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Abstract 25 

This study aimed to better understand the stabilisation of rice rhizodeposition in paddy soil 26 

under the interactive effects of different N fertilization and water regimes. We continuously 27 

labelled rice (‘Zhongzao 39’) with 13CO2 under a combination of different water regimes 28 

(alternating flooding-drying vs. continuous flooding) and N addition (250 mg N kg-1 urea vs. 29 

no addition, then followed 13C incorporation into plant parts as well as soil fractions. N addition 30 

increased rice shoot biomass, rhizodeposition, and formation of 13C (new plant-derived C) in 31 

the rhizosphere soils under both water regimes. By day 22, the interaction of alternating 32 

flooding-drying and N fertilisation significantly increased shoot and root 13C allocations by 33 

17% and 22% respectively, over the continuous flooding condition. The interaction effect also 34 

increased 13C allocation to the rhizosphere soil by 46%. Alone, alternating water management 35 

increased 13C deposition by 43%. In contrast, N addition increased 13C deposition in rhizosphere 36 

soil macroaggregates under both water regimes, but did not increase macroaggregation itself. 37 

N treatment also increased 13C deposition and percentage in microaggregates, as well as in the 38 

silt and clay-size fractions of the rhizosphere soil, a pattern that was higher under the alternating 39 

condition. Overall, our data indicated that combined N application and a flooding-drying 40 

treatment stabilised rhizodeposited C in soil more effectively than other tested conditions. Thus, 41 

they are desirable practices for improving rice cropping, capable of reducing cost, increasing 42 

water use efficiency, and raising C sequestration.  43 

Key words: Paddy soils, 13C continuous labelling, Carbon stabilisation, Root exudation, 44 

Rhizodeposition, Recent assimilates. 45 

 46 

Introduction 47 
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Numerous studies have investigated the allocation and stabilisation of OC 48 

photosynthesized by upland crops (e.g., wheat, maize, ryegrass, and barley) (Liljeroth et al. 49 

1990; Henry et al. 2007; Canarini and Dijkstra 2015; He et al., 2015; Mwafulirwa et al. 2016). 50 

However, sufficient attention has not been paid to the dynamics of photosynthesized C in rice 51 

paddy soil, especially considering the economic and ecological importance of rice (with a 52 

projected 800 million tons required to meet the global demand in 2030) and thus the large global 53 

coverage of paddy soil.  54 

Depending on plant species, age, and prevailing environmental conditions, 55 

rhizodeposition may release up to 40% of photosynthesized C (Lynch and Whipps 1990). The 56 

released C serves as an energy source for soil microorganisms (Lynch and Whipps 1990; Ge et 57 

al. 2012) to cycle soil organic matter (SOM) and nutrients (Mwafulirwa et al. 2016), and part 58 

of rhizodeposition is respired as CO2. A small portion of low- 59 

molecular-weight compounds such as sugars and organic acids, released as exudates (Jones and 60 

Darrah 1994) may be reabsorbed for plant cellular metabolism (Sherson et al. 2003). Thus, to 61 

mitigate the global increase in atmospheric CO2 concentrations, we must better understand the 62 

management of SOC sources, pools, spatial distribution, and stabilisation processes (Miltner et 63 

al. 2012).  64 

The rice crop depends on water management and fertilizer N inputs; rice production 65 

consumes an estimated 90% of the total irrigated water allocated to crops (Bhuiyan 1992). 66 

However, regular irrigation requires enormous energy input, and supplying fresh water for 67 

continuously flooded paddies is increasingly unsustainable due to competitive demands from 68 

urban and industrial fronts (Bouman and Tuong 2001; Fan et al. 2012). Furthermore, a predicted 69 

increase in droughts through many subtropical regions have heightened concern for more 70 

efficient water management in rice cultivation (IPCC 2012). These concerns, in addition to 71 
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perceived benefits of improved yield and water-use efficiency, has caused the alternation 72 

between flooding and drying periods to become popular in rice cultivation (Belder et al. 2004; 73 

Xu et al., 2015). Drying-rewetting cycles, however, have major implications on below-ground 74 

plant-soil-microbe interactions, such as instantaneous C and N mineralization (Austin et al. 75 

2004; Schimel et al. 2007), as well as shifts in microbial use and stabilisation of rhizodeposited 76 

nutrients (Canarini and Dijkstra 2015). Soil rewetting is also linked closely to N loss through 77 

gaseous emission and leaching (Austin et al. 2004). Further, increased photosynthate 78 

partitioning and allocation belowground have been reported in crested wheatgrass under water 79 

stress (Henry et al. 2007) as well as in rice under drying-rewetting (Tian et al. 2013a, 2013b). 80 

