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Abstract The arrival of novel pathogens and pests can have a devastating effect on the
market values of forests. Calibrating management strategies/decisions to consider the effect
of disease may help to reduce disease impacts on forests. Here, we use a novel generalis-
able, bioeconomic model framework, which combines an epidemiological compartmental
model with a Faustmann optimal rotation length model, to explore the management deci-
sion of when to harvest a single rotation, even-aged, plantation forest under varying
disease conditions. Sensitivity analysis of the rate of spread of infection and the effect
of disease on the timber value reveals a key trade-off between waiting for the timber
to grow and the infection spreading further. We show that the optimal rotation length,
which maximises the net present value of the forest, is reduced when timber from infected
trees has no value; but when the infection spreads quickly, and the value of timber from
infected trees is non-zero, it can be optimal to wait until the disease-free optimal rotation
length to harvest. Our original approach provides an exemplar framework showing how
a bioeconomic model can be used to examine the effect of tree diseases on management
strategies/decisions.
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1 Introduction

Like many natural resources, forests are experiencing increasing pressure from the emer-
gence of pathogens and pests (Gilligan et al. 2013). Changing climate (Galik and Jackson
2009; Netherer and Schopf 2010; Pautasso et al. 2010; Sturrock 2012), globalisation of trade
and the synonymous increase in the volume and diversity of plant species and products being
traded (Gilligan et al. 2013) are just a few of the factors leading to an increase in the ranges
of pathogen and pest species. Recently the UK has seen a rapid increase in the Phytophthora
ramorum infection of Larix spp. (larches) (Brasier and Webber 2010; Forestry Commission
Scotland 2015); Dothistroma septosporum, a needle blight affecting conifers, in particular
Pinus spp. (pines) (Forestry Commission Scotland 2013);Hymenoscyphus fraxineus causing
chalara dieback of Fraxinus spp. (ashes) (Department for Environment 2013b); and Thaume-
topoea processionea, a processionary moth that is a major defoliator of Quercus spp. (oaks)
(Netherer and Schopf 2010; Tomlinson et al. 2015). The arrival of these novel pathogens
and pests requires management practices to be reviewed in order to maximise the net benefit
obtained from forests. In this paper we focus on the management practice of harvesting tim-
ber trees by clearfelling, and address the question of how disease affects the optimal time of
harvesting for a plantation (henceforth the ‘optimal rotation length’).

This is an important question since the arrival of such pathogens and pests can lead to
losses in market value. There are many ways in which tree disease can do this: reduction
in growth, for example D. septosporum causes significant defoliation, which can greatly
reduce the growth rate (Forestry Commission Scotland 2013); reduction in timber quality of
live trees, for example Heterobasidion annosum decays the wood in the butt end of the log,
which may reduce the value of the timber (Pratt 2001; Redfern et al. 2010); or an increase
in the susceptibility to secondary infection, for example H. fraxineus and P. ramorum cause
significant damage to the bark and vascular cambium and therefore increase the rate of
infection of wood decay fungi (Pautasso et al. 2013; Forestry Commission Scotland 2015);
or at the scale of the forest stand as a whole, diseases may increase the proportion of trees
that are dead and thus subject to wood decay. Moreover, in the case of an epidemic, large
areas of monoculture forest may be felled simultaneously to try to halt disease spread [as is
currently taking place in response to the P. ramorum infection of Larix spp. in South Wales
and South West Scotland (Forestry Commission Scotland 2015)]. A large influx of material
to local sawmills may cause congestion and market saturation (however we do not model
this scenario explicitly as that would require a reduced price for all timber independent of
its infection status). By including some of these factors into a modelling framework, we
give insight into how disease alters the economically optimal rotation length. For simplicity,
we focus on the timber values of forests, and ignore non-timber benefits that might also be
affected. Since early clearfelling of the current timber crop is often the only economically
viable way to mitigate the damage caused by tree disease at the landscape scale, the optimal
rotation length in the presence of disease risks is an important management variable to
consider.

Two approaches are commonly used to determine the optimal rotation length. The first is
the maximum sustained yield (MSY), which is determined mainly by ecological processes,
and will only give the economically optimal rotation under very restrictive economic condi-
tions (Samuelson 1976). The MSYmethod defines the optimal rotation length as the age that
maximises the timber production per unit of land (Amacher et al. 2009). The second method
merges economics and ecology and was introduced in 1849 by the German forester, Mar-
tin Faustmann, who derived the optimal rotation length using the principles of discounting
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(Faustmann 1849). Faustmann considered a forest as a long-term capital asset and thus the
optimal rotation length could be determined by maximising the net present value (NPV) of
the land (Amacher et al. 2009).

This subject has been extensively studied; in his review Newman (2002) showed that
there have been 313 published books and articles in over 60 journals since Faustmann’s
revolutionary work. Some notable contributions include the addition of the non-market value
of forests (Hartman 1976; Samuelson 1976); the effect of catastrophic loss, for example
from fire (Reed 1984; Englin et al. 2000) or wind blow (Price 2011); the effect of including
a carbon market (Chladná 2007; Price and Willis 2011); uncertainty and risk associated with
future prices (Alvarez and Koskela 2006; Loisel 2011; Sims and Finnoff 2013); and multiple
forests and their interdependent provision of amenity services (Koskela andOllikainen 2001).
The arrival of tree disease could be considered as a type of catastrophic event in the case
of widespread epidemics where large areas of forest are felled and market and non-market
values (such as ecosystem services) are affected. However, there are many dissimilarities
when comparing the effect of disease to events such as fire andwind storms. Some distinctions
include the speed of progression (disease can progress at variable time scales, but likely units
are years); the symptoms (cryptic infection can result in the disease remaining undetected
for long periods of time); the management response once detected (there is a large variability
in approaches to dealing with infected trees); the potential to salvage timber (infected timber
is likely still to be marketable, but sometimes at a reduced price); and irreversibility due to
long-term persistence of many pathogens following their invasion. Due to these differences,
the lack of previous investigation and the extent of disease presence around the world, the
aim of this paper is to determine the effect of tree disease on the optimal rotation length of
plantation forests thus filling an important gap in the literature.

The novel approach of this paper is combining the traditional Faustmann model and epi-
demiological compartmental models. Compartmental models allow important characteristics
of a pathogen (such as pathogen transmission, disease-induced mortality and latency), host
population (such as the birth and death rate), and possibly a control strategy (such as vaccina-
tion or culling) to be included in a mathematical framework. The host population is initially
partitioned into states, and a proportion of the host may change state at a certain rate per
time unit (for example, the rate of recovery moves a proportion of the population from the
infected state to the recovered state). Kermack and McKendrick (1927) were amongst the
first to use a compartmental model to examine the effect of an epidemic in a human pop-
ulation. They found a population density threshold for an epidemic by modelling a closed
population, where a single infected individual triggered a spread of infection throughout an
initially susceptible population, and disease either resulted in immunity or death (Kermack
and McKendrick 1927; Diekmann et al. 1995). There is a vast literature dedicated to extend-
ing and examining compartmental models within the fields of human, animal and plant health
that has been hugely influential in mathematical epidemiology (Van der Plank 2013; Cobb
et al. 2012; Boyd et al. 2013; Keeling and Rohani 2008; Segarra et al. 2001; Hethcote 2000;
Anderson and May 1981). These models provide an insight into how an infection spreads
in a population or the effect of a control strategy, which otherwise may be difficult, if not
impossible, to calculate. However, it has been shown that omitting economic behaviour from
animal disease models leads to important failures in our understanding of how to manage
disease-prone systems (Fenichel et al. 2010; Horan et al. 2011). Management interventions
are often expensive, and if implemented they can change the course of the spread of infection,
thus creating a dynamic feedback between the economic and epidemiological components.

