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Abstract  

Task-specific dystonia is a movement disorder characterized by the development of a 

painless loss of dexterity specific to a particular motor skill. This disorder is prevalent among 

writers, musicians, dancers and athletes. No current treatment is predictably effective and 

the disorder generally ends the careers of affected individuals. There are a number of 

limitations with traditional dystonic disease models for task-specific dystonia.  We therefore 

review emerging evidence that the disorder has its origins within normal compensatory 

mechanisms of a healthy motor system in which the representation and reproduction of 

motor skill is disrupted.  We describe how risk factors for task-specific dystonia can be 

stratified and translated into mechanisms of dysfunctional motor control.  The proposed 

model aims to define new directions for experimental research and stimulate therapeutic 

advances for this highly disabling disorder. 

 

 

 

  



Page | 2  
 

Main text 

We enjoy marvelling at a musician in full flow during a performance, or the grace of a tennis 

player during a game. Although such activities appear effortless to the casual observer, 

these individuals have honed their motor ability through years of rigorous practice. We 

reward their expertise by filling concert halls and sports stadiums and consider such 

exquisite movement control one of the pinnacles of human development. However, in a 

proportion of individuals, this repetitive practice of motor skill comes at a price — the 

development of a painless loss of co-ordination specific to their skill, termed task-specific 

dystonia. The motor impairment only manifests during a single task yet its wider impact is 

considerable as some of the individuals affected define our arts and sports communities.   

Task-specific dystonia is currently considered a subtype of dystonia1.  However, a 

longstanding debate continues as to whether the dystonias represent a single disease entity 

with shared pathophysiology or whether each dystonia subtype is distinct2. Task-specific 

dystonia is unique in a number of ways1. Primarily, the isolated and highly task-specific 

nature of this condition ties the problem directly to the control of a specific motor task. In 

the affected body region other fine motor tasks are initially unaffected3.  Another distinctive 

feature is the range of environmental risk factors highlighted in this framework which are 

repeatedly linked to symptomatology by patients and epidemiological studies4,5.  In the past 

many studies have suggested that traditional neurophysiological markers of dystonia such as 

abnormal sensorimotor plasticity and impaired inhibition are also implicated in task-specific 

dystonia6.  However general changes in plasticity, inhibition or somatosensory 

representation are unable to explain why only an individual task is affected (such 

abnormalities have also been documented in circuits sub-serving unaffected body regions7-

9).   Such neurophysiological markers are also highly variable in health and abnormalities do 

not reliably or specifically identify patients with task-specific dystonia10,11.  These 

observations point to the need to search for addition ways to understand the disorder. 

In this perspective article, we review emerging evidence that task-specific dystonia 

has its origins within normal compensatory mechanisms of a healthy motor system in which 

the representation and reproduction of motor skill is disrupted.  We review mechanisms of 

skill learning in health and then describe how risk factors for task-specific dystonia can be 

stratified and translated into mechanisms of dysfunctional motor control.  Finally we discuss 

the translational implications this motor control framework yields for the prevention and 

treatment of task-specific dystonia. 
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[H1] Motor skill learning in health 

A broad definition of motor skill learning is any neuronal change that enables an organism to 

accomplish a motor task faster and more precisely than before12. Increasing expertise is 

characterized by optimization of speed and accuracy13, high consistency and reliability in 

achieving the movement goal (effectiveness), as well as fluent and economical movement 

execution and automaticity (efficiency)14.  

Studies of motor skill learning suggest that a hierarchical organization of neuronal 

networks encodes the different skill components required for expert performance12 (FIG. 1). 

The main broad division proposed within the motor hierarchy is between action selection 

and execution12,15.  At the top is the selection level which links the task goals to motor 

control circuits. It takes into account the whole repertoire of movements and weighs up 

their motor costs and rewards before selecting the most appropriate response. At the 

bottom of the hierarchy is the execution level which involves neuronal populations co-

ordinating the muscles to contract.   

At the action execution level,  experiments suggest that the primary motor cortex 

encodes small movement fragments or ‘motor synergies’ within stable neuronal 

networks16,17. Gestures as complex as grasping or licking can be reproducibly evoked via 

simple electrical stimulation of primary motor cortex (FIG. 2a18).   Furthermore the range of 

motor synergies appears to depend on experience; skilled musicians have a motor synergy 

repertoire tailored to their trained instrument19. As such, representations at the execution 

level can be considered building blocks for the motor system.    