Despite these consequences, little is known about the combined effects of water management 81 

and N fertilisation on the partitioning and allocation of rice photosynthates in above- and 82 

belowground paddy soil systems.   83 

Studies on the distribution of OC derived from rhizodeposits are crucial for sustainable 84 

crop productivity because the spatial arrangement of associated soil particles determines SOC 85 

bio-accessibility (von Lützow et al. 2007). Approximately 90% of surface SOC is associated 86 

with aggregates (Jastrow et al. 1996), and 20–40% of this large subset is intra-microaggregate 87 

SOC (Carter 1996). The formation of microaggregates through biotic glues and abiotic clay 88 

flocculation (Puget et al. 2000) makes them more stable, with longer turnover than 89 

macroaggregates formed under more transient biogenic processes. Hence, soil OC and N were 90 

reported to increase initially in macroaggregates, followed by a gradual decrease and 91 

preferential redistribution into microaggregates (Tisdall and Oades 1982; Six et al. 1998). Yet 92 

little is known about the distribution of rice-derived C across different aggregate fractions, 93 

especially in relation to water management (Tian et al. 2013b) and N fertilisation. 94 
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This study aimed to investigate how water management (continuous versus alternating 95 

flooding-drying) and N fertilisation could interact to affect the partitioning and stabilisation of 96 

newly plant-derived C in the rice-soil system. Rice seedlings at the tillering stage were 97 

continuously labelled with 13CO2, and the distribution of newly plant-derived C in above- and 98 

below-ground systems was investigated. We hypothesize that an alternating water regime and 99 

N fertilisation will increase rhizodeposition via enhanced root activity compared with 100 

continuous flooding. We also expect that the surge in microbial activities, and hence their 101 

increased use of rhizodeposits under flooding-drying episodes, will reduce C stabilisation. 102 

Finally, we hypothesize that N addition will increase rhizodeposition through enhancing 103 

photosynthesis, and the associated larger input of available OC will increase macroaggregation 104 

in rhizosphere soils under both water regimes.  105 

 106 

Materials and methods 107 

Site description and basic soil characteristics  108 

Soil was collected from a rice field located at Changsha Research Station for Agricultural and 109 

Environmental Monitoring (113°19′52″E, 28°33′04″N, 80ma.s.l.), in subtropical China. The 110 

mean annual temperature is 17.5°C, yearly precipitation is 1300 mm, annual hours of sunshine 111 

are 1663, and the frost-free period is up to 274 d. The soil type is a typical Stagnic Anthrosol 112 

(Gong et al. 2009) developed from granitic red soil (Alisol). Soil properties were as follows: 113 

pH 5.43 (1:2.5, soil/water ratio); organic C, 14.26 g kg-1; total N, 1.45 g kg-1; total P, 0.75 g kg-114 

1; and cation exchange capacity (CEC), 7.71 cmol kg1. Particle-size analysis indicated a 115 

composition of 28% sand (>50 μm), 66% silt (2–50 μm), and 6% clay (<2 μm). 116 

 117 
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Experimental set-up 118 

The experiment was factorial and arranged in a completely randomised design, comprising two 119 

main factors (water management and N fertiliser) at two levels each. Each of the four treatments 120 

was replicated six times (3 replicates to be harvested at two sampling points). Soil samples 121 

(water content, 14.8%) were collected from the plough layer (0–20 cm), sieved (<4 mm) to 122 

remove coarse plant residues, and then air-dried. 123 

Twenty-four pots (11 cm inner diameter and 20 cm height) were each filled with 1.26 124 

kg (oven-dried basis) soil each. A rhizosphere bag (mesh 30 μm; 3.5 cm × 15 cm) each which 125 

allows the passage of nutrients and water, but not root (Su and Zhu, 2008; Finzi et al., 2015) 126 

was filled with 0.34 kg soil and buried in each pot. Two rice 2-line hybrid (‘Zhongzao 39’) 127 

seedlings at the third tillering stage were transplanted into each bag on 29 June 2015. All pots 128 

were sprayed with NaH2PO4 (20 mg P kg-1 soil) and KCl (80 mg K kg-1 soil), then divided 129 

evenly into two water management conditions: continuous flooding (‘Flooding’) or alternating 130 

flooding-drying (‘Alternate’). At the start of both treatments, soil was covered with 2–3 cm of 131 

distilled water. Under ‘Alternate’ treatment, pots were subsequently dried for 3–4 days until the 132 

soil water content reached 70–75% of the water holding capacity (WHC), and then flooded 133 

again. Three drying-rewetting cycles occurred in the entire experiment. Fertilising conditions 134 

consisted of either no N addition (N0) or 250 mg N kg-1 (562.2 kg N ha-2) as urea (N250). Each 135 

condition comprised 12 pots (six each from ‘Alternate’ and ‘Flooding’). An additional 24 pots 136 

were used as the unlabelled controls. The unlabelled controls were references for determining 137 

natural 13C abundance and calculating 13C atom percent excess. Controls were placed outside, 138 