Onemodelling framework, which includes economics, ecology and epidemiology, is opti-
mal control methods. They can be used to find the optimal strategy subject to constraints; for
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example the optimal maximum harvesting of a renewable resource subject to regeneration
conditions such as restocking (Clark et al. 1978). Within forestry, optimal control methods
have been used to examine how the optimal harvesting strategy changes dependent on land
class or age structure (Salo and Tahvonen 2002, 2003; Tahvonen 2004), or the planting
density and thinning regime (Halbritter and Deegen 2015); and the effect of forest carbon
sequestration programs in greenhouse gasmitigation (Sohngen andMendelsohn 2003). Opti-
mal control models are now widely used in human and animal epidemiology, and are starting
to emerge within forest epidemiology. Some examples include exploration of the optimal
management strategies to detect (Mehta et al. 2007) and control (Mbah et al. 2010; Sims
et al. 2010; Lee and Lashari 2014) pathogens and pests. The benefit of an optimal control
framework is that it combines the ecological, epidemiological and economic factors which
all contribute to effective management decisions.

Pathogens and pests are an increasing economic problem worldwide and thus their impact
on management strategies and decisions should be considered carefully. In this paper, we
use an optimal control model to examine the effect of disease on the optimal forest rotation
length. We do this by making the net present value (NPV) of an even-aged, single rotation
plantation forest (Faustmann model) depend on a generalisable, epidemiological compart-
mental model. Despite being unable to analytically derive the optimal rotation length, the
first-order condition and numerical optimisation techniques can provide valuable insight into
the system’s dynamics and sensitivity to key parameters, such as the reduction in timber value
caused by disease, and the rate of primary and secondary infection. We use an example two-
state susceptible-infected compartmental model to show how the effect of different pathogen
characteristics can be established. Moreover, we show how our model can be extended to
examine the effect of an annual control that is applied to the whole forest and either mitigates,
or reduces, the spread of infection or the impact of disease on the timber. Our novel approach
is an exemplar framework for combining epidemiological compartmental models with the
Faustmann model.

The structure of this paper is as follows. In Sect. 2 we deduce the first-order condition
for a single rotation Faustmann model and then extend the framework to include a general
disease system. In Sect. 3 we define a timber production function and susceptible-infected
(SI) disease system, which we then use to highlight some key results produced by numerical
optimisation in Sect. 4. Finally in Sect. 5 we discuss the important findings of the paper. (In
“Appendix 1” the analysis of sensitivity to the area of the forest is shown, and in “Appendix
2” we briefly show how the model framework can be extended to include the effect of an
annually-applied control measure.)

2 Formulation of the General Model

2.1 The Model Without Disease

We develop a single rotation Faustmann model for an even-aged forest where the net
present value (NPV) includes an establishment cost (planting bare land) and the benefit from
harvesting the timber. We assume that for a forest of area L (in hectares) the establishment
costs are linearly dependent on the areaW (L) = cL where c is the planting cost per hectare.
The net benefit of harvesting, M(L , T ), is a product of the per-cubic-metre price of standing
timber, p, and the volume of timber produced, f (T )L (where f (T ) is the timber production
per unit of land and is increasing and concave in T ). We extend this model to include a
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Table 1 Parameter definitions and baseline values

Parameter Definition Baseline value

L Area of forest L = 1 ha

c Forest establishment costa c = £1920 ha−1

p Price of timberb p = £17.90m−3

r Discount rate r = 0.03

a Land rent, annual payment after tree
crop rotation

£0 ha−1

f (T ) Timber production per unit of land
i.e. the volume of timber growth
(m3 ha−1)

Equation (11)

(Ti , Vi ) Time, Ti (years), and volume,
Vi , (m3 ha−1) from forest yieldc

(T1, V1) = (15, 43)

b̄ Fitted parameter in timber production
function, f (T )

b̄ = −0.01933

˜L(T ) Effective area of the forest when
disease is present

Equation (7)

P Primary infection rate Table 2

β Secondary infection rate Table 2

t0.5 Time taken for the susceptible area to
halve

Table 2 and Eq. (16)

ρ Reduction in timber value of infected
trees relative to uninfected trees

0 ≤ ρ ≤ 1

a The net cost of planting is taken to be zero on the basis that the gross cost is the same as the government
subsidy payments available for Woodland Creation (in the form of an initial planting payment; https://www.
ruralpayments.org/publicsite/futures/topics/all-schemes/forestry-grant-scheme/woodland-creation/)
b The price of timber is the average standing price (per cubic metre overbark) taken from the Coniferous
Standing Sales Price Index on 30th September 2014 for Great Britain (http://www.forestry.gov.uk/forestry/
INFD-7M2DJR).
c Parameters values taken from the Forest Yield model of Forest Research in Great Britain for yield class 14
Picea sitchensis without thinning and with a 2-m initial spacing (2500 trees ha−1)

payment for land rent which is given every year after harvesting, which is linearly dependent
on the area, A(L) = aL . Other underlying assumptions include: all costs and prices are
constant and known; future interest rates are constant and known; and the timber production
function of the species is known (Amacher et al. 2009). Thus the NPV of a forest with a
rotation length T years, is

Ĵ (T ) = −W (L) + M(L , T )e−rT +
∫ ∞

T
A(L)e−r t dt. (1)

An exponential discount factor,with rate r , is used to discount future revenue (fromharvesting
and land rent) back to the time of planting. Parameter definitions and baseline values are given
in Table 1. To find the rotation length thatmaximises theNPVwefind the first-order condition
by differentiating Eq. (1) with respect to T , which gives

d Ĵ (T )

dT
= dM

dT
e−rT − rM(L , T )e−rT − A(L)e−rT . (2)
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Setting Eq. (2) equal to zero and substituting the function for the revenue from harvesting
we obtain the first-order condition

1

f (TDF )

d f

dT

∣

∣

∣

∣

T=TDF

− r = A(L)

p f (TDF )L
. (3)

This implies that the optimal rotation length (T = TDF ) is determined by a balance of the
marginal gain in timber production and the opportunity cost of investment (left-hand side), and
the subsequent land rent (right-hand side). Clearly Eq. (3) shows that the inclusion of future
benefits (via land rent) decreases the optimal rotation length, which is in line with previous
studies (Amacher et al. 2009). Evaluating the second derivative at the optimal rotation length
gives

d2 Ĵ

dT 2

∣

∣

∣

∣

T=TDF

= pLe−rTDF

(

d2 f

dT 2

∣

∣

∣

∣

T=TDF

− r
d f

dT

∣

∣

∣

∣

T=TDF

)

< 0, (4)

which is negative if the timber production, f (T ), is defined by an increasing, concave func-
tion; thus TDF maximises the NPV.