 In the early stages of skill learning, most task requirements are thought to be 

explicitly processed at the action selection level, and then directly mapped to the most 

appropriate execution elements (FIG. 1a)12. However, this is an effortful and time-consuming 

process, as multiple alternatives within the movement repertoire need to be considered. 

Therefore, later in learning intermediate level skill representations are thought to be 

formed, binding together elementary execution components (such as motor synergies) 

within a dynamic control network (FIG. 1b).  Subsequently, the selection level may only need 

to trigger a corresponding intermediate network which reduces load at the selection level 

and involves less explicit processing of task requirements.   

One experimental line of evidence that supports the existence of intermediate 

representations is the concept of ‘motor chunking’ — the grouping of elementary 

components of a sequential action into one representational unit20. With learning, as the 

completion of motor sequences becomes faster and more accurate, sequence execution 
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starts to show idiosyncratic temporal groupings or chunks21. Novel sequences are performed 

faster if previously established chunks of trained motor sequences are preserved, than if the 

chunks are regrouped22. As such, these chunks are thought to be linked at the intermediate 

level, and the transfer or flexibility of motor skill learning across different actions can be 

explained by the reuse of existing chunks in new motor sequences (FIG. 2b)23.  Chunk-

specific neuronal activity has been shown experimentally in (pre-)supplementary motor, 

lateral premotor cortical areas and the striatum23-27.  

Besides the sequential order of individual movements, complex skill reproduction 

requires the integration of other features such as the temporal profile or rhythm of the 

sequence.  Interestingly, such sequence characteristics may be encoded separately. 

Advantages emerge when previously trained spatial or temporal features of movement 

sequences are transferred to new spatio-temporal combinations separately suggesting that 

these movement signatures are represented independently within the brain (FIG 2c)28-30. 

Accordingly, chunk-specific activity in striatal medium spiny neurons in rodents is not 

modulated by changes in the speed or timing of the trained motor action, suggesting that 

these neurons specify the order ofmovements in a chunk, but not its full spatiotemporal 

implementation 31. At the same time motor sequence learning often leads to a separable 

representation of temporal features, which can be understood as a more abstract form of 

chunking – a temporal grouping of sequence elements which is transferable across different 

movements and effectors30,32,33. 

Thus, within this hierarchical model of motor skill learning, intermediate-level 

representations are thought to provide an architecture that enables the flexible modification 

and recombination of acquired movement chunks and timing, maximizing both the plasticity 

and efficiency of the motor skill network involving primarily cortical and striatal areas. This 

function contrasts with spatiotemporally intricate but stereotyped reflex movements, such 

as swallowing controlled at the brainstem level, which have a limited capacity for 

modification. The cortico-spinal and cortico-striatal pathways may thus be 

biologically predisposed for flexible control of skilled movements34.    

This literature exploring motor skill learning in health can offer important insights 

into disorders of skill reproduction such as task-specific dystonia.   

 

[H1] Risk factors for task-specific dystonia 
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Both genetic and environmental factors are thought to be important in the aetiology of task-

specific dystonia.  Genetic influences are suggested by the male preponderance and positive 

family history of movement disorders in a significant proportion of patients and the ARSG 

gene (encoding arylsulfatase G) has been identified as a possible susceptibility locus35-37.  

Until better characterised, the mechanism by which genetic and epigenetic factors could 

influence the risk profile of an individual remains wide (e.g. gating of synaptic plasticity, 

determination of personality traits, musical ability).   

 

Environmental risk factors associated with task-specific dystonia are diverse and there is 

great heterogeneity between patients38,39.  Importantly many of these risk factors suggest 

potential mechanisms by which motor control may malfunction and offer directions for 

therapeutic intervention. A pragmatic manner to assess for such risk factors, which can also 

be used to guide rehabilitation strategy, is to identify factors associated with each of the 

essential components required for the performance of a given skill (task, tool, periphery and 

central nervous system (FIG. 3)).  The periphery describes the characteristics of the body 

region that performs the task with the tool. The central nervous system includes the 

network that encodes skill performance modulated by the individual’s psychological state.  

