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CORAL BLEACHING AND MORTALITY IN THE CHAGOS ARCHIPELAGO TO 2017 

 

 

CHARLES SHEPPARD1*, ANNE SHEPPARD1, ANDREW MOGG2, DAN BAYLEY3, 

ALEXANDRA C. DEMPSEY4, RONAN ROCHE5, JOHN TURNER5, and SAM PURKIS6 

 

 

ABSTRACT 

 

The atolls and coral banks of the Chagos Archipelago (British Indian Ocean Territory) in the 

central Indian Ocean were severely affected by the El Niño Southern Oscillation (ENSO) thermal 

event that started in 2015 and which lasted for nearly two years. On these reefs, coral mortality 

reduced scleractinian coral cover from 40%–50% to <10% and commonly to only about 5% in water 

less than 15m depth. The three-dimensional structure of the reefs was significantly reduced as a result, 

and the prolonged warming almost eliminated soft corals. Most atolls of the archipelago are 

uninhabited, so any changes are driven by broad environmental changes rather than by direct, local 

anthropogenic effects. Coral cover was first measured in 1978, temperature loggers have recorded 

water temperature at various depths for the last 11 years, and the results of the recent warming event 

are placed in this context. Over this time, cover has declined severely along with a general rise in 

water temperature of one-third of a degree Celsius on ocean reefs and by more than one-half of a 

degree Celsius in lagoons. Major fluctuations of coral cover caused by warm episodes have 

sometimes but not always coincided with ENSO events and have occurred on top of the increasing 

trend in background temperatures. Juvenile coral populations have also recently severely declined 

following the mortality of the adults. Estimates of calcification suggest a marked reduction, from a 

state of vigorous reef growth that had not long recovered from the earlier severe warming event of 

1998, to a state of net erosion. Predictions suggest that recurrences of mass mortalities will take place 

too frequently for any significant recovery of reef health in these atolls by the late 2020s. 

 

Keywords: Chagos Archipelago, coral reefs, ocean warming, atolls, coral bleaching, sea temperature 

 

 

INTRODUCTION 

 

The Chagos Archipelago consists of five atolls with islands and numerous submerged banks in the 

British Indian Ocean Territory, central Indian Ocean (Figure 1). Only the southernmost atoll Diego 

Garcia is inhabited, supporting a military facility on its western side. The other atolls became 

uninhabited variously in the 1930s or 1970s, following an era of coconut plantations that lasted nearly 

two centuries. 

The archipelago is located at a critical geographical position for species movements, being at a 

‘crossroads’ between the east and west halves of the Indian Ocean, and it serves as a stepping stone, 

refuge and reservoir in the larval transport pathways of many species (Sheppard et al., 2013: 227). Its  
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Figure 1. Map of Chagos atolls and 

sampling locations. All atolls have been 

examined according to irregular logistical 

possibilities. Data from all atolls are used in 

discussion of cover since 1996. In 2017 the 

survey was confined to the northern atolls 

only where red lines point to the ocean-

facing reef sites focussed upon here. 

Surveys of coral cover, juveniles and the 

photo transects of ocean-facing reefs were 

undertaken in 2017. Green dots mark sites 

where the data loggers were recovered in 

2017. (Numerous other sampling sites and 

loggers exist and continue around central 

and southern atolls but are not marked here 

for clarity.)  For Diego Garcia, the 

temperature loggers (green dot) were 

recovered in November 2016, and the red 

line shows were juveniles were also counted 

in 2012.  

 

 

 

 

 

 

 
 

 

key location caused Veron et al. (2015: 9) to call it the “Chagos Stricture” with regard to Indian 

Ocean marine species distributions. Before the present El Niño Southern Oscillation (ENSO) thermal 

event (hereafter called ‘warming event’) that started in 2015, the 60,000 km2 of shallow substrate of 

the Chagos Archipelago contained about half of all reefs in the Indian Ocean that remained in good 

condition (fig. 8 in Sheppard et al., 2012).  

Recognition of its biological importance caused the entire area to the 200 nautical mile boundary 

to be declared a Marine Protected Area in 2010. However, because it has been mainly uninhabited 

(apart from the southern atoll Diego Garcia) since the early 1970s and has been a virtual exclusion 

zone since then, it has been a de facto protected area for about 50 years. As such, the Chagos 

Archipelago fulfils all the criteria shown by Edgar et al. (2014) for a valuable MPA, as well as those 

recently enumerated by Roberts et al. (2017) for aiding mitigation of climate change. The present 

condition of reefs of Chagos in today’s era of accelerating climate change (IPCC, 2014) is therefore of 

great importance.  