2.2 General Model with Disease

We now examine the effect of disease on the optimal rotation length by incorporating a
parameter that scales the revenue obtained from timber of infected trees appropriately. We
first introduce the NPV and the general disease system, and finally derive the first-order
condition, which allows us to show the effect of disease on the optimal rotation length.

Equation (1) represents the NPV of a forest of area, L , that remains in an infection-free
state. We build on this model by assuming that the revenue obtained from the harvested
timber is dependent on the state of infection at that point in time. Therefore the NPV is

Ĵ (T ) = −W (L) + M(˜L(T ), T )e−rT +
∫ ∞

T
A(L)e−r t dt (5)

where ˜L(T ) incorporates the reduction in timber value from infected trees and denotes the
effective area of the forest (explained further below). The establishment cost and land rent
remain unchanged, and for the moment we assume that there is no additional cost of disease
(for example through control or treatment).

Nextwe assume that, for a general pathogen, a tree canbe in oneof N states of infection.We
denote the area of the forest in the i th state by xi (T ) at the time of felling, where 1 ≤ i ≤ N .
Since no partial felling is undertaken the land area under tree cover is unchanged, giving the
condition L = ∑N

i=1 xi (T ). If the disease had no effect on timber value, the revenue from
timber in the i th state of infection is p f (T )xi (T ). However, we assume that the disease causes
a reduction in the value of timber (either through reduced quality or growth), so the revenue
from timber in each state is scaled by parameter ρi where 0 ≤ ρi ≤ 1. This means that
timber may be affected differently by disease between the states. We can therefore represent
the revenue from harvested timber as

M(˜L(T ), T ) =p f (T )

(

N
∑

i=1

ρi xi (T )

)

(6a)

=p f (T )˜L(T ) (6b)
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where the effect of disease on the whole forest at time T is given by

˜L(T ) =
N

∑

i=1

ρi xi (T ). (7)

We assume d˜L(T )/dT ≤ 0 since it is usual that the damage caused to timber by disease has
a permanent negative effect.

Since the infection spreads throughout the forest as time increases, we specify a system of
differential equations (dxi/dT ) that can be solved for xi (T ), and substituted into the harvest
revenue function (Eq. 6). We are then able to proceed as before and find the optimal rotation
length using the first-order condition.We can find a general solution by differentiating Eq. (5),
which gives

d Ĵ (T )

dT
=e−rT d

dT

(

M(˜L(T ), T )
) − re−rT M(˜L(T ), T ) − A(L)e−rT (8a)

=pe−rT
(

d f

dT
˜L(T ) + f (T )

d˜L(T )

dT
− r f (T )˜L(T ) − A(L)

p

)

. (8b)

Setting Eq. (8b) equal to zero and re-arranging we have

1

f (TD)

d f (T )

dT

∣

∣

∣

∣

T=TD

− r = 1
˜L(TD)

(

∣

∣

∣

∣

d˜L

dT

∣

∣

∣

∣

T=TD

+ A(L)

p f (TD)

)

. (9)

Equation (9) shows that the optimal rotation length (T = TD) is obtained when the relative
marginal value of waiting for one more instant of timber production minus the discount
rate (left-hand side) is equal to the relative marginal loss from the pathogen spreading and
the opportunity cost of land rent (right-hand side). We note that in the absence of infection
(˜L(T ) = L) Eq. (9) reduces to Eq. (3), thus showing that the inclusion of infection is likely
to reduce the optimal rotation length. Additionally, the benefit of land rent after harvest is
weighted by 1/L̃ , suggesting that there is an additional incentive to harvest earlier and start
accruing rent from the land use change if the infection causes a reduction in timber benefit. In
summary, Eq. (9) highlights the trade-off between harvesting early and preventing the spread
of infection (and the subsequent reduction in forest value), and not achieving further future
timber production.

Establishing whether the optimum rotation length maximises the NPV in Eq. (5) is more
difficult. Finding the second derivative we obtain

d2 Ĵ (T )

dT 2

∣

∣

∣

∣

T=TD

=
[

pe−rT
(

˜L(T )

(

d2 f

dT 2 − r
d f

dT

)

+ 2
d˜L

dT

d f

dT
+ f (T )

(

d2˜L

dT 2 − r
d˜L

dT

))]

T=TD

.

(10)

The sign of Eq. (10) is unclear and dependent on the relativemagnitude of the terms.However,
once an actual pathogen system is specified, we can show that the optimal rotation length at
TD is always a maximum.
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3 A Numerical Solution

In order to examine the sensitivity of the optimal rotation length to changes in the biological
and economic parameters, we specify the timber production, f (T ), and the epidemiological
compartmental model in the following numerical simulation exercise.

3.1 Timber Production Function

In our framework the net benefit at the end of the rotation is dependent on the function
describing the timber production, f (T ). In this paper we use a yield class of 14 (growth in
timber volume of approximately 14 cubic metres per hectare per year), of Picea sitchensis
(sitka spruce), the dominant conifer species for timber production in Scotland and elsewhere
in the British uplands (Forestry Commission 2011). The model “Forest Yield” developed
by the government agency Forest Research was used to estimate the average timber volume
per tree and density of trees (number per hectare) over time (Matthews et al. 2016), which
allowed us to estimate the average timber production per hectare. These data points are shown
in Fig. 1a where the timber volume per hectare of forest (Vi ) is given for each time step (Ti ).
(T1, V1) is the point recorded once the average tree has grown into the 7–10 cm range of
diameter at breast height (DBH); trees are generally not commercially harvested at smaller

(a)

(b) (c)

Fig. 1 Timber production and disease progress curves. In a the data points (grey dots) are the timber production
(m3 ha−1) from the forest yield model for unthinned, yield class 14 Picea sitchensis against time (years).
The fitted curve (black) is produced using Eq. (11) and the parameters are in Table 1. The area of infected
forest (L − x(t) ha) is plotted against time (years) with b a fixed rate of primary infection and three secondary
infection rates and c a fixed rate of secondary infection and three primary infection rates (the parameter sets
are in Table 2). The optimal rotation length of the disease-free system, TDF , is shown as a vertical, grey line
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sizes. This model includes the natural mortality rate that is expected of an un-thinned stand
with 2 m initial tree spacing.