As all components are required to work in concert to maintain task performance, a change 

in one component prompts a change or shift in other components (FIG. 3).  A further 

dynamic element is that the risk factor profile of an individual can also change over time and 

it is often useful to qualify risk factors as predisposing, triggering and/or maintaining 

influences.   

 

[H2] Task. The highest relative prevalence of task-specific dystonia is found in musicians (1 

in 100 for musicians’ dystonia, versus 1 in 15,000 for writers’ dystonia40,41) and the specific 

influences of task can be readily exemplified in this group. For example,  dystonia in 

musicians preferentially involves the hand demanding the highest spatiotemporal acuity 

(right hand in keyboard players, left hand in players of bowed instruments)4,38,41. In bow-arm 

dystonia although the effectors involved in movements are much larger than those involved 

in hand movements, the spatiotemporal demands involved in producing a pure note are 

similarly high. Greater neuronal organization might therefore be needed to achieve the 

desired skill, as such task requirements are a large departure from the evolutionary designed 

role of large muscle groups.  Task-specific dystonia is more frequently observed in classical 

musicians, in part owing to the requirement for classical musicians to execute performances 
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according to the invariant temporal and spatial parameters predicated by their sheet 

music42. Motor impairments are less frequently seen in jazz musicians, as a certain flexibility 

of note and tempo is intrinsic to this music form43. Task-specific dystonia also typically 

affects the performance of highly rehearsed skills, tasks that have been performed 

repetitively for many hours38. Professional musicians typically accumulate 10,000 hours of 

practice prior to symptom onset44. Thus, high-risk groups are characterised by exceptionally 

high task accuracy requirements, a high cost associated with any deviation from predefined 

parameters, and highly rehearsed motor skills.  

 

[H2] Tool. Changes in the presentation of patients with task-specific dystonia over the 

centuries highlight the importance of specific tools in the pathogenesis of task-specific 

dystonia5,45,46. In the 19th century, the change from feather quills to steel nibs in scriveners 

and clerks was the cause of a dramatic increase in prevalence of occupational motor 

problems in the British Civil Service47. The new nibs altered the dynamics of the tool (and 

corresponding task kinematics) and writers did not have to stop periodically to sharpen steel 

nibs, which offered a brief rest from what would otherwise be a continuous task 

(predisposing to muscle fatigue)47,48. More than 10% of telegraph operators communicating 

in Morse code developed motor problems49. Here, the requirement for stereotyped and 

individuated finger movements seemed to be particularly problematic50. Crucially, when 

Morse keys were replaced by keyboards, most operators experienced relief from their 

symptoms49. By contrast, computer-related dystonia is infrequently described in the 

literature, perhaps owing to the use of ergonomic keyboard designs51. In musicians, the 

incidence of task-specific dystonia increases as the string instrument size decreases, 

suggesting that tools requiring a higher spatial resolution confer an increased risk of task-

specific dystonia 52. Clearly, tools largely confer risk as a result of the specific task 

requirements. However, occasionally the risks conferred by task and tool are independent 

(for example the higher incidence of task-specific dystonia in classical rather than jazz 

pianists) and a tool is not an essential component for the development of task-specific 

dystonia, as exemplified by the occurrence of task-specific singing impairment53. 

 

[H2] Periphery. Fatigue, overuse and injury are important risk factors for task-specific 

dystonia38,39,47. For example, facial injuries can precipitate motor impairments affecting the 

embouchure in wind and brass instrument players43,54. In some individuals, injury might be 

caused by excessive practice or performance. However, injury of the body part in a context 
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removed from the task also increases the risk of task-specific dystonia4. Anatomical 

limitations of the body region required for the task are another important consideration in 

the assessment of task-specific dystonia. Some individuals are born with a musculoskeletal 

system that favours skilled performance (such as an optimal range of motion) whereas 

others have biomechanical constraints that predispose them to develop motor 

dysfunction39. 

 

[H2] Central nervous system.  All individuals are likely to have a ceiling capacity of their 

nervous system for encoding the different elements (such as timing) of a movement. 

Determinants of this capacity are likely to include a combination of nature (inherent talent 

or capacity for neural plasticity and processing) and nurture (exposure and training). 