10–15 m away from labelled chambers, but given the same water and fertilizer treatments as 139 

labelled groups.  140 
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 141 

13CO2 continuous labelling 142 

Rice plants were subjected to 13CO2 continuous labelling in a climate-controlled, air-tight glass 143 

chamber (80 × 250 × 120 cm height), placed in a rice field for exposure to natural sunlight. As 144 

described by Ge et al. (2012, 2015), 13CO2 was produced in the chamber through the reaction 145 

of NaH13CO3 (50 atom percent 13C, 1 mol L-1) and H2SO4 (0.5 mol L-1). The CO2 concentrations 146 

inside the chamber were maintained between 360 and 380 μL CO2 L
-1 via further reactions or 147 

gas-flow diversion through CO2 traps (1 M NaOH solution) that absorbed excess gas.  148 

Two fans continuously circulated air in the labelling chamber. Two 149 

temperature/humidity sensors (SNT-96S, Qingdao, China) monitored conditions inside and 150 

outside the chamber; to maintain chamber temperatures at 1°C lower than ambient temperatures, 151 

a data-logger script activated air conditioning whenever the former was   1°C higher than the 152 

latter.  153 

 154 

Sampling and harvesting 155 

Plants and soil were harvested 14 and 22 d after labelling began. Shoots were severed from the 156 

roots at the stem base. Mesh with ingrowing roots was removed from the chambers and adhering 157 

soil was gently detached via gentle agitation for 1 min in 0.01 M CaCl2 (pH 6.2), followed by 158 

thorough rinsing under running tap water. Soil inside and outside the mesh was considered 159 

rhizosphere soil and bulk soil, respectively. Roots, shoots, and a soil sub-sample were weighed, 160 

oven-dried to a constant weight at 60°C, pulverized, and ball-milled for TC, TN, and 13C 161 

analyses. The remaining soil was stored at 4°C for aggregate fractionation and subsequent TC, 162 

TN, and 13C determination. 163 
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 164 

Soil aggregate separation 165 

Wet-sieving of air-dried soils has been used for aggregate separation in paddy soils (Pan et al. 166 

2008). Due to high clay content that might make fresh soil too sticky for separation, we 167 

separated following the method of Cambardella and Elliot (1993), as adapted by Six et al. 168 

(1998). A 50-g subsample of air-dried soil was placed on a 250-µm sieve nested into a 53-µm 169 

sieve. Both sieves were then placed in a bowl containing room-temperature deionized water, 170 

submerging the soil for 5 min. To achieve separation, the sieves were manually agitated up-171 

and-down by 3 cm, for 50 times (2 min). Subsequently, stable macroaggregates (>250 µm) and 172 

large microaggregates (250–53 µm) were gently backwashed off the sieves into pre-weighed 173 

aluminium pans. Floating organic materials (>250 µm) were decanted and discarded. Water 174 

plus soil that went through both sieves were considered the <53 µm (silt and clay-size) fraction, 175 

although this fraction could also consist of small microaggregates (Chenu and Plante 2006; 176 

Virto et al. 2008). The suspension was decanted (leaving the sediment), centrifuged at 3000 177 

rpm for 5 minutes, and the precipate was combined with the obtained sediment. The aggregates 178 

were oven-dried (60°C), weighed, finely ground, and stored in air-tight tubes at room 179 

temperature for TC, TN, and 13C analyses. 180 

 181 

Analytical methods 182 

Soil physicochemical properties were determined using standard methods: pH with a pH meter 183 

(Delta 320; Mettler-Toledo Instruments Co., Ltd., China) in 1:2.5 soil/water ratio; soil particle 184 

size with a laser particle size analyser (Mastersizer 2000; Malvern Instruments Ltd., UK).  185 

Dry shoots, roots, and soil samples were ground in a ball mill prior to analysis. The stable 186 

C isotope ratio (12C/13C) and the total C and N content of all samples were measured with an 187 
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isotope ratio mass spectrometer (IRMS, MAT253; Thermo-Fisher Scientific, Waltham, MA, 188 

USA), coupled with an elemental analyser (FLASH 2000; Thermo-Fisher Scientific, Waltham, 189 

