Moisture activation and carbon use efficiency of soil microbial communities along an aridity gradient in the Atacama Desert

Jones, David; Olivera-Ardid, Sara; Klumpp, Erwin; Hill, Paul; Lehndorff, Eva; Bol, Roland

Soil Biology and Biochemistry

Published: 01/02/2018

Peer reviewed version

Dyfniad o’r fersiwn a gyhoeddwyd / Citation for published version (APA):

Hawliau Cyffredinol / General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Moisture activation and carbon use efficiency of soil microbial communities along an aridity gradient in the Atacama Desert

Davey L. Jonesa*, Sara Olivera-Ardidab, Erwin Klumppc, Claudia Kniefd, Paul W. Hilla, Eva Lehndorffd, Roland Bolc

a School of Environment, Natural Resources & Geography, Bangor University, Gwynedd, LL57 2UW, UK
b Department of Microbiology, Faculty of Biology, University of Barcelona, Av. Diagonal, 643, Barcelona 08028, Spain
c Institute of Bio- and Geosciences, Agrosphere Institute (IBG-3), Forschungszentrum Jülich, 52425 Jülich, Germany
d Institute of Crop Science and Resource Conservation, Soil Science and Soil Ecology-, University of Bonn, Bonn, Germany

Corresponding author: Davey L. Jones
Corresponding author address: School of Environment, Natural Resources and Geography, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
Corresponding author Tel: +44 1248 382579
Corresponding author E-mail: d.jones@bangor.ac.uk
ABSTRACT

Due to their extreme aridity, high rate of UV irradiation and low soil carbon (C) content, the soils of the Atacama Desert represent one of the world’s most hostile environments for microbial life and its survival. Although infrequent, climatic conditions may, however, prevail which temporarily remove these stresses and allow life to briefly flourish. In this study we investigated the response of soil microbial communities to water and C availability across an aridity gradient (semi-arid, arid, hyper-arid) within the Atacama Desert. We simulated the impact of hyper-dry spells, humid fogs and precipitation events on the activation of the microbial community and the subsequent mineralization of low (glucose) and high (plant residues) molecular weight C substrates. Our results showed that mineralization rate followed the trend: semi-arid > arid > hyper-arid. Some glucose mineralization was apparent under hyper-arid conditions (water activity, \(a_w = 0.05 \)), although this was 10-fold slower than under humid conditions and ca. 200-fold slower than under wet conditions. A lag phase in \(\text{CO}_2 \) production after glucose-C addition in the hyper-arid soils suggested that mineralization was limited by the low microbial biomass in these soils. No lag phase was apparent in the corresponding semi-arid or arid soils. In contrast, the breakdown of the plant residues was initially much slower than for glucose and involved a much longer lag phase in all soils, suggesting that mineralization was limited by low exoenzyme activity, particularly in the humid and hyper-dry soils. Our results also showed that microbial C use efficiency followed the trend: hyper-arid > arid > semi-arid. In conclusion, we have shown that even under hyper-arid conditions, very low levels of microbial activity and C turnover do occur. Further, the microbial communities are capable of rapidly responding to available C once water becomes more abundant, however, this response is both biomass and metabolically limited in hyper-arid soils.
The hyper-arid soils of the Atacama experience some of the most severe climatic conditions on Earth, and are often used to understand the potential for life on exoplanets such as Mars (Valdivia-Silva et al., 2012; McKay, 2014). These soils contain very low organic carbon (OC) concentrations, with labile OC values varying from 2-73 µg C g⁻¹ (Valdivia-Silva et al., 2012; Fletcher et al., 2012). The role of (hyper)arid conditions on soil OC processing vs. stabilization continues to be debated (e.g. Skelley et al., 2007; Ewing et al., 2006; 2008; Ziolkowski et al., 2013; Wilhelm et al., 2017).

Microbial soil communities in the hyper-arid core of the Atacama Desert are of low abundance and express numerous xero-tolerance traits (Azua-Bustos et al., 2015; Connon et al., 2007; Drees et al., 2006; Lebre et al., 2017; Navarro-Gonzalez et al., 2003). Their activity is primarily limited by water, although other factors such as C limitation, high salinity and UV irradiation may also impose constraints on life (Warren-Rhodes et al., 2006; Gomez-Silva et al., 2008). Although extremely infrequent, the microbial biomass can be subject to precipitation events (Jordan et al., 2015) or more likely to high humidity and fog-derived water (Cáceres et al., 2007). In this context, our aims were to (1) determine the reactivation speed of the soil microbial community to moisture and OC addition, (2) compare the relative mineralization rate of low and high molecular weight OC substrates in soil, and (3) investigate the C use efficiency (CUE) of these communities.

