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Out with .05, in with replication: isolating and working with the particular effect sizes that are 

troublesome for inferential statistics 

 

What if p ≤ .05 no longer was considered in inferential analysis? What would the impact 

be?  At best, we could be ridding ourselves of another statistical ritual that impedes thinking 

about the problem at hand (Gigerenzer, 2004).  Researchers who did an inferential test would 

simply look at the probability obtained from their efforts (.70, .50, .30, .20, .10) and proceed 

from there.  A probability of .2 or a .1 would be promising if the researcher could increase 

sample size.  A probability of .7 could be disappointing and suggest that the effect size is much 

smaller than the researcher believed or worse still there might not be any effect at all.  Could the 

researcher abandon this line of research, or decide, even if an effect size is small, it could still be 

important? These decisions rightly belong to the research community, and should not be made by 

decree through a journal adhering to a .05 standard.   

Abandoning p ≤ .05 was specifically disallowed by Fisher (1970) “Small effects will still 

escape notice if the data are insufficiently numerous to bring them out, but no lowering of the 

standard of significance would meet this difficulty.” (p. 44). Thus, this paper proposes a solution 

that was considered and rejected by an intellectual giant of his time. It was not an inviolate rule, 

however, even for Fisher. In other writings, Fisher (1973) indicated that the p ≤ .05 criterion was 

a rough and ready criteria rather than a hard and fast rule. “. . . no scientific worker has a fixed 

level . . .” (p. 45) for rejection of the null hypothesis.   

Fisher was developing his thinking when communication to the wide world was by mail 

and analyses were laborious conducted with hand cranked calculators. Now, the researcher can 

communicate instantly by email and the most complex of calculations can be performed with 



speed and ease.  In fact, it is possible to calculate and summarize a practical universe of 

inferential results in various areas. 

An initial task is to argue that some effect sizes should be of such a magnitude that they 

will readily give statistically significant results with a reasonable sample size.  For example, a 

standardised effect size d of .7 can be tested with 80 participants or 40 per group and .6 with 100 

or 50 per group, whereas with smaller effect sizes significance will be hard to obtain. Graph 1 

presents standardised effect size estimates (d) on the Y axis ranging from 0 to 1 and the samples 

size on the X axis ranging from 0 to 500.  Examination of the graph reveals that an effect size of 

.5 SDs divides the field such that Ns of 120 can readily obtain significance for values above .5, 

whereas large to very substantial Ns are required for effect sizes below .5.  Thus in some ways 

the problem is attenuated because large Ns are not required for values that Cohen (1977) labeled 

moderate to large effects.  This division is somewhat arbitrary, but serves to make the point 

about the relationship between effect size and sample size. 

Methods 

P Value Graph (Figure 1) 

A control distribution with a normal distribution of 1,000,000 values and a mean of 10 

and a standard deviation of 2 was generated. Seven experimental distributions were created so 

that the difference between the control distribution and an experimental distribution 

corresponded to the standardised effect size of 0.1 to 0.7 with 0.1 increments. The means for the 

experimental distributions were 10.2, 10.4, 10.6, 10.8, 11.0, 11.2 and 11.4 respectively and the 

standard deviations of the experimental distributions were the same as the control distribution 

(i.e., 2). For each of the seven effect sizes, 100,000 experiments were simulated using a preset 

sample size which ranged from 20 to 500 with increments of 20. To simulate an experiment, for 



each combination of standardised effect size and sample size, a random sample of data was 

selected from the control and experimental distribution and a two-tailed between-subjects t-test 

was calculated to obtain a p value. The mean p value from the sets of 100,000 for each 

combination of standardised effect size and sample size were plotted on a graph.  