Using the model output we can fit a curve, which has the form

f (T ) =
{

0 if T < T1

VM

(

1 − eb̄(T−T1)
)

+ V1 if T ≥ T1
(11)

where (TM , VM ) is the last data point given. We used the growth model to obtain 185years
of output and in order to capture the shape of the curve over time we fit parameter b̄ by
setting f (200) = VM . Moreover, since we are examining the effect of disease on the optimal
rotation length, we include here the full time horizon output. All parameter values are given
in Table 1, and Fig. 1a shows the data points and fitted curve given by Eq. (11). Since trees
are generally only harvested once they have reached 7–10 cm DBH, our model uses T1 as a
lower harvesting boundary, where the trees cannot be harvested before this time point.

3.2 Susceptible-Infected Disease System

We now reduce the N -state compartmental model to a two-state, susceptible-infected (SI)
system with x(T ) representing the area of the susceptible forest and y(T ) the area of the
infected forest at time T . The total area of forest remains constant over time (L = x(T ) +
y(T )), therefore the SI system can be written as

dx

dT
= −βx(T ) (y(T ) + P) (12a)

dy

dT
= βx(T ) (y(T ) + P) (12b)

where the primary infection rate, P , controls the external infection pressure (e.g. from spores
dispersed into the forest), and the secondary infection rate, β, controls the spread of infection
within the forest (from infected to susceptible trees). Since the area of forest is conserved
(dL/dT = dx/dT + dy/dT = 0) we eliminate Eq. (12b) by setting y(T ) = L − x(T ).
Thus the system reduces to

dx

dT
= −βx(T ) (L − x(T ) + P) , (13)

which can be solved using the separation of variables method to give

x(T ) = L + P
P
L e

(L+P)βT + 1
. (14)

In the general framework, ˜L(T ) represents the effective area of the forest when disease is
present. It calculates an equivalent area of the forest without disease which would produce
the same profit as one with some infected trees (Eq. 7). For the SI system ˜L(T ) is therefore
dependent on the area of susceptible and infected trees and the effect of disease on the timber
revenue. Equation (7) becomes

˜L(T ) = x(T ) + ρ(L − x(T )) (15)

where ρ scales the revenue from timber that is infected (0 ≤ ρ ≤ 1). Setting ρ = 1 means
that the infection has no effect on the timber revenue from infected trees; conversely ρ = 0
means that the timber from infected trees is worth nothing.
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Table 2 Parameter sets for the
primary and secondary infection
rates

a denotes the baseline value for
the primary and secondary
infection rate

Disease dynamics P β t0.5
(Primary–secondary)

High–fast 0.16a 0.1a t0.5 = TDF/2

High– medium 0.16 0.044 t0.5 = TDF

High– slow 0.16 0.022 t0.5 = 2TDF

High– fast 0.16 0.1 t0.5 = TDF/2

Moderate–fast 0.019 0.1 t0.5 = TDF

Low– fast 0.0003 0.1 t0.5 = 2TDF

The dynamics in Eq. (14) are governed by the primary and secondary infection rates.
We select six parameter sets (detailed in Table 2) that aim to capture the characteristics of
different pathogen species. It may be possible to estimate secondary infection rate from epi-
demiological field data, however interpreting and quantifying an appropriate rate of primary
infection is more difficult. We therefore introduce another parameter t0.5, which is the time
taken for half the forest to become infected, to describe the primary infection rate (for a fixed
secondary infection rate). Using Eq. (14) we can find this value by setting x(t0.5) = 0.5L
giving

t0.5 = ln(L/P + 2)

(L + P)β
. (16)

We can equate t0.5 to the disease-free rotation length, or proportions of it, to allow for an
easy interpretation of the effect of variation in primary infection rate (when the secondary
infection rate is fixed). For example, t0.5 = TDF corresponds to half of the trees in the forest
being infected by the end of a disease-free rotation. Figure 1b, c show disease progress curves
(area of infected forest against time) generated for the parameter sets in Table 2. (Note that
we also give t0.5 for the first set of parameters when P is constant and β is fixed—this was
done in order to find appropriate levels of β.)

4 General Results

In this section we use the numerical timber production function and SI model defined in
Sect. 3 to give further insight into the results presented in Sect. 2. Many of the results
cannot be found analytically when a disease is included, however we highlight key trends
and qualitative behaviour demonstrating the relationship between pathogen characteristics
and the optimal rotation length. Note that we fix the area of the forest, L , in this section, but
carry out sensitivity analysis to L in “Appendix 1”.

4.1 No Disease

First we analyse the system without disease to provide a baseline optimal rotation length,
which can be used to measure the effect of disease on the system. We show the NPV (given
in Eq. (1)) against time (or age of the forest plantation) in Fig. 2a where it is clear that
as the trees age the NPV initially increases (due to an increase in production and thus the
net benefit from harvesting), reaches a maximum and then decreases (due to the effects of
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(a) (b)

Fig. 2 Sensitivity analysis of the effect of the land rent after harvest on the optimal rotation length of the
systemwithout disease. a The net present value [NPV, Eq. (1)] against the rotation length (T in years) for three
values of land rent after harvest: a = 0 (solid black) a = 100 (dashed black), and a = 200 (dotted black).
b The optimal rotation length (T = TDF in years) that maximises the NPV in Eq. (1), against the land rent
after harvest (a, in ha−1 year−1). In all panels the growth function is parameterised for yield class 14 Picea
sitchensis where the lower harvesting boundary, T1 (the time when the average tree grows into the 7–10cm
DBH class) is given by the grey lines in (a) and (b). Other parameters can be found in Table 1

reduced production and discounting). The optimal rotation length is the time (or age of the
forest plantation) where the maximum NPV is achieved.

We can find the optimal rotation length analytically by substituting the timber production
function (Eq. 11) into the first-order condition in Eq. (3), obtaining

VMb̄eb̄(T−T1)

VM (1 − eb̄(T−T1)) + V1
− r = a

p f (T )
, (17)

which holds when T ≥ T1. Solving for the optimal rotation length, T = TDF , we have

TDF = 1

b̄
ln

(

a + rp(VM + V1)

pVM (r − b̄)

)

+ T1. (18)

Using the baseline parameters inTable 1 (which set the land rent to zero)wefind TDF = 39.25
years. From Eq. (18) we can also see that as the land rent after harvest, a, is increased the
optimal rotation length will be decreased. This is also shown in Fig. 2b where the optimal
rotation length tends towards the lower harvesting boundary as a increases. This can be
explained by the land rent providing an additional incentive to fell the trees earlier thus
bringing forwards the time when land rent payments are received.

4.2 Disease

We now find the optimal rotation length that maximises the NPV in Eq. (5) when the timber
production function is described by Eq. (11) and the disease follows the susceptible-infected
framework in Eq. (12). An analytic solution for the optimal rotation length is intractable,
therefore we divide the system into two scenarios to carry out analyses of sensitivity to the
parameters controlling the disease progression (by setting ρ = 0) in Sect. 4.2.1, and the
reduction in timber value caused by disease (by setting 0 ≤ ρ ≤ 1) in Sect. 4.2.2. We set the
land rent to zero in order to determine more clearly the relative effect of disease. We only
consider a rotation length that is greater than, or equal to, the minimum harvesting boundary
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(T ≥ T1), and the area of the forest, L , is fixed at one hectare (although we also carry out an
analysis of sensitivity to L in “Appendix 1”).