Furthermore, exposure might have to occur within a window during which the conditions 

most favour skill learning. Musicians who start practising after the age of 10 have an 

increased risk of developing task-specific dystonia 42.  This is after the most sensitive periods 

of neural development have occurred in which training is thought to have its greatest effects 

on brain structure and behaviour55. 

 

Finally, multiple cognitive and emotional processes can influence motor control. Compared 

to unaffected musicians, those with task-specific dystonia are six times more likely to exhibit 

elevated anxiety, perfectionism and evidence of stress and such characteristics seem to 

predate the onset of dystonia56,5758. There is a clear presence in some patients of 

performance-related stress in the run up to development of task-specific dystonia.  In one 

case series in which dystonia was evident only when writing a single letter or number, all 

cases were characterised by the need to repetitively write the letter or number under 

stressful situations59.  

 

[H1] Implications for motor control 

Interestingly, such risk factors for task-specific dystonia can be translated into mechanisms 

by which the motor control system becomes vulnerable to malfunction. Here we discuss a 

number of uniting themes by which dysfunctional neural representations of motor skill may 

arise. 

 

[H2] Neural correlates of skill expertise. Particularly in professional musicians and athletes, 

the limitations of the neural networks supporting their skill expertise are likely to be an 
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important contributory factor in the development of task-specific dystonia (FIG. 4)60. 

Experimental data suggest that the repetitive practice of long sequences of movements can 

lead to the formation of progressively longer motor chunks over time25,61,62, leading to 

performance gains that are increasingly contextual and tied to the individual task or body 

region25,63-67. Poor transfer of these performance gains to other tasks seems to be 

accentuated if a narrow training repertoire is applied, in contrast to more varied training 

approaches68. Practice predating the development of task-specific dystonia is often 

particularly extensive and stereotyped (for example, some musicians frequently practice 

each section of music in the same manner with the same rhythm and same fingering, over 

and over again). In such highly rehearsed tasks, intermediate-level  representations that 

previously conferred flexibility for related tasks (such as those involving the same chord 

transitions or rhythms), could become redundant as highly stereotyped sequences begin to 

dominate the movement repertoire. The original transferrable chunk structure could 

disappear, as the concatenation into long execution bound synergies effectively replaces 

such intermediate elements (FIG. 4a). Such an architecture within the motor hierarchy could 

reliably encode an extreme optimization of performance parameters that pushes variability 

towards zero (FIG. 4b), but retains little capacity for flexibility and generalization to other 

contexts. 

 

[H2] Capacity versus requirement. Many triggers for task-specific dystonia can be helpfully 

conceptualized as an unresolvable mismatch between the capacity of the motor system and 

the task requirements39. Capacity in this sense is defined by the limits of the neural control 

network and the periphery (for example, the range of feasible movements at a particular 

joint)39. Requirement is the exact movement trajectory, timing, force and accuracy required 

of the body in order to achieve the desired movement goals, as largely defined by the task 

and tool. Some mismatches between capacity and requirement are biomechanical in nature. 

For example, a task with a high force requirement will limit the capacity to make 

individuated finger movements with greater unintentional and undesired movements of 

neighbouring fingers69-71. Changes in capacity due to fatigue or injury of the body can also 

result in an effector system that responds more variably to a given motor command. 

Alternatively, a change in task requirements might result from external factors, such as 

changes in the size of a tool or an attempt by the performer to change their instrumental 

technique. If the  neural representation of a skill can accommodate this change in the task 

requirement by adjusting and scaling its motor commands to maintain performance, an 
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effective neural compensation has been found39. If, however, the new task requirement 

cannot be accommodated by the existing  representation, the performer is pushed outside 

the overlearned boundaries of the skill. The inability to transfer the highly optimized skill 

across different parameter requirements will cause performance to break down because no 

effective motor compensation is available39. As we have alreadly described in relation to 

professional performers affected by task-specific dystonia, skill representations that are 

highly optimized are likely to be particularly narrow in their ability to cope with a change in 

task requirements.  This could help to explain the high prevalence of task-specific dystonia in 

these individuals and why the triggering factors are often subtle (FIG. 4c)72-74. 