The Atacama is a temperate desert and extends from ca. 15 to 35°S and between 70 to 72°W along South America’s Pacific Coast. Hyperarid conditions have existed in the Atacama desert for ca. 25 Ma (Dunai et al., 2005). The mean annual rainfall in the hyperarid core is <1
mm y$^{-1}$; a single rainfall event of 1-20 mm may occur once in a decade (Warren-Rhodes et al., 2006, McKay et al., 2003).

Field sampling was undertaken in the Atacama region of Chile in February, 2014. Soil samples were taken from the surface soil (0-10 cm; $n = 3$) and subsoil (20-40, 120-140 cm; $n = 1$) were collected from the hyper-arid site at Yungay (1020 m a.s.l.; 24°8’54.67”S; 70°7’32.48”W). Yungay is probably the most frequently studied hyper-arid region of the Atacama Desert, having an extremely low water availability (Navarro-Gonzalez et al., 2003; Azua-Bustos et al., 2015). Surface samples (0-10 cm, $n = 3$ at 5 sites) were also taken in the Andean Precordillera at Quebrada Aroma (19°31’42.7”S; 69°22’43.2”W to 19°46’53.1”S; 69°40’02.4”W). This precipitation gradient transect was characterized by decreasing vegetation cover and plant diversity from arid (2020-2720 m a.s.l.; 3 sites) to hyper-arid sampling sites (1340-1660 m a.s.l.; 2 sites). Finally, additional surface (0-10 cm, $n = 3$) and subsurface soils ($n = 1$) were sampled down to 2 m near Paposo in the semi-arid Coastal Cordillera (570 m a.s.l.; 25°00’43.02”S; 70°26’47.50”W). The samples from all sites had a low intrinsic moisture content at the time of collection (20.4 ± 4.1 g kg$^{-1}$). All samples were homogenised by sieving (<2 mm) and stored in sealed tubes prior to use. Based on their moisture regime, the sites were divided into 3 levels of aridity, namely, semi-arid, arid and hyper-arid (see Supplementary information for further details and basic chemical data).

The experiments used two contrasting forms of C to determine how microbial activity was regulated by substrate quality: (1) low molecular weight (MW) substrate (13C-labelled glucose); (2) high MW substrate (14C-labelled dry Lolium perenne L. shoots; Hill et al., 2007; Simfukwe et al., 2011). In addition, to explore their response to moisture availability we used three moisture regimes: (1) wet, in which water was added directly to the soil surface to simulate desert rainfall, (2) humid, in which the soil samples were maintained at a high relative humidity to simulate desert fogs, and (3) hyper-dry, in which the soil samples were incubated
at a low relative humidity to simulate typical conditions in the hyper-arid region of the Atacama Desert.

For each sample, 1 g of field soil was placed into sterile 50 cm³ polypropylene containers. Either ¹⁴C-labelled glucose (72 mg C kg⁻¹ soil; 0.44 MBq kg⁻¹ soil) or 100 mg of ¹⁴C-plant material (100 g kg⁻¹ soil; 42 g C kg⁻¹ soil; 3.6 MBq kg⁻¹ soil) was then added to the soil. For the humid treatments, the ¹⁴C-glucose was first dried down under N₂ onto a sterile quartz sand carrier before addition to the soil (100 g sand kg⁻¹ soil), while the dried ¹⁴C-labelled plant material was added directly to the soil. The relative humidity in the humid (simulated fog) containers was 67±3% at the start and was 83±3% at the end. For the wet treatments (simulated rainfall), the ¹⁴C substrates were added as described above, but together with 100 µl of distilled water. For the hyper-dry treatments (simulated normal conditions), the method was identical to the humid treatment, except that the containers also contained a small vial of desiccant (1 cm³; Drierite®, Sigma-Aldrich, Poole, UK) to maintain a relative humidity of 1-5% (Reis et al., 2009). In the wet and humid treatments, ¹⁴CO₂ evolved from the soil was captured with a vial of 1 M NaOH trap placed inside the container (Glanville et al., 2016), while in the hyper-dry treatment it was trapped with a vial containing 40 mg of solid Ba(OH)₂·8H₂O. After addition of the ¹⁴C-substrates and ¹⁴CO₂ traps, the containers were hermetically sealed and incubated at 20°C. The ¹⁴CO₂ traps were replaced daily for 14 d. The length of experiment reflects the typical time that water may remain in soil after a rare precipitation event (McKay et al., 2003). The ¹⁴CO₂ in the traps was determined by liquid scintillation counting using Optiphase 3 scintillation fluid (PerkinElmer Corp., Waltham, MA) and a Wallac 1404 Liquid Scintillation Counter (PerkinElmer Corp.). To determine how much ¹⁴C-glucose remained in the soil at the end of the incubation, the soils were extracted with 10 ml of 0.5 M NaCl (200 rev min⁻¹; 10 min), centrifuged (18,000 g; 15 min) and the ¹⁴C content of the extract determined as described above.
To account for 14CO$_2$ produced by the intrinsic microbial community present in the 14C-labelled plant material (e.g. phyllosphere community), control incubations were also performed in the absence of soil.