4.2.1 Analysis of Sensitivity to the Pathogen Characteristics

Setting ρ = 0 simplifies the model as it makes the net benefit of the timber at the end of
the rotation dependent only on the area of healthy forest, that is ˜L(T ) = x(T ) in Eq. (15).
Substituting this and the timber production function (Eq. 11) into the first-order condition
(Eq. 9), we find

1

f (T )

d f

dT
− r = 1

x(T )

∣

∣

∣

∣

dx

dT

∣

∣

∣

∣

(19a)

�⇒ −VMb̄eb̄(T−T1)

VM (1 − eb̄(T−T1)) + V1
− r = Pβ(L + P)

P + Le−(L+P)βT
. (19b)

The NPV is maximised when the marginal benefit of waiting for one more instant of timber
production minus the opportunity cost of investment (left-hand side) is equal to the marginal
loss from the spread of infection (right-hand side). Whilst we are unable to solve this ana-
lytically to find the optimal rotation length (T = TD), we can gain some insight into the
dynamics and show that there will be one stationary point which maximises the NPV by
treating each side of Eq. (19b) separately. The left-hand side of Eq. (19b) is the same as the
disease-free case (Eq. 17), and will exponentially decrease and tend to −r as T → ∞. The
right-hand side of Eq. (19b) is always positive and saturates to a maximum of β(L + P)

as T → ∞. If the values of both the left- and right-hand side of Eq. (19b) were plotted
against the rotation length, T , the curves would intersect once showing that there will be
one stationary point—which gives the value of the optimal rotation length—of Eq. (9) when
ρ = 0 and A(L) = 0. By plotting the NPV, the optimal rotation length can be shown to
be a maximum. Furthermore, the right-hand side of Eq. (19b) shows that an increase in the
primary or secondary infection rate will reduce the optimal rotation length.

The relationship between the optimal rotation length and the secondary infection rate is
highlighted in Fig. 3a: as secondary infection rate (β) increases, the optimal rotation length
shortens and tends to the lower harvesting boundary. This highlights that when the reduction

(a) (b)

Fig. 3 Sensitivity analysis for the secondary infection rate on the optimal rotation length. Change in a optimal
rotation length (T = TD) and b maximum NPV in Eq. (5) as the secondary infection rate, β, is varied (with
ρ = 0 and a = 0). The lower harvesting boundary (T1) is the grey horizontal line in a and the primary
infection rate is at the baseline value (Table 2). Economic and ecological parameters can be found in Table 1
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(a) (b)

Fig. 4 Sensitivity analysis for the primary infection rate on the optimal rotation length. Change in a optimal
rotation length (T = TD) and b maximum NPV in Eq. (5) as the primary infection rate, P , is varied (with
ρ = 0 and a = 0). The lower harvesting boundary (T1) is the grey horizontal line in a and the secondary
infection rate is at the baseline value (Table 2). Economic and ecological parameters can be found in Table 1

in timber value caused by disease is so great that the timber from infected trees is worth
nothing, then shortening the rotation length allows timber from trees that are not infected to
be salvaged (despite these trees not reaching their full growth potential) and some costs to be
recouped. In this instance, waiting allows the infection to spread further andwill subsequently
reduce the timber benefit.

Aswell as reducing the optimal rotation length, the effect of disease on themaximumNPV
can be considerable (Fig. 3 b). When the progression of the infection is such that it spreads
throughout the forest by the time of the lower harvesting boundary (T = T1), no benefit
can be gained from the timber thus the maximum NPV is equal to the establishment costs.
Another key point shown in Fig. 3b is that there is a threshold rate of secondary infection
where the maximum NPV is zero. We cannot find this threshold value, β(0), analytically
since it depends on the corresponding optimal rotation length TD = T (0) (which, as we have
already discussed, cannot be found analytically). However, β(0) can be found numerically
by first finding the optimal rotation length, TD , for a range of β values (as done in Fig. 3a).
The maximum NPV is zero when the cost of establishing the forest is equal to the present
value of the revenue from timber at the end of the rotation, giving

W (L) = p f (TD)x(TD)e−rTD . (20)

Therefore the value of β (and corresponding TD), which solves Eq. (20) will be the critical
threshold value β(0).

It is common for estimates of the maximum NPV to drive investment decisions, and we
show here that the rate of secondary infection will affect this. Moreover, we carried out a
similar sensitivity analysis for the rate of primary infection in Fig. 4, and showed that the
results are qualitatively similar to the analysis for the rate of secondary infection (Fig. 3).
Analysis of sensitivity to the area of the forest, L , shows that as L is increased, the optimal
rotation length decreases further (“Appendix 1” and Fig. 6a).

4.2.2 Analysis of Sensitivity to the Value of Timber that is Infected

In the first scenario we assumed that ρ = 0, which means revenue is from uninfected timber
only. However, for many diseases it is likely that timber from infected trees will create some
revenue (for example timber from infected trees could be sold as firewood), and in this section
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we aim to understand how variation in the reduction of the timber value caused by disease can
affect the optimal rotation length. Using a similar method as before, we substitute functions
describing the timber production (Eq. 11) and the infected forest,˜L(T ) = x(T )+ρ(L−x(T ))

where 0 ≤ ρ ≤ 1, into the first-order condition (Eq. (9) and find

1

f (T )

d f

dT
− r = 1

L̃(T )

∣

∣

∣

∣

∣

d L̃(T )

dT

∣

∣

∣

∣

∣

(21a)

�⇒ −VMb̄eb̄(T−T1)

VM (1 − eb̄(T−T1)) + V1
− r = β(P/L)(L + P)2

(P/L) + e−(L+P)βT

(1 − ρ)

L + P(1 + ρ(e(L+P)βT − 1))
.

(21b)

As before, we cannot find the optimal rotation length analytically, however examining the
first-order condition in Eq. (21b) shows that since the right-hand sidewill remain positive, one
stationary point exists (and plotting the NPV shows that it is a maximum). We therefore use
numerical optimisation techniques to plot the optimal rotation length against the secondary
infection rate, β, for different levels of reduction in timber value caused by disease, ρ, in
Fig. 5a. This figure highlights the trade-off betweenwaiting for infection to spread andwaiting
for timber to grow. When the reduction of the timber value caused by disease is such that
the timber which is infected has no value (ρ = 0) then the optimal rotation length will tend
towards the lower harvesting boundary (T1) as β increases. However, when the timber that is
infected is worth something (ρ > 0) then the optimal rotation length initially decreases, but
at some critical value of β, this is reversed and the optimal rotation length increases and tends
towards the disease-free optimal rotation length. The rate of secondary infection where this
switch occurs is dependent on the level of reduction in the timber value: when the reduction
is small (ρ is close to one) then the switch occurs at small values of β, but when the reduction
is large (ρ is close to zero) then the switch occurs at large values of β (Fig. 5a).