One reason for the archipelago’s scientific importance is that, because of its lack of human 

population, it experiences minimal direct or local impacts from fishing, sewage, industrial effluents or 

shoreline alterations. Thus, any ecological changes it experiences are likely to be mainly or only those 

caused by major or global environmental perturbations, including the increasing trend in water 

temperature which is tied to global climate change factors and to ENSO oscillations. Importantly also, 

these reefs further demonstrate that there is a distinction, usually overlooked, between the different 

sets of factors that might initially kill corals from those which might then inhibit recovery once 

warming has abated (Ateweberhan et al., 2011, 2013). Many areas around the world including Chagos 

showed similarly severe coral bleaching and mortality after the severe warming event of 1998, but 

many of those which had ongoing, direct and local impacts recovered only slowly or not at all, while 

the reefs of Chagos, and others that had minimal local impacts, recovered their primary reef builders 
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after about seven years and had regained a full canopy of large framework Acropora after 7–10 years 

(Ateweberhan et al., 2013; Sheppard et al., 2012). The reefs therefore provide information not only on 

effects of ocean warming on coral reefs in the absence of any confounding local factors such as 

pollution and over-extraction of resources, but also of what factors are important to subsequent 

recovery.  

An island-based research expedition visited the atolls in 1978–1979, followed by ship-based 

research visits to the area at irregular intervals since 1996. Data on coral cover have been obtained 

intermittently over this time, showing progressive changes (Sheppard et al., 2012, 2013). In addition 

to these surveys, numerous temperature data recorders have been deployed at various depths to 25m 

since 2006, which have helped to track the progress of temperature trends over the past decade. Here 

we focus on the responses to the long 2015–2016 warming event but also bring together previous 

incremental surveys to show broad changes in coral cover resulting from bleaching, from the first 

structured recordings in this area until the present day. This long-term view is intended to provide 

context to the consequences of the recent warming, which has been particularly severe and prolonged 

(NOAA 2016a). There have been few other accounts to date documenting the magnitude and 

ecological effects of this ENSO warming event on coral reefs, and these mostly discuss its physical 

parameters (e.g., Heron et al., 2016), a notable exception being that of Hughes et al. (2017) regarding 

a large survey on the Great Barrier Reef which lost a large proportion of its corals.  

 

 

METHODS 

 

Coral Survey Methods 

 

Figure 1 shows the locations across the atolls where various types of sampling were undertaken. 

Our principal survey methods in 2017 were similar to those used in all years since 1996 (Sheppard et 

al., 2012, 2013), where the intention has been to build up an increasing time series of observations. 

The same observers performed the measurements and counts in all years. In brief, coral cover was 

measured by eye within quadrats of side 0.5 m, coupled with eye and video observations of much 

larger extents at each site. The sites include lagoons and ocean-facing slopes. To be consistent with 

earlier reports we focus mainly on ocean-facing sites, but include lagoons where illustrative, and we 

state when data are restricted to some atolls only. Measurements of coral cover were taken at intervals 

of 5m from 5m to 25m depths, as in all preceding years. Each time several hundred quadrats were 

measured, with a total of over 600 quadrats measured in the survey of 2017. Data from 1978 is also 

incorporated for coral cover analysis; this used a line transect method which was not replicated. 

For the 2015 survey, ten-minute video sequences were recorded across 5m depth intervals from 

5m to 25 m. Scale was provided by two 638 nm (red) wavelength lasers mounted below the camera to 

project dots 10cm apart. In addition, approximately 80 wide-angle habitat images were recorded 

randomly on each dive by a camera with a red filter, recording at 30-second intervals. Fifty random 

frame grabs from each depth and site were imported into Coral Point Count (CPCe, Kohler and Gill, 

2006) and overlaid by 16 randomly generated points. The substrate and benthic life form under each 

were collated into Excel in CPCe for analysis.  

In 2017, large-scale digital model reconstructions of the reef surface were created using ‘Structure 

from Motion’ photogrammetry (Westoby et al., 2012) at six shallow (5–10m) sites across the 

Northern atolls. Wide angle HD images were collected at approximately 2 meters above the sea floor 

using cameras set to a capture rate of 2 Hz. Filming followed a lawn-mower pattern to facilitate 

maximum overlap between images following Burns et al. (2015). These resulted in an approximately 

400 m2 planar area 3D reconstruction, with known values of scale, orientation and depth, enabled 

through use of an in situ spirit level and compass. Scaling error through extrapolation was minimised 

through the placement of markers throughout the reef area of interest.  

Juvenile corals were counted, defined here as those less than 15 mm in longest dimension. This 

size range was chosen as being most likely to include only newly settled colonies less than about one 

year old. Most of those recorded were in fact considerably smaller, with only the fast growing 

Acropora being at or near the 15 mm limit. Large 10cm-diameter magnifying lenses aided methodical 

examination of all 600 quadrats. Juveniles had been counted in earlier years also, in approximately 
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300 quadrats of 25cm side on ocean-facing reefs in Diego Garcia in 2012 and in a slightly lower 

number of quadrats at several atolls in 2013. All results are expressed as numbers per m2 of hard 

substrate that was not occupied already by coelenterates or sponges. To assess the accuracy of our 

estimates of juveniles, fluorescent photogrammetry was conducted at Peros Banhos Atoll in 2017, 

where fluorescing juveniles were counted in areas of substrate roughly 600–700cm2 in size, in high 

detail. Images were photographed using a 450 nm wavelength pass filter and illuminated using a Sea 

and Sea YS-02 (Nightsea) strobe with a 450nm wavelength excitation filter. 