Substrate C use efficiency was calculated according to Glanville et al. (2016) (see Supplementary on-line information). All statistical analyses (repeated measures ANOVA, linear regression, paired t-tests) were performed in Minitab v16.2 (Minitab Inc., State College, PA) using $P < 0.05$ as the level for statistical significance.

The effect of soil aridity status and substrate quality on the rate of C mineralization is shown in Figure 1. Overall, mineralization followed the series: semi-arid > arid > hyper-arid for the different soils ($P < 0.001$), and wet > humid > hyper-dry, for the three moisture regimes ($P < 0.001$; Fig. S8). There was an immediate microbial response to the application of glucose for all soils and under all three moisture treatments (Fig. 1a), however, the rate was 180-times slower in the hyper-dry treatments compared to the wet treatment (Table S9). In contrast to glucose, a significant lag phase in mineralization was seen in the soils amended with 14C-plant residues. This lasted for 1-5 d in the wet treatment and 6-8 d in the humid treatment. Although some mineralization was apparent in the hyper-dry treatment, the rates of 14CO$_2$ evolution remained low and relatively constant throughout the 14 d incubation period (<0.3% for glucose and <0.1% for plant material). Some mineralization of the plant material was apparent when soil was not present; however, this was only of significance in the wet treatment (dotted lines in Fig. 1).

A strong positive correlation was apparent between the initial mineralization rate of low (glucose) and high molecular weight C (plant residues) across all soils for the wet and humid treatments ($r^2 = 0.71$, Fig. S5). Overall, the rate of mineralization of glucose was 14.7 ± 3.6 times faster than the plant material under wet conditions and was 14.0 ± 2.9 times faster under humid conditions ($P = 0.864$).
Extractions of the soil at the end of the experiments showed a negative correlation between the amount of 14CO$_2$ produced and 14C-glucose depletion from the soil ($r^2 = 0.81$; Fig. S4), and with almost all the 14C-glucose being removed from some of the wet soils after 14 d.

Not all of the 14C-glucose was mineralized, however, with 14CO$_2$ production reaching a plateau in the wet glucose treatment at ca. 45% for the semi-arid soils and ca. 25% for the arid soils. As very little 14C-glucose remained in solution at the end of the experiment, particularly in the semi-arid soils, we assumed that the remainder of the 14C had been immobilized in the microbial biomass (see Section S4; Fig. S4). From this, we estimated microbial C use efficiency (CUE) in the wet glucose treatment. Across all samples, CUE showed a strong negative correlation with mineralization rate and followed the trend: hyper-arid > arid > semi-arid (0.77 ± 0.03, 0.53 ± 0.04 and 0.46 ± 0.03, respectively; Fig. 2).