 

[H2] Ill-equipped corrective mechanisms. Once a critical mismatch between capacity and 

requirement has occurred, novel motor control strategies alien to the existing neural 

representation of skill must be employed to maintain task performance. However, de novo 

motor control solutions are unlikely to be able to match or maintain the level of skill 

performance that was formerly encoded by a hierarchy of neuronal elements optimized over 

many years of practice. The skills that are usually affected in task-specific dystonia are 

characterized by automaticity with little conscious control of movement 75. By contrast, 

during de novo learning, task requirements are explicitly mapped to basic execution 

elements22, a time-consuming process that conflicts with the demand for rapid task 

reproduction within a millisecond timescale. Access to subcomponents of more-abstract 

movement elements, which previously underpinned some features of expert task 

performance, is limited. Thus, once task performance has broken down, alternative motor 

control options are ill-equipped to immediately reinstate motor performance using new 

elements. Inappropriate and dysfunctional movements are likely to be produced, which are 

unable to match required task performance levels, marking the onset of task-specific 

dystonia (FIG. 5a). 

 

[H2] Encoding of dystonic movement. If stereotyped dystonic movements are repeatedly 

practiced they will become encoded in a similar manner to any other sequence of 

movements. Conscious control of the dystonic movement elements declines, causing 

frustration for individuals with undiagnosed task-specific dystonia as they attempt to 

implement strategies to address their movement difficulties (FIG. 5b). This formulation 

might partially explain one of the most puzzling features of task-specific dystonia: why 

normal task performance, which was previously achievable, can no longer be easily 
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reinstated. Skill representations that are activated for a particular context or performance 

goal could become corrupted, with dystonic movements incorporated into their 

architecture60. 

 

[H2] Psychology of motor control. Finally, the influence that misdirected cognitive 

influences can have on skill performance is worth emphasizing 76. An attentional focus on 

the mechanics of movement rather than on the external consequences or goals of 

movement has consistently been shown to worsen skill performance14. Deterioration in 

function can be shown experimentally for writing (when attention is focused on hand 

movements rather than output of the tool)52 as well as musical performance (when 

attention is focused on finger movements rather than the sound)77. Personality traits seen in 

musicians with task-specific dystonia such as anxiety and perfectionism are linked to a highly 

attentive manner of motor control, a situation that has repercussions for both development 

of the disorder and how we treat it14. The negative effects of self-focus are commonly 

discussed within the sports science literature (for example in relation to ‘the yips’ in 

golfers)76 but might be equally relevant in forms of motor impairment that share 

phenomenology in musicians and writers (such as motor block or choking under pressure 

59,76)( Box 1). Aside from personality traits, other triggering factors such as injury, pain and 

explicit attempts to alter technique or performance will also naturally focus attention on the 

body region, to the detriment of motor control14. Misplaced attention can impede the 

normally automatic reproduction of highly skilled tasks.  For a subset of patients with task-

specific dystonia, this is an important mechanism through which performance can 

deteriorate. 

 

[H1] Translational implications 

[H2] Prevention 

Defining task-specific dystonia as a modifiable disorder of motor control has the important 

implication that a proportion of cases of task-specific dystonia might be preventable. Many 

occupational forms of task-specific dystonia are characterized by mismatches between 

natural capability and the tool or task requirements. Improving the ergonomics of tools and 

limiting task parameters that stress the motor system might be beneficial41. However, 

professional musicians and athletes cannot modify their tool or task requirement to any 

great extent. As such, prevention strategies that focus on the control system, maximizing the 

‘resilience’ of relevant  representations in the brain and nurturing a healthy psychology 
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profile, could reduce the risk of task-specific dystonia. Practice plans that emphasize 

flexibility of motor performance should be encouraged and ‘healthy’ practice routines 

defined by musicians have a reassuring resonance within the framework we outline42. For 

example, pianists at the Moscow Conservatory are encouraged to practice on pianos with 

different weights, and the famous cellist Rostropovich recommended practising different 

versions of difficult sections and experimenting with rubato and altered emphasis (which 

subtly change movement parameters) so that ‘the brain is relieved of the pressure of 

performing an action in a single rigid way’78. Such practice techniques could feasibly 

consolidate intermediate level connections and reduce the development of rigid effector 

representation, facilitating flexibility and resilience when any changes in task parameters are 

required. 