MA, USA). The 12C/13C ratio was expressed as parts per thousand relative to the international 190 

standard, Peedee Belemnite (PDB), using delta units (δ‰). 191 

 192 

Calculations and statistical analyses 193 

13C content (13Csample) (mg C pot-1 or mg C m-2) was calculated using the following equation:  194 

13Csample = [(atomic 13C%)l – (atomic 13C%)n1]sample × TCsample /100 (1) 195 

where subscripts ‘l’ and ‘nl’ are labelling and non-labelling, respectively; ‘TC’ is the total C 196 

content in a sample. 197 

The amount of 13C in aggregates and free silt and clay-size fraction was calculated as 198 

follows: 199 

13C amount-fraction = 13Ccon-fraction × Mfraction/100 (2) 200 

where 13Camount-fraction is the C amount in aggregates (mg C kg-1 soil), Ccon-fraction is the organic C 201 

concentration of aggregates (mg C kg-1 fraction), and Mfraction is the mass percentage of 202 

aggregates in whole soil (%). 203 

Because macroaggregates and microaggregates were similar in particle size distribution, 204 

the organic C in aggregates was not corrected for sand content in any treatment. 205 

 The percentage of 13C incorporation in shoots, roots, and soil on each sampling day was 206 

calculated considering the total 13C found in shoots, roots, and soil combined.  207 

All data were expressed as the mean of three replicates ± SE. Multivariate ANOVA with 208 

Duncan tests was used to test differences in the measured variables among different treatments 209 
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at a 5% probability level. Statistical analyses were performed in SAS 9.1 for Windows (SAS 210 

Institute Inc.). 211 

 212 

Results  213 

Effect of water and N treatment on plant biomass, TC, and TN 214 

N (N250) application significantly increased shoot biomass (g∙m-2; p = 0.0001, Fig. 1a) under 215 

both ‘Alternate’ and ‘Flooding’ regimes. Under the former, shoot biomass reached its maximum 216 

value on day 22, with a 49% increase over the control (N0) and 19% increase over ‘Flooding’. 217 

The latter led to a 40% and 29% increase in shoot biomass from N0 on days 14 and 22, 218 

respectively. The interaction of N application and water regime also increased root biomass by 219 

76% under ‘Flooding’ compared with ‘Alternate’ (Fertiliser × Water × Time, p = 0.037, Fig. 220 

1a). N application also reduced the root/shoot biomass ratio (p = 0.0001, Fig. 1a) on both 221 

sampling dates and in both water regimes.  222 

N addition increased shoot TC (p = 0.0001, Fig. 1b) on day 22 of ‘Alternate’ (by 52%), 223 

as well as on days 14 (43%) and 22 (28%) of ‘Flooding’. The interaction of water, fertiliser, 224 

and sampling day significantly affected shoot TC (p = 0.005, Fig. 1b). N application did not 225 

significantly alter root TC under ‘Alternate’ irrigation, but reduced root TC by 24% (p = 0.01) 226 

on day 22 under ‘Flooding’. N treatment thus decreased the root/shoot TC ratio (p = 0.0001, 227 

Fig. 1b) across all sampling days and water regimes.  228 

Shoot TN was not affected by N application on day 14. The interaction of fertiliser and 229 

water management significantly increased shoot TN (P = 0.02, Fig. 1c) on day 22 of both water 230 

regimes, but by 33% more (p = 0.023) in ‘Alternate’ than in ‘Flooding’. The interactions of 231 

fertiliser and sampling date (p = 0.0001, Fig. 1c), as well as of water management and sampling 232 
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date (p = 0.03), significantly affected root TN. While N application decreased root TN on day 233 

14 of both water regimes, an increase occurred on day 22, again with the change being more 234 

pronounced under ‘Alternate’ than under ‘Flooding’ (a 43% difference). Further, N application 235 

reduced the root/shoot N ratio across both sampling dates and water regimes (P = 0.0001, Fig. 236 

1c).  237 

In unfertilised soil, shoot C/N ratio increased from day 14 to 22 under both ‘Alternate’ 238 

and ‘Flooding’, whereas N treatment caused a corresponding decrease of 43% and 42% for the 239 

two water managements, respectively. This interaction between fertiliser and sampling date on 240 

C/N ratio was highly significant (p = 0.0001, Fig. 1d). Root C/N ratios exhibited similar 241 

patterns. Under N addition, root C/N decreased from day 14 to 22 by 69% and 72% for 242 

‘Alternate’ and ‘Flooding’ water regimes, respectively, indicating a significant interactive 243 

effect of fertiliser and sampling day (p = 0.003, Fig. 1d). The shoot and root ratios under 244 

‘Alternate’ were lower by 7% (p = 0.03) and 13% (P = 0.007), respectively, than under 245 