 

 

Temperature Measurements in Chagos at Different Depths 2006-2017  

 

A series of temperature loggers (Tempcon, Inc.) have been deployed across the archipelago at 5m, 

15m and 25m depths, on various ocean facing slopes and lagoon slopes. These recorded ambient 

temperature at two hour intervals, and have been collected and replaced as opportunity allowed, 

usually at intervals of 1, 2 or 3 years. These were initially placed at all three depths on each transect 

across several atolls. Overall, the recovery success was about 75%, though it was found that those 

placed at 5m on ocean slopes were more commonly lost, effectively ending those shallow series. 

Others were lost due to various factors such as reef erosion and fish bites on plastic cable ties. A few 

series continued throughout the time span from 2006 to the present, while others have missing 

intervals during this time. Three representative series are included. 

 

 

Sea Level and ENSO 

 

Relative sea level data from the tide gauge at Diego Garcia were accessed in September 2017 

(http://uhslc.soest.hawaii.edu/data/: Diego Garcia is site number 104) and are plotted. Data are 

‘research grade’, using a combination of pressure sensor, radar and float sensor with encoder (IOC 

2017), though the two most recent years shown are unverified ‘fast delivery’ data at present. The 

trend is matched with the Multivariate ENSO index (MEI) for the same period (Wolter and Timlin, 

1998; http://sealevel.colorado.edu/, accessed September 2017) and its relationship with water 

temperature is also explored. 

 

 

RESULTS 

 

Coral Cover 

 

In 2017, corals were seen to have experienced very heavy mortality from the 2015–2016 warming 

event, especially in water shallower than about 15m depth. Figures 2 and 3 from exactly the same site 

in Salomon Atoll illustrate this mortality. Figure 4 summarizes scleractinian coral cover over the full 

time series from 1979 to present, with each line showing cover at 5m depth intervals to 25m. This 

uses data on ocean facing reefs only for consistency of comparison between years. The consequences 

of the recent warming are clear. The Multivariate ENSO index is also displayed. The lines in the 

earlier half of the series of coral cover measurements are displayed as dashed because no sampling 

was done between 1979 and 1996, and it is likely that the decline in cover during that period was not 

smooth but was episodic or stepped as is seen from 1998 to present. The pink bars in Figure 4 show 

the alignment of the known, most severe warming events with coral cover. The reductions in cover 

during the two most recent events in 1998 and 2015 are clear, and possibly the two strong ENSO 

events earlier during the period when no measurements took place had broadly similar effects. During 

the most recent two decades, the recovery after 1998 lasted for about the next 14 years, until the 

warming that started in 2015. A dip in coral cover in 2014 has been attributed to a reduction mainly in 

tabular Acropora corals, caused by diseases and senescence; further details of this recovery during the 

period 1998 to 2015 are given in Sheppard et al. (2012, 2013).  

http://uhslc.soest.hawaii.edu/data/
http://sealevel.colorado.edu/
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Figure 2. Western facing ocean reef on Salomon Atoll in 2006, dominated by the table coral Acropora cytherea. 

Location is southern tip of Isle Anglas, 12–15m depth. 

 
 

 

In April 2015, live scleractinian coral cover remained over 40%. Some corals appeared pale in 

colour but there was no detectable mortality. One month later in May 2015, however, a resurvey 

showed (Figure 5) that about 30% of corals were bleached to varying extents at all depths measured 

(Figures 6, 7). The affected colonies mostly appeared to be alive with a cover of transparent tissue. 

The survey carried out the following year in 2016 showed that high mortality had occurred. In 2017, 

the coral cover data show that further mortality had taken place, leaving a very low coral cover of 

usually 5%–15%. The error bars are small, showing the near-universal condition in these northern 

atolls, and some sites contained almost no living colonies at all in shallower depths. In addition, there 

were almost no surviving soft corals on the reefs shallower than about 15m depth. 

The extent of damage to coral cover seen over a large scale affected the reef topography as well. 