This relationship can be seen further in Fig. 5b, c, which show the optimal rotation length
and the maximum NPV respectively, against the rate of secondary infection, β, and the
reduction in the timber value caused by disease, ρ. Firstly, when β is very small the infection
spreads slowly throughout the forest, thus the reduction in the timber value has only a small
effect since only a small proportion of the trees are infected (Fig. 5c). The optimal rotation
length therefore remains close to the disease-free optimal rotation length (Fig. 5b). At greater
rates of secondary infection, a larger proportion of the forest becomes infected earlier in the
rotation. This means that the optimal rotation length will be shortened enabling more timber
to be salvaged from undiseased trees, but at a cost in terms of loss of volume (Fig. 5b, c). At a
greater secondary infection rate a higher proportion of the forest will become infected by the
lower harvesting boundary, and subjected to the reduction in timber value. This highlights
a key result: it will be optimal to let the trees grow and harvest at the disease-free optimal
rotation length for diseases with high primary and/or secondary infection rates, unless the
reduction in the timber value is very small, in which case it is always optimal to reduce the
rotation length (Fig. 5b, c). (We carried out a similar analysis for variable primary infection
rates, and a fixed secondary infection rate, but we have omitted it here since it showed
qualitatively similar results to the analysis for a fixed primary infection rate and variable
secondary infection rates.)

Sensitivity to the area of the forest, L , is reported in “Appendix 1”, and revealed a similar
effect of the infection on the optimal rotation length. As L is increased, it will be optimal to
delay harvest until the disease-free optimal rotation length for a larger range of parameters
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(a)

(b) (c)

Fig. 5 Sensitivity analysis for the reduction in timber value caused by disease on the optimal rotation length.
a The optimal rotation length (TD) against the secondary infection rate, β, for four values of timber of trees
that are infected (relative to uninfected trees): ρ = 0 (thin, black), ρ = 0.2 (dotted, black), ρ = 0.4 (dashed,
black), and ρ = 0.7 (thick, black). The lower harvesting boundary (T1) is the grey horizontal line. Variation
in b optimal rotation length and c maximum NPV in Eq. (5) with the secondary infection rate, β, and timber
revenue from trees that are infected relative to uninfected trees, ρ. The grey scale on the right-hand side of
panels b, c indicates the optimal rotation length (in years) and maximum NPV (in £) respectively. The light
grey curve in c highlights the values of β and ρ for which the maximum NPV is zero. The primary infection
rate is at the baseline value (Table 2) and economic and ecological parameters can be found in Table 1

controlling the rate of spread of infection and the effect of the disease on the timber value
(Fig. 6b, c).

4.3 The Effect of a Control

We extend the model presented in Sect. 3 to include a control that reduces (1) the impact
of the disease on infected trees (and thus potentially on their growth rate and the quality
of their timber) or (2) the spread of the pathogen to uninfected trees. However, there is a
cost of applying the control annually throughout the rotation. This extension is presented in
“Appendix 2” where it is used to examine two scenarios: fully effective control and partially
effective control. We found that in both scenarios, the optimal rotation length will always
be reduced when compared with the system without disease, since there is an ongoing cost
throughout the rotation. When comparing both scenarios with the system with disease but
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(a)

(b) (c)

Fig. 6 Sensitivity analysis for the area of forest on the optimal rotation length. a The optimal rotation length
(T = TD) that maximises the NPV in Eq. (5) against the area of forest, L (with ρ = 0 and a = 0), for
three values of secondary infection rate: β = 0.022 (solid line), β = 0.044 (dashed) and β = 0.1 (dotted).
Variation in optimal rotation length against the secondary infection rate, β, and timber revenue from infected
trees relative to uninfected trees, ρ, when b L = 2 ha and (c) L = 5 ha. The grey scale on the right-hand side
of panels b, c indicates the optimal rotation length (in years). In all panels, the primary infection rate, P is at
the baseline (Table 2) and the economic and ecological parameters can be found in Table 1

without control, both controls will increase the optimal rotation length when the benefits of
applying the control outweigh its cost.

5 Discussion

In this paper, our novel framework combines a single rotation Faustmann model with a
generalisable, epidemiological compartmentalmodel.Wefind that the optimal rotation length
is obtainedwhen themarginal benefit of waiting for onemore instant of tree growth is equal to
the relative marginal loss from the infection spreading further, plus the cost of opportunities
forgone. We demonstrate how the model presented here can be applied to a specific pathogen
system, by undertaking sensitivity analysis for the parameters controlling the primary and
secondary infection rates, and the revenue obtained from the timber of infected trees relative
to uninfected trees for an example susceptible-infected (SI) compartmental model. We found
that when the timber from infected trees has no value (only the timber of uninfected trees
can be sold), an increase in the primary and/or secondary infection rates reduces the optimal
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rotation length: the faster the infection spreads, the shorter the optimal rotation length. This is
in line with previous studies that show that increasing the risk of a catastrophic loss decreases
the optimal rotation length (Amacher et al. 2009). For example Reed (1984) adapted the
infinite rotation Faustmann formula to include the arrival of fire using a homogeneous Poisson
distribution, and found that the risk of an abiotic event increased the effective discount rate so
that the forest owner perceives a higher opportunity cost of not harvesting, and thus shortens
the optimal rotation length. Similarly, when the Poisson distribution is inhomogeneous, the
risk of an abiotic event increases with stand age, and the optimal rotation length is shortened
further (Amacher et al. 2009). Thus, when timber from infected trees is worth nothing, the
effect on the optimal rotation length is similar to that of a catastrophic event. This is likely to
be because the trees affected by the hazard have no timber value once the event has occurred,
and so it is optimal to take action sooner to salvage timber from the higher proportion of trees
that are still unaffected.

Shortening the rotation length has additional benefits: it reduces the time that the forest—
with trees that are diseased and possibly stressed—is exposed to further disturbances such
as fire, wind, pests and other pathogens (Spittlehouse and Stewart 2003); and provides an
earlier opportunity to change the tree species (Spittlehouse and Stewart 2003) if, for example,
it becomes economically unviable to plant the same species again due to the persistence of
the pathogen in the landscape. From a practical forestry perspective, a reduction in the
rotation length has often been advocated as a management strategy to reduce the effect of
pests and pathogens (Chou 1991; Conway et al. 1999; Whitehead et al. 2001; Wainhouse
2005). For example, Conway et al. (1999) analysed the financial losses due to the native
Choristoneura pinus (jack pine budworm) on Pinus banksiana (jack Pine) in the Lakes
States region of America in relation to pest management strategies. The budworm can cause
severe defoliation during an outbreak, which leads to reduced tree growth and increased
tree mortality, and thus a loss of marketable timber. Conway et al. (1999) showed that it
was economically optimal to shorten the rotation length, as well as prioritising harvesting
of over-mature stands. In North America outbreaks of Dendroctonus ponderosae (mountain
pine beetle) can spread over hundreds of kilometres causing a huge economic loss. One
characteristic that contributes to a forest’s susceptibility to an outbreak is forest age, and so
Whitehead et al. (2001) recommended that stands of Pinus contorta (lodgepole pine) are
managed on shorter rotations to minimise susceptibility.