 

[H2] Retraining dysfunctional movements 

Once a motor problem has developed, careful assessment of potential risk factors should 

reveal the mechanism profile specific to that individual. This is important owing to the great 

heterogeneity within this group of patients. For example, although psychological factors are 

likely to be influential in a subset of patients with task-specific dystonia, a considerable 

proportion do not exhibit any signs of anxiety, perfectionism or stress58. The identification of 

mismatches between task requirement and capacity is already a widely established tool 

used to pragmatically guide selection of treatment strategies within rehabilitation disciplines 

(termed the ‘person–environment-occupation model’)79. Techniques from the sports science 

literature can also be integrated into treatment plans as the role of attention in task-specific 

dystonia becomes increasingly appreciated. For example, focusing attention away from the 

mechanics of movement and onto the goals of movement can help to prevent anxiety-

related blocks in performance43,80. 

Unfortunately cure of task-specific dystonia remains difficult to achieve reliably. 

Retraining therapies for patients with task-specific dystonia have shown encouraging results 

but often include techniques based on traditional models of dystonic pathophysiology, 

which might not be optimal81.  Overall, our framework predicts that multifaceted 

interventions tailored to specific individuals’ risk profiles will represent the best overall 

treatment approach  for task-specific dystonia82. Centres in which practitioners have access 

to combined therapeutic approaches report better outcomes for patients with task-specific 

dystonia than do centres lacking such resources83.  
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[H2] Role of traditional dystonia treatments 

Conventional dystonia treatments rarely offer adequate relief in task-specific 

dystonia.  Oral medications (such as trihexyphenidyl) have been tried with inconsistent 

responses and their use is often limited by adverse effects83-85. An initial benefit from 

botulinum toxin injections in specialist settings is often seen, but marked variability in 

responses to this treatment, and difficulty in avoiding disabling weakness, mean that only a 

subset continue this therapy long term83,86,87. It is likely that botulinum toxin injections are 

able to treat the end point of task-specific dystonia — the inappropriate muscle contractions 

associated with performing a given task — but cannot address underlying mechanisms.  

Studies of non-invasive brain stimulation (such as transcranial magnetic stimulation), which 

aim to either disrupt or augment the defining physiology in a favourable manner, are 

increasingly attempted in patients with task-specific dystonia9,88.  Theoretically, the most 

attractive design pairs stimulation with concurrent task-relevant behavioural training  

(thereby activating the corresponding neuronal network subserving that skill) 89. Finally, 

deep brain stimulation and thalamotomy have also been trialled in non case-controlled 

series90-95.  Randomised controlled trials are needed to offer validation of these more 

invasive approaches.  

 

 

[H1] Conclusions 

In this Perspectives article, we have presented task-specific dystonia in the context of motor 

skill learning in health, suggesting that they are two sides of the same coin. Our framework 

integrates established risk factors for task-specific dystonia with known mechanisms of 

motor skill learning, and describes how they might interact to disrupt the neural 

representation of motor skills. We hope that this perspective will help to define new 

directions for research and to promote much-needed therapeutic advances. 
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Box 1: Features of task-specific dystonia  

 

Task-specificity  

The task specificity of task-specific dystonia varies. Some individuals have a deficit only for 

writing particular letters or playing stereotyped musical phrases38,59. The corresponding 

deficit must, therefore, be encoded within the specific representation required for that 

particular motor context. In other individuals, difficulty with other tasks also develops over 

time (although a gradient in severity usually persists, such that the presenting task remains 

the most severely affected)96,97. In these patients the dystonic movement is likely to be 

encoded within a representation that the brain starts to use in multiple contexts (for 

example, if one of the motor synergies involved with a particular piano sequence is similar to 

that required when typing). In a minority of patients, task-specific dystonia also starts to 

affect the contralateral hand, which could either reflect modification of a new  

representation by persistent risk factors, or recruitment of existing dysfunctional  

representations that are required for performing a given task regardless of which hand is 

used (such as effector-independent representations that control sequence learning98). 

An apparently task-selective deficit can be the presenting feature of other dystonia 

syndromes and movement disorders as a lesser pathological insult to the motor system is 

required to reveal a deficit in a skilled compared to an unskilled action42,99,100. However in 

contrast to task-specific dystonia a generalized motor impairment then becomes apparent 

101.  