Ortho-rectified image mosaics are shown for two representative locations in the northern atolls of 

Peros Banhos and Salomons (Figures 8, 9). These show an almost complete die-off of living corals at 

the 5–10m depth band, with one site showing only 2.3% live coral cover across a 200 m2 planar reef 

area. Results show a severe reduction of the 3D structure of the reef that is so important to 

maintaining habitat and species diversity.7 

Following the 1998 mortality, several opportunistic species, notably the tabular Acropora 

cytherea, rapidly dominated most reefs over a fairly broad depth span between 5–20m depth 

                                                           
7 Scalable orthomosaics of six additional sites can be obtained from A.M. on request (Andrew.Mogg@sams.ac.uk), as can 

cm-scale photogrammetric models using the method of Graham and Nash (2013) covering a total of 8,926 m2 over 16 sites 

for greater analysis of complexity, coral coverage and carbonate production. 
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Figure 3. The same ocean reef on Salomon Atoll as in Figure 2, taken in 2017. 

 
 

 

(Sheppard et al., 2013). Whereas cover took just a little more than a decade to recover after 1998, 

diversity remained conspicuously reduced for much of this time. In the years following 2012, the 

tabular corals, many at maximum diameter over 1.5 m, suffered mortality from diseases, notably 

white band disease, natural senescence and bioerosion. These declined significantly (Wright, 2016), 

allowing a more diverse assemblage of larger colonies to develop. All species were seen to be affected 

in 2017. 
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Figure 4. Coral cover values of all combined sites in the archipelago on ocean-facing slopes, with time. Each 

line is a different depth. Error bars are std. errors. For the Multivariate ENSO Index, data is taken from 

https://www.esrl.noaa.gov/psd/enso/mei/table.html. Between 1978 and 1996, where no measurements took 

place, the lines are broken because it is unlikely that their slopes are smooth in reality. The pink vertical bars 

mark the most notable warming events. The two rightmost bars show a good alignment with massive coral 

declines. The two leftmost pink bars marked with ‘?’ show where the cover might likewise have declined in a 

stepped manner.  

 

 
Figure 5. Coral cover in various depth spans on Peros Banhos Atoll in May 2015,  with the proportion that are 

bleached shown in the lower, white part of each column. 

https://www.esrl.noaa.gov/psd/enso/mei/table.html
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Figure 6. Scene in Peros Banhos Atoll at 15m depth, in May 2015 showing several bleached table corals. Photo 

Derek Manzello/Khaled bin Sultan Living Oceans Foundation 

 

 

Figure 7. Quadrat for measuring proportion of bleached corals, 15m depth, Peros Banhos Atoll, in May 2015. 

Photo Ken Marks/Khaled bin Sultan Living Oceans Foundation 
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Figure 8. Typical broadscale benthic coral coverage in 2017 at 5m within Ile Diamant lagoon, Peros Banhos 

Atoll. Imagery derived from SfM photogrammetry, with the image equivalent to a surface area of ~250 

m2. Sparse Porites colonies are evident, along with a pronounced covering of Halimeda algae (dark green). 
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Figure 9. Typical broadscale benthic coral coverage in 2017 at 10m on Ile Takamaka's exposed ocean-facing 

slope, Salomon atoll. Imagery derived from SfM photogrammetry, with the image equivalent to a surface area  

of ~650 m2. Sparse Porites colonies are evident, along with sheets of the eroding sponge Cliona (dark patches). 

 
 

 

Water Temperature Trends 

 

Logger sites record a small increase in water temperature over time; the three longest time series 

are shown in Figure 10 a–c. On one western ocean-facing reef in Diego Garcia the simple line of best 

fit showed a rise of 0.28C over the 11-year span of instrument deployments, while in the relatively 

large, open and well mixed lagoon of Peros Banhos (Figure 10b), where depths reach 60 m, the 

increase at 15m depth was 0.36C over this same period. In the much smaller, shallower lagoon of 

Salomon Atoll (Figure 10c), which has much more restricted water flow, the rise was greater, at 

0.52C, over the shorter time period from 2009. These rises are similar to, or are greater than, many 

examples now being cited around the world (NOAA, 2016b).  

On ocean-facing reefs in Chagos atolls including Diego Garcia (Figure 10a), a simple 

interpretation of average rise is greatly complicated by the fact that a deep, cold-water thermocline 

periodically moves vertically into the depth zones measured here (Sheppard, 2009). This happens 

markedly during the warmest part of the year; temperatures plunge by 6–8°C in a cyclical manner, 

with each cold cycle lasting 3 to 4 days. This pattern was observed over all 11 years of measurements, 

with some years showing this more than others with no apparent periodicity. Lagoons do not show 

these temperature plunges.  
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Figure 10 (caption on next page) 
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Water temperatures are further examined by their exceedances over time above a fixed value, in a 

way analogous to degree heating weeks (Liu et al., 2003; Strong et al., 2004). The peak temperature 

that resulted in the mass mortality in 1998 as recorded from satellite information was 29.5° C. This 

value is selected here initially as a threshold for determining the numbers of days each year which 

exceed bleaching levels (Figure 11), because the duration of any raised temperature is as important as 

the temperature itself for causing bleaching and mortality. In all cases, higher temperatures are far 

more common after 2015 than during the preceding decade. For the ocean facing reef slope in Diego 

Garcia, the number increased from about 1%–7% of days for most of the recorded span from 2006, to 

nearly 18% of days in both 2015 and 2016. In the two lagoons, these increases were more marked; the 

percentage of days in 2015 and 2016 that exceeded 29.5°C in the more enclosed Salomon lagoon was 

more than 50%.  