‘Flooding’.     246 

 247 

13C amount (mg C pot-1) and percentage (%) in the rice-soil system 248 

Although N addition increased shoot 13C amount under both ‘Alternate’ and ‘Flooding’ 249 

compared with the control, a similar increase was not observed in roots (Fig. 2a). The 250 

interaction of fertiliser × sampling date was significant (p = 0.0001, Fig. 2a); shoot 13C increased 251 

by 40% and 98% on days 14 and 22 under ‘Alternate’, but by 53% and 32% under ‘Flooding’. 252 

Hence, ‘Alternate’ resulted in a 17% increase over ‘Flooding’ on day 22 (Fertiliser × Water × 253 

Time, p = 0.001, Fig. 2a).  254 
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Root 13C increase between sampling days (14 and 22) was greater under ‘Alternate’ than 255 

‘Flooding’; N addition did not significantly affect this pattern. N addition increased (p = 0.0001, 256 

Fig. 2a) rhizosphere soil 13C by 174% and 104% on days 14 and 22 under ‘Alternate’, 257 

respectively, and by 65% and 95% under ‘Flooding’. The difference in rhizosphere soil 13C 258 

between the water regimes on day 22 was significant (Water, p = 0.02, Fig. 2a). Neither N 259 

addition nor water management significantly affected 13C incorporation into bulk soil. Notably, 260 

the 13C content (mg C kg-1 soil) in rhizosphere soil was 3 to 21 times higher than in the bulk 261 

soil, depending on sampling day, N application, and water treatment (Table S1). 262 

Compared with the control, N addition significantly increased the percentage of total 263 

13C allocated to the shoot (p = 0.0001, Fig. 2b), but only on day 14 of ‘Alternate’ (by 29%) and 264 

day 22 of ‘Flooding’ (by 17%). N-induced changes in shoot 13C percentage across sampling 265 

dates was only significant under ‘Flooding’ (a 28% increase, p = 0.002). A significant 266 

interaction of water regime, fertiliser, and sampling date (p = 0.02, Fig. 2b) led to a 15% 267 

increase in 13C percentage on day 14 of ‘Alternate’ compared with ‘Flooding’, a pattern that 268 

reversed on day 22 with ‘Flooding’ increasing by 19% over ‘Alternate’.  269 

At N addition (Fertiliser × Water × Time, p = 0.001, Fig. 2b), root 13C percentage 270 

increased marginally from day 14 to 22 of ‘Alternate’, but decreased over the same period of 271 

‘Flooding’.  Compared with the control, N addition significantly increased (p = 0.04, Fig. 2b) 272 

13C percentage in rhizosphere soil on day 14 of both water regimes (by 114% under ‘Alternate’ 273 

and 95% under ‘Flooding’). The total percentage on day 14 in bulk soil+rhizosphere soil was 274 

17.7% (Alternate) and 11.8% (Flooding), respectively representing 54.8% and 29.4% of the 275 

belowground percentage. Neither water nor fertiliser regimes affected 13C percentage in bulk 276 

soil. 277 

 278 
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Mass percentage of aggregates (%), SOC content (g C kg-1 soil), and 13C amount (mg C 279 

pot-1) and percentage (%) in aggregate fractions 280 

Overall, aggregate percentage and SOC distribution across all treatments and sampling dates 281 

were greatest in the silt and clay-size fraction, followed by microaggregates, then by 282 

macroaggregates (Fig. S1a-d). Macroaggregates were more prominent in bulk soil compared 283 

with rhizosphere soil, regardless of N addition or water management (Fig. S1a & c). In contrast, 284 

microaggregate distribution was unaffected by any factor, including the rhizosphere, whereas 285 

the silt and clay-size fraction was higher in rhizosphere soil than in bulk soil. The SOC 286 

distribution across the fractions mirrored aggregate distribution, being higher (p < 0.01) in 287 

macroaggregates of bulk soil than of rhizosphere soil under both water regimes (Fig. S1b & d).  288 

N application significantly increased (p = 0.04, Fig. 3a) 13C in rhizosphere soil 289 

macroaggregates on day 14 of both water regimes. Approximately 2.1 and 1.7 mg 13C pot-1 290 

were allocated to macroaggregates under ‘Alternate’ and ‘Flooding’, respectively, reflecting a 291 

347% and 254% increase from the control. In contrast, by day 22, N application only increased 292 

macroaggregate 13C in rhizosphere soil (53 mg C pot-1; p = 0.002) under ‘Alternate’ (97% 293 

increase over the control), compared with ‘Flooding’ (43% increase over the control) (Water × 294 