 

Sensory tricks/maneuvers 

Once task-specific dystonia is established, distorting sensory feedback from the affected 

body part (for example, by putting on a plastic or latex glove to play the instrument) can 

lead to short-term performance improvements in a minority of patients102,103. From a motor 

control perspective, the model of the skilled movement needs to be updated to produce an 

altered prediction of the sensory feedback to achieve baseline motor production104-106. In the 

un-adapted state, shortly after putting on the glove, the increased mismatch between 
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feedback prediction and actual sensory feedback may be helpful in disrupting the over-

learnt dysfunctional motor synergies through error-driven plasticity 107. However, in the 

adapted state, we would expect this positive effect to cease: the corrupted motor model has 

undergone adaptation but is structurally unchanged, and the short-term benefits would 

likely be lost. However, the period of heightened plasticity at the beginning of adaptation 

might present a unique time window for retraining, in the rare patients who respond with 

objective improvements to sensory distortion102. 

 

Subtypes 

Task-specific motor impairment can be divided into subtypes such as overuse injury, choking 

under pressure, dynamic stereotype and dystonia. Each subtype is likely to have differences 

of emphasis in both causative mechanisms and how they are encoded centrally43,47. For 

example, it has been suggested that dynamic stereotypes might represent an early 

modifiable form of motor impairment that can develop into dystonia if sufficient 

maintaining risk factors persist43. 
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Figure legends 

Figure 1 | Motor hierarchy in skill learning. a | In early learning, explicit or cognitive 

processing of task instructions occurs at the selection level. At the execution level, the most 

appropriate set of motor elements is mapped to task requirements12. b | Later in learning, 

task performance is largely automatic. Skill elements become encoded within the dynamic 

neural network as an intermediate level, and the flow of motor elements requires little 

explicit or cognitive control. Motor chunking refers to the linking of elemental execution 

representations within the intermediate level. For example, a specific motor goal at the 

selection level (s1) might initiate two motor chunks at the intermediate level (c1, c2) that 

lead to distinct motor sequences (e1–e3 in the case of c1 and e4–e5 in the case of c2). A 

second motor goal (s2) has a different order requirement but is built from the same 

components; initiating the two chunks in reverse order (c2 then c1) still produces the 

required motor behaviour (e4–e5 from c2 and e1–e3 from c1). These intermediate-level 

representations link elementary units, enabling them to be activated in a fluent manner 

without the need for direct mapping from the selection level. Permission obtained from 

Elsevier © Diedrichsen, J. & Kornysheva, K. Trends Cogn. Sci. 19, 227–233 (2015). 

 

Figure 2 | Evidence for a motor hierarchy. a | Motor synergies are fragments of movement 

sequences encoded within the motor cortex. Complex gestures such as grasping or licking 

can be reproducibly evoked by electrical stimulation of the shaded regions of primary motor 

and premotor cortices in monkeys b | The results of an experiment in which humans learned 

to do 10 sets of two button presses. Each point on the graph represents one set, and the 

spacing between two adjacent lines corresponds to the time interval between the onsets of 

each set. During early learning (trials 1–5) the total time taken for the sequence to be 

executed was longer and dispersion of the 10 sets through time was approximately even. 

During late learning (trials 76–80) the total time taken for the entire sequence has decreased 

and motor chunking is evident — the different sets are grouped into three chunks (set 1–4, 

set 5–7, set 8–10). c) Evidence for a modular representation of rhythm or ‘temporal 

chunking’. The timing and finger order of four different sequences are shown: trained 

(green); temporal transfer (red); spatial transfer (blue); and novel (grey). Behavioural 

benefits (reaction time decreases) of new sequences retaining either the trained temporal 

or spatial features are seen in comparison to entirely novel sequences. Multivariate analysis 

of functional MRI data reveals independent representations (red, blue) of these spatial and 

temporal features, some of which occur in overlapping (pink) regions of the premotor (PM) 
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cortex. The primary motor cortex (M1), by contrast, contains integrated (that is, non-

separable) representations of the two sequence features (green). Part a adapted with 

permission from Elsevier © Graziano, M. S. Trends Cogn. Sci. 20, 121–132 (2016)18. Part b 

adapted with permission from Springer © Sakai, K. Exp. Brain Res. 152, 229-242 (2003)22. 