Consequences of warmer water became evident in Salomon lagoon even before 2015, however. 

The lagoon is shallower than 30 m, is relatively enclosed, and its bed was covered in corals, mostly 

leafy forms such as Echinopora lamellosa, Porites rus and Pachyseris (e.g., Schlager and Purkis, 

2013). In March 2013, the corals on the lagoon floor were found to be almost completely dead (Figure 

12, photo), and only those shallower than about 5m depth, including Acropora and Porites, were still 

largely unaffected. Coral skeletons were still in growth position, so mortality had occurred relatively 

recently, presumably during the previous warm season of 2012–2013. An analysis by calendar year 

had shown that 2012 was significantly warmer than the preceding few years in terms of annual mean 

temperature (Figure 12, histogram) and, as can be seen from Figure 11, the period 2012–2013 was the 

first time that the proportion of days over 29.5oC exceeded 20% in Salomon lagoon. 

The above measure differs from the Degree Heating Weeks (DHM; 

https://coralreefwatch.noaa.gov/satellite/index.php) metric for several reasons. In DHW the reference 

temperature is the climatological mean of nighttime satellite-derived sea surface temperatures of a 

prior 30-year period, approximating to a threshold bleaching temperature. In this study the reference 

is the temperature known to have killed corals in 1998. DHW thresholds are surface temperatures, 

while our temperature loggers were located at 5m and/or 15m depth. Given the upwelling-driven 

temperature plunges already noted, our in situ measurements spanning full-day observations are 

considered more relevant to corals on ocean-facing reefs.  
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. (previous) Water temperatures from three different atolls where relatively long series were obtained. 

(a) west facing ocean side, Diego Garcia 15m depth with rate of temperature rise of 0.28C over 11 years; (b) 

Lagoon knoll in Peros Banhos, 15m depth, with rate of temperature rise of 0.36C over 11 years; (c) lagoon 

knoll Salomon Atoll, 5m depth with a rate of temperature rise of 0.52C, over ~8 years. Red lines are simple 

lines of best fit.  

https://coralreefwatch.noaa.gov/satellite/index.php
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Figure 11. The percentage of days that exceeded NOAA’s 1998 bleaching threshold of 29.5oC. (a) Ocean-

facing site at Diego Garcia, (b) the lagoon sites in Peros Banhos (blue) and Salomon Atoll (orange). 
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Figure 12. Photo: Dead 

colonies in Salomon lagoon at 

25m depth in March 2013. 

The red colour is caused by 

red algae. Histogram: Annual 

mean temperatures in 

Salomon lagoon by calendar 

year (at 5m depth) (std. error 

bars are miniscule).  
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Juvenile Corals 

 

Densities of juveniles in 2012 and 2013 ranged between 20–60 m-2 at all depths surveyed (Figure 

13a–b). In 2017, numbers were significantly reduced to usually less than 10 m-2 on available hard 

substrate at all depths surveyed, and were completely absent from many locations. At all depths and 

all times, peak densities were found between 10m and 15m depth. 

As in previous years, densities of juveniles were higher by one or two orders of magnitude on 

many dead table corals than they were on the firmer, more secure substrate between them. While 

some recruits on the table corals might develop, most will not survive the continuing disintegration of 

the tables—a pattern also seen after the 1998 event (Sheppard et al., 2002). The lower number of 

juveniles in 2017 is unsurprising given both the scarcity of adults in these shallower depths and the 

stress that surviving adults underwent.  

Even though the surfaces of each quadrat were searched with a magnifying glass, the risk that 

juveniles were being overlooked amongst the light covering of fine filamentous algae on the coral-

free substrate was assessed with fluorescent photogrammetry. This illuminates live coral tissue so that 

it stands out from the surrounding substrate. This also showed comparably low numbers. Figure 14 

shows an example, consisting of a developing, single polyp less than 2 mm diameter. The method 

confirmed that the low numbers were not a result of difficulties in observing juveniles due to 

filamentous growth.  