Effect Size / Replication Sets Graphs (Figures 2 – 6) 

A control distribution with a normal distribution of 1,000,000 values and a mean of 10 

and a standard deviation of 2 was generated. Five experimental distributions were created so that 

the difference between the control distribution and an experimental distribution corresponded to 

the standardised effect size of 0.1, 0.2, 0.3, 0.4 and 0.5. The means for the experimental 

distributions were 10.2, 10.4, 10.6, 10.8 and 11.0. respectively and the standard deviations of the 

experimental distributions were the same as the control distribution (i.e., 2). For each of the 5 

effect sizes, 100,000 experiments were simulated using a preset sample size which range from 20 

to 500 with increments of 20. To simulate an experiment, for each combination of standardised 

effect size and sample size, a random sample of data was selected from the control and 

experimental distribution and the Cohen's d standardised effect size estimate was calculated. To 

simulate a set of 5 and 10 replications, this experiment was repeated 5 and 10 times respectively. 

The effect estimates for each population effect size where plotted on separate graphs, with the 

sample sizes ranging from 20 to 500 on the x axis. For the 5 and 10 replication sets the mean 

estimate is mark along with errors bars representing the standard deviations.  It is worth noting 

that for any given sample size the total number of replications is 16.  The replications are 

presented in sets (1, 5, 10) because it is expected that a given researcher will have a limited 

opportunity to gather replications.  

  
 



 
 

Results 

Figure 1 is a graph that shows probabilities for effect sizes (Cohen’s d) from .1 to .7.  We 

chose .5 or less as a cutoff point reflecting the difficulty in obtaining enough measures for 

significance.  Examination of Figure 1 reveals that the sample size question centers on effect 

sizes of .50 and below.  It is proposed here to accept the initial probability, and then invite by 

email several other researchers to try and replicate the initial results if that probability seems 

reasonable.  

Figures 2-6 are graphs of 1, 5, and 10 replications for various effect sizes over sample 

sizes. 

Discussion 

 It is worth noting that that above an effect size of ½ an SD it may be possible for a single 

researcher to achieve significance. In this range, the calculated effect size will not be overly 

exaggerated (Bradley and Brand, 2016).  For .5 and below, replication is necessary and with 

more replications greater accuracy is achieved, and of course the greater the sample size the 

greater the accuracy. It is possible for a researcher to have an idea, some data, and invite 

replications that are computed with ease.  This is a substantial change that allay some of Fisher’s 

concerns in the past with hand cranked calculators and post office speed mail. 

By accepting all p values no distortion of effect size associated with a criterion p is 

present.  This is a huge advantage for this approach.  On the one hand, the replication process 

seems laborious when coordinated by one or a few researchers. This work pales, however, in 

comparison to the fruitless and collective efforts of researchers mislead by chance significant 

results who then discard their probable but non-significant results from underpowered studies. 



 

Monafò, Nosek, Bishop, Button, Chambers, Percie du Sert, Simonsohn, Wagenmakers, 

Ware, and Ioannidis (2017) made sound suggestions to improve data analysis in the social 

sciences, but will many scientists and journals participate? They address, flexible methods and p-

hacking.  These would disappear in the replication system unless a mischievous scientist wished 

to occupy the time of a few researchers with a false report.  The major concern of our paper is 

exaggerated measurement results produced by publication bias in favor of positive results 

associated with an inferential standard value that must be obtained. We agree that preregistration 

would solve many of these problems, but only if the majority of scientists and journals 

participated.  Even if there was widespread participation, a certain conservatism might set in as 

scientists scrambled to a relatively sure result that a journal would accept as registerable.  

Accepting at the individual scientist level and having her/him invite replications seems a less 

cumbersome and potentially a less bureaucratic procedure.  

 One pressure we have ignored is the pressure to publish.  There is a tradeoff between 

publishing a volume of potentially inaccurate work and patiently waiting for a series of 

replications.  Further, a given replicator may be way down the author list so the invite to 

replicate may not be regarded as that favorable.  However, accuracy matters, and various authors 

will over time become associated with accurate work.   
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Figure 1 that shows probabilities on the Y axis by sample size for effect sizes (Cohen’s d) from 

.1 to .7 represented by symbols.  We chose .5 or less as a cutoff point reflecting the difficulty in 

obtaining enough measures for significance. 

 

 



 

Figures 2-6 are graphs of observed effect sizes of designated effect sizes of .10, .20, .30, .40, and 

.50 for 1, 5, and 10 replications at sample sizes depicted on the X axis.  



 

 



 

 