In order of importance, our results show that soil microbial activity in the Atacama Desert is constrained by: (i) available soil moisture, (ii) intrinsic microbial biomass, and (iii) the type of organic C substrate. In addition, soil depth is also a major limiting factor (see Supplementary Information). The typical limit for soil microbial activity occurs at a_w values of ca. 0.6 (-70 MPa), well below the point at which plant life ceases (-1.5 MPa; Grant, 2004; Roberts and Ellis, 1989; de Goffau, et al., 2011). At an a_w of 0.6, the water films in our soils can be expected to be only a few water monolayers thick (3-10 nm; Leao and Tuller, 2014; Ruis et al., 2016). Consequently, the catalytic activity and mobility of exoenzymes (ca. 3-50 nm diameter) will be minimal below this a_w point (Sirotkin, 2005), while microbial movement will be impossible even for nano-sized archaea and bacteria (<600 nm diameter; Stark and Firestone, 1995). The hyper-arid region of the Atacama Desert remains below the critical a_w value of 0.6 for ca. 90% of the year, at which point no microbial activity is expected to occur (Wierzchos et al., 2011). Although extremely small, some C substrate mineralization, however, was observed in all soils under hyper-dry conditions ($a_w = 0.05$; -410 MPa). This is most likely attributable to abiotic
mineral-driven oxidation of organic C (Quinn et al., 2005), or possibly in some of our soils due
to isolated pockets of microbial activity protected within hyper-saline or nanoporous structures
(Robinson et al., 2015; Wierzchos et al., 2015; Lebre et al., 2017). Under these hyper-dry
conditions, however, the diffusion of substrates will severely restrict microbial uptake of
exogenous C (diameter of glucose = 0.8 nm). Under the humid soil moisture regime, much
greater microbial activity was observed. The lag phase in glucose-use under these conditions
was consistent with the dynamics of water sorption to the soil, which permitted microbial
activity to commence, although any microbial movement will still be restricted (Fig. S9; de
Goffau et al., 2011). This lag phase could also be attributable to microbial growth; however,
the lack of a classic sigmoidal response in the hyper-arid soil does not favor this explanation.
In comparison to the glucose treatment, the longer lag phase in the humid plant residue
treatment suggests that C mineralization was limited by both a lack of water and exoenzymes.
In addition, it may also reflect the slow rate of diffusion of low MW solutes released from the
plant residues to the microbial community. In addition, the greater rate of breakdown of plant
residues in comparison to glucose in the hyper-dry soil suggests that the soil microbial
community is metabolically constrained (i.e. due to a lack of enzymes to assimilate glucose or
a lack of other organic or inorganic solutes). As the C-to-N ratio of the soil and the levels of
available N, P and other nutrients are relatively high in these soils (Table S1), substrate
overload is a more likely explanation. This lack of capacity to assimilate the added glucose-C
is also supported by the lack of sustained microbial growth when supplied with high rates of
this C substrate, even under wet conditions, and the very high C use efficiency within the
microbial community. Our evidence suggests that while glucose-C can be transported into the
cell, it cannot be readily used in respiration. Potentially, this C is being allocated to internal
storage pools or to other C-rich structures (Russell, 2007; de Goffau, et al., 2008; Lebre et al.,
2017). Further work on the metabolic and transcriptomic profiling of these microbial
communities is clearly needed to help address this issue. In summary, our results provide evidence of slow rates of C turnover under hyper-dry conditions. When humid fogs occur, we show that the microbial communities are capable of responding relatively quickly, particularly in soils which favor better long-term microbial survival (i.e. semi-arid rather than hyper-arid). When free water is present, the constraints on C use are largely removed and high rates of microbial activity commence immediately, mirroring the response in other non-arid soils (Jones and Murphy, 2007).

Acknowledgements
This work was funded by the UK Natural Environment Research Council (NERC), ABCJ Geoverbund and the German Science Foundation (DFG) as part of CRC1211.

References

concentrations in hyperarid Atacama soils: Comparison of biochemical and microscopy methods with real-time quantitative PCR. Canadian Journal of Microbiology 57, 953-963.

Jones, D.L., Murphy, D.V., Microbial response time to sugar and amino acid additions to soil. Soil Biology & Biochemistry 39, 2178-2182.

Skelley, A.M., Aubrey, A.D., Willis, P.A., Amashukeli, X., Ehrenfreund, P., Bada, J.L.,
region of the Atacama Desert with the Urey instrument, Journal of Geophysical Research
Biogeosciences 112, G04S11.

Valdivia-Silva, J.E., Navarro-Gonzalez, R., Fletcher, L., Perez-Montano, S., Condori-Apaza,
R., McKay, C.P. 2012. Soil carbon distribution and site characteristics in hyper-arid soils
of the Atacama Desert: a site with Mars-like soils.

Warren-Rhodes, K.A., Rhodes, K.L., Pointing, S.B., Ewing, S.A., Lacap, D.C., Gómez-Silva,
limit of photosynthesis, and microbial ecology in the hyperarid Atacama Desert. Microbial
Ecology 52, 389-398.

Wierzchos, J., DiRuggiero, J., Vitek, P., Artieda, O., Souza-Egipsy, V., Skaloud, P., Tisza, M.,
Davila, A.F., Vilchez, C., Garbayo, I., Ascaso, C., 2015. Adaptation strategies of
endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation
environment of the Atacama Desert. Frontiers in Microbiology 6, 934.

Xeropreservation of functionalized lipid biomarkers in hyperarid soils in the Atacama
Desert. Organic Geochemistry 103, 97-104.

active endolithic microbial communities in the hyperarid core of the Atacama Desert.
Astrobiology 13, 607-616.