Rhizosphere, p = 0.01, Fig. 3c).  295 

Compared with bulk soil, microaggregate 13C-SOC was slightly higher in rhizosphere 296 

soil on day 14 of all treatments (Fig. 3a). By day 22, only ‘Alternate’ rhizosphere soil exhibited 297 

significantly higher microaggregate 13C-SOC (62% increase over the control) under N 298 

application (Fig. 3c). Similarly, 13C-SOC was significantly higher in the silt and clay-size 299 

fraction of rhizosphere soil (Fertiliser × Rhizosphere, p = 0.005, Fig. 3a) across all N and water 300 



 14 

treatments. However, by day 22, only rhizosphere soil in ‘Alternate’ showed significantly 301 

higher 13C-SOC (157% increase over the control) under N application. 302 

The percentage of 13C-SOC in aggregate fractions exhibited similar patterns as the 13C-303 

SOC amount, with higher values of both in the macroaggregate fraction, followed by the silt 304 

and clay-size fraction, and then the microaggregate fraction (Fig.3b & d). On day 14 of both 305 

water regimes, N application significantly heightened macroaggregate 13C-SOC percentage in 306 

rhizosphere soil (310% and 339% increases over N0 in ‘Alternate’ and ‘Flooding’, respectively; 307 

p < 0.0001, Fig. 3b), although the change was more dramatic in ‘Alternate’ (80% increase over 308 

‘Flooding’; p = 0.02, Fig. 3b). By day 22, a significant increase in percentage was only observed 309 

under ‘Alternate’ (47% increase over N0 and 69% increase over ‘Flooding’; Water × 310 

Rhizosphere, p = 0.004, Fig. 3d).  311 

Regardless of fertilisation or water regime, microaggregate 13C-SOC percentage was 312 

greater on day 14 in rhizosphere soil (0.73–1.09%) than in bulk soil (0.20–0.47%). In contrast, 313 

N application raised silt and clay-size fraction 13C-SOC percentage in rhizosphere soil over bulk 314 

soil (p < 0.01) across both sampling dates and water regimes (Fig. a & d). Further, positive 315 

correlations (R2 = 0.33–0.39, p < 0.001, Fig. 4) were found between root biomass and 13C-SOC 316 

(in aggregate fractions and total soil).  317 

 318 

Discussion 319 

Effects of drying-rewetting cycles and N fertilisation on biomass, TC and TN in rice  320 

Both individual and interaction effects of water management and N fertiliser application 321 

significantly increased rice biomass, as well as TC and TN content. These increases were 322 

greater in the shoot and especially, under flooding-drying water management. 323 
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While N application generally increased biomass over time, the effect of different water 324 

regimes altered that increase. Continuous flooding initially (day 14) caused higher shoot and 325 

root biomass than the alternating condition, but by day 22, this pattern was reversed. Several 326 

possible explanations can explain these results. First, reduced translocation below-ground and 327 

rhizodeposition under flooded conditions can leave more materials for growth in shoots and 328 

roots (Schumacher and Smucker 1985), resulting in the initially higher biomass under 329 

continuous flooding. However, as time passed, less efficient nutrient use under flooding could 330 

lead to relative biomass reduction compared with the alternating system. Efficient N use in 331 

plants is linked to enhanced photosynthetic capability through increasing chlorophyll and 332 

Rubisco activity (Wang et al. 2012; Lin et al. 2013), both of which are involved in 333 

photosynthesis.  The growth-promoting activity (on plant development and improved nutrient 334 

availability) of some rhizobacteria could also be more favoured under alternate water regime, 335 

leading to higher shoot and root biomass (Pii et al. 2015). 336 

Regardless of the water regime, we noticed that the root/shoot biomass ratio decreased 337 

with N addition, suggesting that shoots respond better to N. The decrease of root system in the 338 

presence of N and its increase under N limitations has been well established (Voisin et al. 2002; 339 

Shangguan et al. 2004). In the present study, continued growth then led to even higher N 340 

demand, explaining the significant increase in shoot and root TN at the second sampling date 341 

for both water regimes; the more pronounced effect in ‘Alternate’ conformed with our 342 

observations of late biomass increase under this water regime (Ye et al. 2013). Patterns in C/N 343 

ratios (initially high, followed by subsequent decrease) also support a gradual increase in N 344 

uptake. Again, this change was more obvious under the ‘Alternate’ water management, 345 

implying better nutrient uptake.  346 

 347 
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Effects of drying-rewetting cycles and N fertilisation on recent photoassimilate (13C) 348 

deposition (mg C pot-1) in the rice-soil system 349 

While 13C assimilation rose in response to shoot biomass increase under both water regimes, 350 

the effect was much stronger under alternating than continuous flooding. The relative decreased 351 

allocation of recent photoassimilate to the root under ‘Flooding’ compared with ‘Alternate’ 352 

could be due to prolonged anaerobic conditions that reduced root respiration, and hence, the 353 

demand and shoot-to-root translocation of recent photoassimilate (Schumacher and Smucker 354 