There seemed to be no selection of genera amongst the juveniles, with all major genera 

represented. The most common coral genera seen were Psammocora and the species Pavona varians, 

all relatively inconspicuous, small corals even when adult, though their dense skeletons may be 

important in reef framework construction. Amongst the larger group of juvenile or small corals that 

were at least one year old or more, Acropora was commonest, as observed in previous years. 
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Figure 13. Numbers of juvenile coral colonies (>15 mm across) in (top) ocean facing reefs and (bottom) lagoon 

reefs, in different years.  
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Figure 14. Blue light fluorescence image of one section of reef at 10m depth, showing scarcity of polyp tissue 

overall, and one juvenile single polyp. Taken at site of Peros Banhos lagoon data logger of Figure 10b. 
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Sea Level Rise and Climatic Effects 

 

‘Research Quality’ sea level data of a single series is available from 2003 to 2015, with so-far 

uncorroborated data for the most recent two years, and Figure 15a shows the rate of relative sea level 

rise for Diego Garcia is 6.22 mm y-1. To aid interpretation of this, Figure 15b also plots the 

Multivariate ENSO index for this corresponding span, and Figure 15c shows the water temperature 

rise (in this case monthly) for the most open lagoon, from 2006. This temperature series was chosen 

because this open lagoon has minimal water constriction but avoids the complicating plunges of 

temperature caused by the vertically moving thermocline that occurs on ocean-facing reefs (Sheppard, 

2009).  

 

 
Figure 15. (A) Sea level data (monthly means) taken from the tide gauge at Diego Garcia. Based on these 

measurements, the rate of relative sea-level rise (i.e., that rate experienced by the atoll) is 6.37 mm yr−1 for the 

period 2004 through 2015 (broken red line). Note that these data track relative and not eustatic sea level. (B) 

Annual averaged rainfall for Diego Garcia as recorded by the air operations base on the atoll. (C) Multivariate 

ENSO index (MEI) (Wolter and Timlin, 1998). Negative MEI values represent cold ENSO phase (La Niña), 

positive values warm ENSO phase (El Niño).  
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The rate of local-relative sea level rise over this time is highly significant (p=.001). Relative sea 

level changes include any subsidence of Diego Garcia. The rate of 6.22 mm y-1 is higher than the 

satellite-derived global rate of 3.4 mm yr-1 (Nerem et al. 2010; see http://sealevel.colorado.edu/).  

With regard to the relationship with ENSO, the pronounced 2006–2007 spike in relative sea level 

coincided with a strong El Niño, as does that which started in 2015. However, the spikes that occurred 

in 2012 and 2013 associate with a La Niña episode or a weak El Niño. Positive El Niño episodes are 

superimposed on generally rising trends in temperature and sea level. Thermal expansion is 

responsible for more than one-third of sea level rise, and these monthly sea level and water 

temperature data are indeed very strongly positively correlated (r=0.400, N=128, p<.001).  

 

 

DISCUSSION 

 

Temperatures and Coral Cover 

 

It is not only the relatively recent major global events of 1998 and 2015–2017 that have caused 

overall coral cover to decline in this archipelago. During the period of 1979 to 1996, no research took 

place in the archipelago. During this time, overall coral cover decreased appreciably in Chagos, 

perhaps partly as a result of the severe worldwide warming event that occurred in 1982–1983 which is 

known to have had severe biological consequences (Barber and Chavez, 1983). Some important 

shallow water species such as Isopora palifera (previously known as Acropora palifera) were largely 

eliminated during that time (Sheppard, 1999). I. palifera was the main wave-breaking shallow species 

facing northwest and, while still present with numerous small colonies, is functionally absent at 

present in terms of its breakwater effect. 

After the 1998 event, recovery did not take place at all for three years (Sheppard et al., 2002), but 

was relatively rapid after 2001. Coral cover had recovered to levels seen before the 1998 event by 

about 2010 until the severe and prolonged 2015 event began. Several factors may help explain why 

there was rapid recovery in the intervening years. It has been suggested that the cool temperature 

plunges during the warmest time of each year offered respite from anomalously high water 

temperature for the corals (Sheppard, 2009). Secondly, there are no direct, local human impacts to the 

reef that inevitably flow from habitation.  

 

 

Juveniles and Survivors  

 

The existence of juvenile corals is a predictor of coral recovery in future years. Recovery might 

be driven by either current-borne larvae from further afield or local reseeding, or both. Although 

numbers of juveniles were greatly reduced in 2017 they were at least still present. Numerous small 

corals larger than our defined cutoff of 15 mm, were also seen to exist, suggesting that those corals, 

approximately 2 to 4 years old, had persisted through the mortality event and that their small size did 

not appear to prejudice survival. Not only were Psammocora species and Pavona varians the most 

common corals in terms of <15 mm juveniles, they were also common in the larger groups of 15 mm 

to 4cm. Psammocora spp. and Pavona varians were also the species shown to be the most common 

coral during the 1970s (Sheppard, 1980). Faviids and species of Acropora were nearly as prevalent, 

and although the latter occurred mostly on dead tables, their presence clearly showed that 

reproduction, or larval transport from elsewhere, was still taking place.  