When we analysed the sensitivity of optimal rotation length to the reduction in timber
value caused by disease, however, we found that, when the rate of primary and/or secondary
infection was high, it may be optimal to delay harvest until the disease-free optimal rotation
length. This highlights a key result that the inclusion of a pathogen, which reduces the value
of timber from infected trees, creates a trade-off between waiting for further tree growth and
the disease spreading further. For some pathogens, like dothistroma needle blight, the forest
manager may delay harvesting until the disease-free optimal rotation length because this
leaf pathogen is unlikely to have a major negative effect on timber quality and, provided the
intensity of infection does not become too large, a high proportion of the trees will survive
and continue to grow. (We note that this result is not foundwhenmodelling other catastrophic
events such as fire, thus showing the need for a specific analysis into the effect of disease on
the optimal rotation length.)

These results are important not only because of the frequent arrival of novel pest and
pathogen species to the UK (Gilligan et al. 2013), as in many other countries, but also
because of their implications for issues of spatial scale.Under some circumstances the optimal
management of a single forest in response to a pathogen outbreak is to reduce the rotation
length. This will generally have additional benefits at a wider spatial scale (e.g. to other forest
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owners) since a potential source of infection to other forests will be reduced earlier. However,
this benefit may not occur for a fast-transmitting pathogen since the optimal management
for a single forest is to delay harvest to the disease-free optimal rotation length. In this
case, a source of infection will persist for longer (when compared with a slower transmitting
pathogen where the trees are harvested earlier), which can promote the spread of infection to
neighbouring forests. We have not considered such shiftable externalities in this paper, but
an interesting extension to the framework presented here would be to consider the optimal
rotation length problem in a landscapewithmultiple forestswhere disease can spread between
them.

The novel aspect of our paper is our generalisable model framework, which could be
adapted to model specific host-pathogen systems by adding appropriate details to both the
Faustmann and compartmental models. We give an example of how this framework can
be extended to include other management strategies by considering an annually applied
disease control (“Appendix 2”). However, we recognise that there are many complexities
that have been excluded from the framework presented here. One such complexity, which we
have omitted, is multiple rotations where trees are perpetually planted and harvested, thus
synonymously incorporating the benefit of the land (‘land rent’). The main reason for this
is that a model of multiple rotations will have to include an assumption of what happens to
the level of infection between rotations (i.e. if and how the pathogen carries over to the next
rotation after a harvest). However, whilst we have omitted the multiple-rotation analysis used
in the traditional Faustmann model (calculating the NPV over infinite forest rotations), we
have included an annual land rent payment commencing after the harvest at the end of the
rotation ad infinitum. This land rent could represent the net benefit of changing the land use,
changing the tree species, or even planting the same species again. Therefore, varying this
after-end-of-rotation land rent, to include the carry-over effects of any disease (for example
if it was contained within the soil), would be an indirect way of representing the long-run
effects of disease on future rotations.

A common criticism of the Faustmann framework, is the omission of the non-timber
benefits of forests (Hartman 1976; Samuelson 1976). Clearly, forests produce a range of
non-market benefits such as biodiversity, carbon sequestration, recreation and a range of
other ecosystem services, and inclusion of such benefits may greatly alter the estimation of
the optimal rotation length (Hartman 1976; Samuelson 1976). Since this is an important issue,
we have extended the framework presented here to analyse the optimal rotation length of an
even-aged forest in the presence of disease when non-timber benefits are considered through
a green payment, which is offered to private forest owners to partly internalise the non-timber
benefits (Macpherson et al. 2016a). This payment results in a range of complex interactions
linked to tree disease characteristics (infection spread rate and impact on the value of harvested
timber generally) and the structure of the green payment (whether the non-timber benefits
are affected by disease). Another criticism of the Faustmann framework is the assumption of
constant fixed timber price. Many studies have considered how uncertainty and risk in future
prices can affect the optimal rotation length (Alvarez and Koskela 2006; Loisel 2011; Sims
and Finnoff 2013). An interesting extension to the framework presented here, would be to
examine the effect of a declining price of timber with the duration or degree of infection of
the tree; this would incorporate the effect of a disease that reduces the value of timber over
time (through decreased growth rate or quality), for exampleHeterobasidion annosum (Pratt
2001; Redfern et al. 2010).

In this paper we have focussed on the management strategy of clear-felling the whole
forest. Another similar management strategy is the use of partial felling, where all trees
within a buffer zone of trees diagnosed as infected are harvested early, and the unin-
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fected trees outside this zone are left standing until the ‘optimal’ rotation length. This is
a common method for managing large epidemics; for example, in certain regions in the
UK, larch trees within 250 m radius of a tree infected with Phytophthera ramorum must
be felled immediately (http://scotland.forestry.gov.uk/images/corporate/pdf/phytopthora-
ramorum-operational-procedures). This reduces the spread of infection by removing both
the known infected trees and also those that may be infected but are asymptomatic. However,
tree pathogens and pests can be difficult to detect, which can be problematic for partial felling
strategies. For this scenario, the model must be extended to include: (1) regular monitoring
of the infection level and its location, (2) defining the likelihood of detecting the infection,
(3) setting a threshold for when action would take place and what proportion of the forest is
subject to partial felling, and (4) defining the likelihood of removing the pathogen through
partial felling. Whilst it is possible for the framework presented here to include these factors,
it would require separate analysis.

Forest management is carried out to promote the health and growth of forests, which in
turn plays a vital role in maximising the value of such investments. This paper presents a
theoretical, generalisable model with the aim of understanding how disease can influence the
optimal rotation length when an individual forest owner is seeking to maximise the return
on their investment. Moreover, it provides an exemplar framework showing how to map
epidemiological compartmental models to the forest management strategy of the optimal
rotation length of a plantation.
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Appendix 1: Sensitivity to the Area of the Forest

Throughout the main paper we fix the area of the forest, L , to one hectare. In this section we
examine the sensitivity of the optimal rotation length to variation in L . For this we assume
that future land rent after harvest is zero, the timber production function is given by Eq. (11)
and the disease system follows a SI model in Eq. (13).

In the absence of disease, Eq. (3) shows that the optimal rotation length is independent of
the area of the forest, L . However, this cannot be determined when disease is present, since
Eq. (9) shows that the spread of infection is dependent on the area of the forest (through the
initial conditions in L̃(T )). When the timber of infected trees is worth nothing (ρ = 0) then
the first order condition, Eq. (19b), shows that the marginal loss from the spread of infection
is increased as L is increased. This decreases the optimal rotation length, as shown in Fig. 6a
where the optimal rotation length is plotted against variation in L for three rates of secondary
infection (β). The optimal rotation length is decreased as L is increased regardless of the
value of β (and also of changes in the primary infection rate, P , which is not shown here).
Increasing L results in changes in the optimal rotation length that are qualitatively consistent
with Sect. 4.2.2 and Fig. 5b when L = 1. When sensitivity to the reduction in revenue from
disease (ρ) is examined, the optimal rotation length is shortened or remains at the disease-free
optimal rotation length dependent on the trade-off between waiting for the timber to grow
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and the infection spreading further (Fig. 6b, c). The main difference is that as L is increased
the region in the parameter space where the optimal rotation length is shortened (grey) is
smaller (Fig. 6b, c).