1985).  355 

The importance of roots is clearly demonstrated by the correlation between root biomass 356 

and recent photoassimilates in soil aggregates. The transfer of recent assimilates from 357 

rhizosphere soil to bulk soil may be possible with help of fungi hyphae, which are able to 358 

penetrate fine pores such as those of the rhizosphere bags (Oades 1984). Substantial fungal 359 

growth even under the continuous flooding system could be possible through diffusion of 360 

atmospheric oxygen through rice aerenchyma to the root system, which could provide some 361 

pockets of aerobiosis (Yuan et al. 2016). . 362 

Looking within water regimes, however, translocation and rhizodeposition were superior under 363 

flooding-drying compared with continuous flooding. Rhizodeposition was thus considerably 364 

increased through the combination of N addition with the alternating water regime, supporting 365 

our first hypothesis.  366 

Besides greater root biomass, N-induced increases to shoot biomass and reduced N loss 367 

under the ‘Alternate’ water regime could also improve assimilate translocation to the root. For 368 

example, Liljeroth et al. (1990) reported increases in wheat root exudates with higher N 369 

availability, a pattern attributable to the enhanced photosynthesis of high-N plants (Lin et al. 370 
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2013) and the consequent increase in overall exudate production. The oxic environment 371 

provided by the drying portion of the ‘Alternate’ treatment may enhance root growth and 372 

activity as well, improving exudation and nutrient uptake (Zhang et al. 2009; Mishra and 373 

Salokhe 2011). Therefore, a positive correlation typically exists between increased exudates 374 

and root tip number (Thornton et al. 2004; Pausch and Kuzyakov 2011). In addition, Zhang et 375 

al. (2009) observed that while rice photosynthetic rate was not significantly reduced during the 376 

drying period of an alternating water regime, re-watering significantly increased the rate. The 377 

decrease and suppression, respectively, of root respiration (Schumacher and Smucker 1985) 378 

and growth (Tian et al. 2013a & b; Zhu et al. 2016) under anaerobic condition such as that of 379 

continuous flooding have been well documented. Finally, high shoot respiration under 380 

‘flooding’ (Swinnen et al. 1994; Kuzyakov et al. 2001) may reduce available shoot C for 381 

subsequent transfer belowground. 382 

The percentage of recent photoassimilates in shoots and roots differed noticeably with 383 

N treatment under the two water regimes. In the first sampling of the ‘Alternate’ management, 384 

the shoot percentage of recent photoassimilate differed significantly from control, whereas the 385 

root percentage was not significant. Both the shoot and the root percentage of the recent 386 

photoassimilates, however, slightly increased until the second sampling day. In contrast, 387 

continuous flooding caused an increase in the shoot percentage of recent photoassimilates from 388 

the first to the second sampling date, while the root percentage decreased (Fig. 2b). These 389 

outcomes are attributed to continuous root-oriented translocation of recent photoassimilate and 390 

rhizodeposition (Tian et al. 2013b) under the alternating flooding-drying regime, versus 391 

reduced translocation and rhizodeposition through prolonged anaerobiosis (Schumacher and 392 

Smucker 1985; Henry et al. 2007) under continuous flooding.  393 
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The percentage of recent photoassimilates found in soil was higher under ‘Alternate’ 394 

(17.7%) than under ‘Flooding’. This outcome was likely due to improved root activity for 395 

nutrient uptake (Mishra and Salokhe 2011), more efficient nutrient use (Lin et al. 2013), 396 

increased biomass, and better translocation of photoassimilates below-ground (Tian et al. 397 

2013b) under the ‘Alternate’ regime. We also noted that our values were generally higher than 398 

previous findings. According to Kuzyakov and Domanski (2000) and Tian et al. (2013b), 5–399 

10% of the net photosynthesized C allocated to roots can be recovered from the soil during 400 

plant vegetative growth. The use of continuous labelling rather than the pulse labelling common 401 

to previous studies could have been a factor in our higher percentage. Continuous labelling with 402 

14C can more quantitatively estimate rhizodeposited C (Wichern et al. 2011), when compared 403 

short-term pulse labelling.  404 

 405 

Impact of drying-rewetting cycles and nitrogen fertilisation on recent assimilate (13C) 406 

allocation to aggregate fractions 407 

We observed reduced macroaggregation in rhizosphere soil versus bulk soil irrespective of N 408 

or water regime (Fig. S1a and c), in contrast to our hypothesis of enhanced rhizosphere soil 409 

macroaggregation. This outcome could result from the destabilising effects of growing roots on 410 