Relevant to this is the survivorship of fragments of older colonies. In these instances some polyps 

on much older colonies, such as massive Porites, persisted through the warming, and those polyps 

were already expanding over the dead surface of the skeleton (Figure 16). This process might be 

important for future recolonization. Furthermore, in the ‘transition zone’ between 10m and 15m, 

numerous colonies were seen on which only the illuminated, upward facing surfaces were killed, with 

living tissue surviving on the more shaded sides (Figure 17). Bleaching and mortality has long been 

known to be caused by intensity of illumination in conjunction with overall temperature regime (Jones 

et al., 1998). 

http://sealevel.colorado.edu/
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Figure 16. A massive Porites colony which was mostly killed in 2015–2016 where several polyps appear to 

have survived in patches and which, in 2017, are expanding their live cover over the old, dead surface.  

 

 

 

Species Survivors and Disappearances 

 

About 300 reef building species are known to occur in the Chagos atolls 

(http://chagosinformationportal.org/corals). The degree of survivorship between different species is 

great. Species of Acropora were highly susceptible to bleaching-induced mortality, especially tabular 

and arborescent forms, as was the closely related and very important shallow species Isopora palifera. 

Most of the smaller digitate corals Pocillopora and Stylophora were similarly very susceptible. All 

these are relatively fast-growing and were seen to provide high cover and greater 3-D structure just a 

few years following earlier bleaching events. Within Porites, there was almost complete elimination 

of branching forms and of Porites rus, whose dead colonies, along with other leafy forms, had 

covered most of the shallow Salomon Atoll lagoon but were almost totally killed in 2012. Some small 

massive members of Porites were survivors, and indeed were the only ones, in shallow water between 

approximately 2m to 4m deep.  

The large, formerly common massive coral Diploastrea heliopora has not been seen in any of 

several hundred dives across all atolls since the 1998 warming. All species of the finely branching 

Seriatopora vanished for about 10 years after 1998; it had been recovering slowly, but was severely 

reduced again in 2017. In 2017, no living colonies of the formerly common ‘Chagos brain coral’ 

Ctenella chagius were seen, and because its distribution is largely restricted to this archipelago, this is 

of particular concern. Most of the coral species that were severely affected have shallow water 

distributions so that, for many, there may be few sources of future recruits from colonies in deeper 

http://chagosinformationportal.org/corals
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Figure 17. Example of a coral colony (Leptastrea sp.) at the ‘transition zone around 15m depth, where mortality 

ceased to be near total, where the upper, illuminated surface has been killed in 2015–2016 but where the shaded 

portion of the colony survived.  

 
 

 

water. Dead coral skeletons of all species in shallow waters were conspicuous for their complete 

covering by encrusting red algae.  

 

 

Calcification 

 

In this archipelago, carbonate production was measured by Perry et al. (2015) in March–April 

2015, at the start of the warming. They showed that across 28 reefs studied, net carbonate production 

rates averaged +3.7 G (G = kg CaCO3 m−2 yr−1), with gross production averaging +6.6 G, and 

bioerosion rates averaging 3.4 G across all reefs. One-third of all reefs measured had a net carbonate 

budget of more than +5 G. Importantly, production in 2015 on the Acropora dominated reefs was 

more than double the average rate, at +8.4 G. The carbonate production in 2015 was driven mainly by 

the genera Acropora, Pocillopora and Porites. These positive budgets are reflected in high reef 

accretion rates, estimated to be 2.3 mm y-1 on average, and as much as 4.2 mm yr−1 on Acropora-

dominated reefs.  

In contrast, average coral cover in 2017, as seen in Figure 4, was about 10%, caused in large part 

by mortality of almost all the Acropora, Pocillopora and Stylophora which had been very abundant in 

the shallowest 15 m. Perry and Morgan (2017) have performed similar carbonate production estimates 

in the nearby Maldives in 2016, where the average percent coral cover had similarly fallen to just 

more than 6%. This shifted the carbonate budget of those atolls from being strongly net positive at 

+5.9 G previously, as Chagos had been, to strongly net negative (-2.9 G). The implication of this was 
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a reduction in reef growth potential from +4.2 mm y-1 to -0.4 mm y-1, in other words, the reefs had 

shifted from a net accretional to a net erosional phase.  

While coral production rates have not yet been measured in Chagos atolls since the recent 

warming event, the analogous results from the adjacent Maldives are clear, and indeed Perry and 

Morgan (2017) note the similarity between the two archipelagos. Cover values shown for Chagos 

atolls for 2017 are such that carbonate deposition by corals will have become strongly negative here 

too, and it is likely that these reefs also will have moved to an erosional state.  