In summary, increasing the area of the forest emphasises the effect of disease on the
optimal rotation length shown in Sect. 4.2. We think that this is largely due to the type of
epidemiologicalmodel used here.More specifically,we use a density-dependent transmission
term in the SImodel (Eq. (13), whichmeans that the per-tree force of infection increases with
the area that is infected, and so themarginal loss in timber benefit due to disease will increase.
This therefore increases either the reduction in the optimal rotation length or the benefit from
waiting for the timber to grow until the disease-free optimal rotation length before harvesting.
(Our follow-up paper (Macpherson et al. 2016b) details the formulation of density-dependent
disease transmission in relation to tree diseases, but also gives an example of frequency-
dependent transmission and the effect this can have on disease dynamics within a forest.)

Appendix 2: Including a “Control” Option

For most tree diseases there are limited, effective control methods, other than tree felling,
that can be applied to prevent the spread of disease or reduce the damage caused in a standing
timber production forest. One approach to control, which can reduce the rate of spread of
some diseases, is the application of chemical or biological agents. For example, treatments are
commonly applied to the stumps of felled conifer trees to reduce the risk of Heterobasidion
annosum spreading from these stumps through the root system to live trees (Pratt 2001;
Redfern et al. 2010). Another example is the use of copper-based fungicides in some nurseries
to protectPinus spp. fromDothistroma septosporum. Although this treatment is not approved
for use in infected production forests in Great Britain (Forestry Commission Scotland 2013),
it is routinely used in New Zealand when infection levels surpass 25% (Forestry Farm New
Zealand 2008).

These examples provide the motivation to extend our generalisable model to explore a
hypothetical scenario where a chemical or biological control method is available and acts to
reduce (1) the impact of the disease on infected trees (and thus potentially on their growth
rate and the quality of their timber) or (2) the spread of the pathogen to uninfected trees. The
first effect means that the application of the control increases the timber revenue from treated
infected trees relative to that from untreated infected trees, which is analogous to the effect
of reducing the value of the parameter ρ that we have already found to increase the optimal
rotation length and maximum NPV through sensitivity analysis. For the second effect, the
control reduces the rate of spread of infection; again we have found that this increases the
optimal rotation length and maximum NPV (by exploring the sensitivity to the parameters β

and P). However, it is now necessary to consider the cost of applying the control measure,
whichwill give rise to a trade-off between the cost of treatment and the benefit of the increased
revenue from the timber of harvested trees.

To analyse this trade-off we extend the NPV given in Eq. (5) to consider a forest that is
treated annually with a chemical spray at a cost of D(L), which is linearly dependent on the
area of the forest. We assume that this control is applied throughout the entire rotation to
the whole forest, that is trees which are infected or susceptible are treated the same. If the
after-harvest benefits (a) are zero, the NPV can be written as

Ĵ (T ) = −W (L) + M(˜LC (T ), T )e−rT −
∫ T

0
D(L)e−r t dt, (22)
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where ˜LC (T ) = x(T ) + ρ(L − x(T )) is the effective area of the forest when disease is
present and a control is applied (compared to ˜L(T ) in Eq. (7), which represents the diseased
forest without control). As before, the area of susceptible forest, x(T ), is given by Eq. (14),
and we assume that d˜LC (T )/dT ≤ 0, since control simply reduces the effect of disease
from the beginning of the rotation, and does not allow trees to ‘recover’. The effect of the
control on the pathogen dynamics is represented in the compartmental equations by scaling
key parameters dependent on whether the control is reducing the effect of disease on the
timber value (ρ), or the spread of infection (β and P). Solving the NPV in Eq. (22) subject
to Eq. (14), we obtain the first-order condition

1

f (T )

d f

dT
− r = 1

˜LC (T )

(∣

∣

∣

∣

d˜LC (T )

dT

∣

∣

∣

∣

+ D(L)

p f (T )

)

(23)

where the optimal rotation length is a balance of the relative marginal benefit obtained from
waiting for one more instant of tree growth minus the discount rate (left-hand side) and the
relative marginal loss from the disease infecting more trees and the relative cost of applying
the control (right-hand side). We demonstrate how control affects the optimal rotation length
compared with the systems (1) without disease and (2) with disease and without control, for
two scenarios. The first is where control completely mitigates the arrival or effect of disease
and the second is where the control is only partially effective.

First suppose that the control completely prevents the arrival of disease and/or reduces
symptoms so much that there is no reduction in tree growth rate and/or no difference in the
quality of timber between infected and uninfected trees. This means that ˜LC (T ) = L and
Eq. (23) will be independent of disease (since the disease now has no effect on the forest).
The first-order condition becomes

1

f (T )

d f

dT
− r = 1

L

D(L)

p f (T )
. (24)

Therefore, the cost of applying the control will reduce the optimal rotation length and max-
imum NPV compared with the disease-free system in Eq. (3) (it will act similarly to an
increase in discount rate). However, when compared with the system with disease but with-
out control (Eq. 9), the optimal rotation length (of the system with disease and control) will
be increased if the marginal cost of applying the control is less than the loss from the disease
infecting more trees. This is shown by comparing the right-hand side of Eqs. (9) and (24),
since the left-hand sides are the same, to give

1

˜L(T )

∣

∣

∣

∣

d˜L

dT

∣

∣

∣

∣

>
1

L

D(L)

p f (T )
. (25)

For the second scenario, suppose that the control is not fully effective but still reduces the
spread of infection or increases the revenue from the timber of infected trees, sufficiently that
L > ˜LC (T ) > ˜L(T ). The loss from disease in Eq. (23) is now non-zero, which means that,
compared with the system without disease (or to the system with disease and a completely
efficacious control that costs the same), the optimal rotation length and maximum NPV will
be decreased. When comparing this with the system with disease but with no control actions
(Eq. 21a) the overall effect is dependent on the relative magnitude of the terms: if the net
benefit of the control (timber revenue gained minus the cost of applying control) is greater
than the loss from disease without control, then the optimal rotation length will be increased
compared with the system with disease and without control, thus

123



M. F. Macpherson et al.

1

˜LC (T )

(∣

∣

∣

∣

d˜LC (T )

dT

∣

∣

∣

∣

+ D(L)

p f (T )

)

>
1

˜L(T )

∣

∣

∣

∣

d˜L(T )

dT

∣

∣

∣

∣

. (26)

Alternatively the optimal rotation length will be decreased when the net benefit of the control
is less than the loss from disease without control.
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