Part c adapted with permission from Elsevier © Diedrichsen, J. & Kornysheva, K. Trends 

Cogn. Sci. 19, 227–233 (2015). 

 

Figure 3: Components required for skill performance and the dynamic interactions 

between risk factors. Risk factors can be comprehensively identified by considering all the 

components that interact in the performance of a given skill (central nervous system, 

periphery, task and tool). For example, case A exemplifies an illustrator that had taken a 

prestigious but demanding new job in animation.   The patient was required to use a tablet 

and stylus rather than the usual paint brush (tool) and the work required 1000s of dots 

demanding forceful demarcation with the stylus (task).  The patient also worked for many 

hours until a painful forearm overuse injury occurred (periphery) and was highly stressed 

attempting to make imposed deadlines (psychology).  Here multiple risk factors seemed to 

interact in the development of task-specific dystonia. Others patients present with fewer 

risk factors.  The pianist in case B was a classical pianist that took a job playing in a musical. 

This required a subtle change in instrument such that the pianist was using a smaller 

keyboard with keys that were less responsive than a piano. In this case the change in tool 

was the dominant risk factor with repercussions for task parameters and sensorimotor 

control (indicated by the arrows linking skill components). 

 

Figure 4: Vulnerabilities of highly skilled representations. a | The neural architecture of 

overlearned skills is not well defined, but here the highly trained skill is represented as a 

rigid synergy-like execution pattern, which has poor flexibility due to limited use of motor 

chunking at the intermediate level. b | Stable everyday tasks (grey region) require a 

moderate range of spatial and temporal accuracy, and are encoded at approximately the 

midpoint between floor (F) and ceiling (C ) values. By contrast, performers strive to improve 

time and accuracy functions within movement goals that are tightly prescribed (requiring 

minimal motor variability and error rates that approach zero). Thus, highly optimised skill 

representations (red region) require encoding of spatial and temporal accuracy at very close 

to ceiling values. The cost of such optimization is largely unknown.  A  high degree of 

optimizationis likely to limit the flexibility to respond to new task requirements (narrow 
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diameter of skill representation) and other parameters may not be optimized (shown close 

to floor). c | With increasing skill expertise, the magnitude of the precipitant of task-specific 

dystonia decreases. In part, this association may be due to the reduced generalizability of 

highly optimized skill representations. 

 

Figure 5 The development of task-specific dystonia. a | If the existing hierarchical 

representation can no longer accommodate task requirements, novel motor control options 

must be sought. Solutions are likely to require mechanisms comparable to early learning 

states, in which task requirements are explicitly mapped to basic execution elements. Such 

mechanisms are ill-equipped to immediately reinstate previous levels of skill performance, 

which were encoded by a hierarchy of neuronal elements optimised over many years of 

practice. Movements that are either inappropriate or non-physiological might start to be 

produced, which can be classed as dystonic as they no longer attain task goals. b | If 

dystonic movements are rehearsed they are likely to become encoded in a manner similar to 

any other learned sequence of movements, with a shift of motor control towards increased 

automaticity and reduced explicit cognitive monitoring of movement sequences. In this 

situation dystonic movement sequences become increasingly difficult to correct. 
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Glossary terms  

 

Automaticity 

Mode of motor control in which movements operate with very little conscious knowledge of 

the actions required to perform them. 

 

Chunking 

Collection of elementary units which have been inter-associated and stored in memory 

which act as a coherent, integrated group when retrieved.  

 

Dystonia 

Movement disorder characterized by sustained or intermittent muscle contractions causing 

abnormal movements, postures, or both. 

 

Individuation 

Degree to which one can move a single finger without unintended movements of the other 

fingers of the same hand. 

 

Representation 

Activity in neural substrates containing information on the external or internal state of the 

system including motor output. 

 

Motor hierarchy 

Organisation of the motor system in a series of layers with each level having specific roles in 

the motor control of movement generation 

 

Motor synergies 

Elemental action units which are characterized by coordinated group of weighted muscle 

activations in space and time. 
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