 

 

Frequencies of Warming Events and Predictions for the Future 

 

Because recovery after 1998, in terms of coral cover at least, took about a dozen years, recovery 

might occur again. Unfortunately for these hopes, predictions have been made of the frequency of 

repeat mortality events derived from work merging historic and forecast SST data from the Hadley 

Centre (Sheppard, 2003). It was suggested then that the date when repeat warming episodes would 

recur too frequently for corals to reproduce would occur sometime in the mid-2020s for Chagos, 

similar to the date predicted for many other low latitude reef systems in the Indian Ocean. Using 

somewhat different methods carried out at finer scale, this prediction has been confirmed by recent 

studies (van Hooidonk et al., 2016), who also suggest that such an ‘end point’ for these reefs might 

occur during the 2020s. Further, Heron et al. (2017) have recently suggested that under present 

warming trends, almost all reefs systems in UNESCO World Heritage Sites (WHS) will experience 

bleaching events twice per decade by 2040. The nearest WHS to the Chagos reefs is Aldabra in the 

Seychelles, of similar latitude further west, and which has projected dates of 2028 to 2032 for 

reaching the point of twice decadal mass mortality (Heron et al., 2017) which is potentially terminal. 

If this turns out to be the case, there will be little scope for the reefs of Chagos to return to either a 

healthy ecological state or to a condition of net carbonate accretion from their present state. Frieler et 

al. (2013) have shown that limiting global warming to even 2oC is unlikely to save most coral reefs. 

With warming of 2oC, the most optimistic assumptions predict that one-third of reefs will decline, and 

under more realistic ones possibly two-thirds will severely decline. 

Ultimately, coral growth at the individual level underpins both ecological functioning and 

accretion of coral reefs. Loss of reefs also reduces their breakwater function, leading to erosion of 

island shorelines as has been shown in Diego Garcia, the only permanently inhabited Chagos atoll 

(Purkis et al., 2016) and in the Seychelles (Sheppard et al., 2005). 

Coupled with coral mortality and loss of reef growth, sea level rise adds an additional problem. In 

Diego Garcia the rate of rise is higher than the oceanic average, presumably because of some 

subsidence at that atoll. Atoll subsidence is of course how atolls are formed (provided reef 

development keeps pace with relative sea level rise from subsidence and eustacy) and, while the 

majority of these atolls may show some subsidence, there is no information on rates on other atolls in 

the group.  

Earlier work has shown that while some island dune and berm systems on Diego Garcia may 

extend a few metres above high tide level, this is not the case in most of the islands. In Diego Garcia, 

which contains approximately half of the land area of the whole archipelago, most of the land lies 

within a meter of the high tide level. Profiles show that a very high proportion of all atolls lie very 

close to, or even below sea level (Stoddart, 1971; Purkis et al., 2016, fig. 13; Sheppard, 2002, figs. 5–

7). Healthy corals are required to maintain growth rates of reefs that can match rates of sea level rise. 

Further, the reef crests in the Chagos Archipelago that provide a breakwater effect are often located 

close to islands, from sometimes only 25m from the shorelines. Where this is the case, these relatively 

short distances mean that the breakwater effect of reefs is reduced because of the limited distances 

over which waves can become attenuated (Sheppard et al., 2005; Storlazzi et al., 2016). The 

consequences of continued or prolonged erosion of reefs could therefore become severe.  

The prognosis is concerning, not only from a scientific perspective. The reason for the existence 

of the political unit of the British Indian Ocean Territory, in which these atolls are the only land, is the 

military facility in the southernmost Diego Garcia Atoll. It is the existence of this facility that has 

helped ensure that there are no local impacts of sewage and other forms of pollution that are inimical 

to coral growth. As noted in a security report that considered consequences of sea level rise (Foley, 
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2012, 3), Diego Garcia is one of the top five “most vulnerable” military installations in the world. 

Also: “The island is extremely vulnerable to the effects of climate change ... If the island is flooded or 

inundated completely, the US will lose a strategically vital installation in the most tumultuous region 

in the world.”  Erickson et al. (2013) reaffirm the importance of Diego Garcia in military terms, and 

the warnings about climate change in general are enumerated by a panel of Generals and Admirals 

(CNA Military Advisory Board, 2014) who emphasise both the threats to western security and the 

high cost of countering such climate-induced changes. They also note that these impacts and costs are 

accelerating faster than they had concluded in their earlier 2007 report. The latter emphasised that: 

“Actions by the United States and the international community have been insufficient to adapt to the 

challenges associated with projected climate change. Strengthening resilience to climate impacts 

already locked into the system is critical, but this will reduce long-term risk only if improvements in 

resilience are accompanied by actionable agreements on ways to stabilize climate change” (CNA 

Military Advisory Board, 2014, 1). That panel in fact felt compelled to update their earlier report 

because of their “growing concern over the lack of comprehensive action by both the United States 

and the international community to address the full spectrum of projected climate change issues”.  

These conclusions were reached when corals had largely recovered from earlier mass moralities 

and before the effects of 2015–2017. It is clear that for these reefs to continue to accrete and survive 

in a productive way, the single most important issue to be addressed is that of periodic warming 

episodes that result in massive mortality of the reef building corals. Warming and sea-level rise will 

result in greater inundation of such islands (Storlazzi et al., 2015). The frequency of recurrence of 

warming water which impedes coral recovery will be critical to long term function of the Chagos 

reefs. 
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