated and temporally controlled fashion, with cascades of
263gene expression regulation at the heart of this process. Impor-
264tantly, during embryogenesis, all cells, from the zygote on, main-
265tain ploidy and avoid mutational genetic change. Indeed, early
266embryo stem cells have evolved distinct genome maintenance
267pathways to ensure this, and to avoid excessive germline muta-
268tions (68, 69). Cancer cells differ considerably in these core
269features. For example, gene expression regulation does change,
270but it is not done in a programmed and preordained temporal
271fashion, as would be the case during embryogenesis. Rather,
272tumor cells have the capacity to undergo a relatively rapid geno-
273mic and epigenetic evolution over time in response to the imme-
274diate requirements and pressures of the tumor/tumor cells (36,
27537, 70). Indeed, tumor cells deviate considerably from the normal
276cellular constraints that control embryogenesis, such as apoptosis
277and telomeric regulation. Therefore, the ability for tumor gen-
278omes to evolve is a fundamental distinguishing feature that
279differentiates these cells from all embryonic cells. The new find-
280ings that indicate key features of oncogenic genomic evolution,
281namely altered DNA repair, centromeric polarity control, and
282chromosomal end protection (Fig. 1), are all potentially modu-
283lated by pseudomeiotic functions, strongly suggesting that mei-
284otic factors play a fundamental role in distinguishing oncogenesis
285from embryogenesis. This would mean that the embryologic
286theory of cancer, in which cancers mimic cellular behavior in
287embryogenesis, appears too restrictive. We postulate that a more

Oncogenic Meiosis-like Functions
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290 appropriate viewpoint is simply to state that cancers undergo a
291 degree of soma-to-germline transition, which can encompass
292 embryo development–like and gametogenic-like features, but
293 does not mimic embryogenesis per se. The functions that become
294 activated might be inter-related, but they are simply activated on
295 the basis of the evolutionary drivers/requirements within a
296 tumor/tumor cells located within distinct environmental con-
297 texts, and are not part of a rigid, defined embryo-like program for
298 tumor development.

299 Concluding Remarks
300 We speculate that the importance of pseudomeiotic functions
301 does not lie simply in conferring/enhancing the evolutionary
302 capacity of a tumor/tumor cell, but that they can also potentially
303 provide single event initiator capability, as illustrated by the
304 finding that activation of SYCP3 can alter BRCA2-mediated DNA
305 repair (38) and rec8 activation (ref. 63; infission yeast, at least) can
306 drive abnormal reductional segregations. Thus, activation of
307 pseudomeiotic functions/meiCT genes can not only serve in
308 tumor evolution and maintenance, but might also be an impor-
309 tant single first step oncogenic initiator that does not require a

311genetic change [i.e., can arise due to epigenetic/misregulated gene
312activation in the absence of genome sequence alteration (70)].
313Importantly, the finding that these meiotic factors can contrib-
314ute to tumor maintenance, and potentially to tumor cell thera-
315peutic resistance by driving rapid tumor evolution,marks them as
316potential cancer-specific drug targets. This makes the study of
317meiosis andmeiotic processes in awide range ofmodel organisms
318of importance not only for elevating our basic understanding of
319life on earth, but also because it could reveal new features of
320exceptional importance in clinical oncology.
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