SOM decomposition, due to physical root-soil interactions (Huck et al. 1970). Growing roots 411 

prefer wider soil pores than their own diameters (Russel 1977). Under less ideal conditions, 412 

roots will displace soil particles (Whiteley and Dexter 1984; Helal and Sauerbeck 1989) while 413 

enlarging narrow pores, thus crushing some soil aggregates. Although N addition improved 414 

macroaggregate SOC concentration in the rhizosphere soil, we generally observed closer 415 

associations between SOC and the other two fractions (silt-and-clay and microaggregates). This 416 
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higher SOC content under the finer fractions could be explained by the faster turnover rate of 417 

macroaggregate-associated SOC (Tisdall and Oades 1982; Baldock and Skjemstad 2000), 418 

especially because the seasonal puddling of paddy soils (in preparation for rice cultivation) 419 

tends to reduce macroaggregate portions. Our results support previous work showing that N 420 

addition may reduce native SOC decomposition (Liljeroth et al. 1990). In this study, more 421 

native SOC was stabilised and protected against microbial decomposition through association 422 

with the silt and clay-size fraction.  423 

Under ‘Alternate’, N addition increased recent assimilate deposition and percentage in 424 

all rhizosphere soil aggregate fractions compared with ‘Flooding’, indicating enhanced 425 

rhizodeposition and stabilisation of recent assimilates. This finding did not support our second 426 

hypothesis, but corroborated some previous data showed that 14C incorporation into 427 

macroaggregates increased with time in the non-flooded treatment versus the flooded treatment 428 

(Tian et al. 2013b). Both N addition (Liljeroth et al. 1990) and non-flooded conditions (Tian et 429 

al. 2013b) increase photosynthesized C rhizodeposition. The former may exert such an effect 430 

because high soil N enhances photosynthetic capability (Lin et al. 2013) and reduces the 431 

competition between roots and microorganisms for exudates (Ge et al. 2015). The latter may be 432 

effective because drying conditions improve root activity and architecture (Mishra and Salokhe 433 

2011; Thakur et al. 2011).  434 

Though N fertilisation affects the allocation of recent assimilates, roots exert a strong 435 

influence on soil C dynamics irrespective of N, as evidenced by the higher assimilate percentage 436 

in rhizosphere soil over bulk soil (microaggregates and silt and clay-size fractions) under both 437 

water regimes. A larger portion of recent photoassmilates was deposited into macroaggregates, 438 

corroborating previous work that newly plant-derived C is initially incorporated into this 439 

fraction (Jastrow 1996; Tian et al. 2013b; Six et al. 2000).  440 
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Subsequently, we observed higher recent-assimilate incorporation into the silt and clay-441 

size than the microaggregate fraction. This result contradicts the concept of aggregate hierarchy 442 

(Tisdall and Oades 1982; Six et al. 1999), where the photoassimilate content is expected to 443 

decrease with decreasing aggregate size. This deviation from expected outcomes may be caused 444 

by two factors: 1) the silt and clay-size fraction exhibited the highest weight percentage of all 445 

fractions in this study, and 2) silt and particularly clay both have high surface areas for increased 446 

fresh C absorption (Sposito et al. 1999). Moreover, intra-microaggregate pores are small and 447 

new C may not be able to easily diffuse through them. Therefore, the effective surface area of 448 

microaggregates is smaller, and this fraction could also have slower turnover rates than both 449 

macroaggregate-linked OC (Puget et al. 2000) and the silt and clay-size fraction.    450 

 451 

Conclusions 452 

The results of our study showed that the interactive effects of water regimes and N fertilisation 453 

increased rice shoot biomass, as well as the allocation and stabilisation of newly the plant-454 

derived C in the rice-soil system. Moreover, N application was more effective in the alternating 455 

flooding-drying treatment than in continuous flooding, causing a larger increase to recent 456 

assimilate deposition in rhizosphere soil macroaggregates, microaggregates, and silt and clay-457 

size fractions. Thus, combining N application with a drying-rewetting water management 458 

stabilized rhizodeposited C in soil more effectively than other tested conditions. Hence, in 459 

addition to benefits such as cost reduction, water use efficiency, and yield increase, the positive 460 

impact on C sequestration makes this combined management system desirable for rice 461 

cropping. This study for the first time investigated rice C rhizodeposition and stabilization in 462 

paddy soil under combined effect N addition and water regimes, and thus established the 463 
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superior effect of drying-rewetting water regime and N addition. However, because we air-dried 464 

the soils prior to wet-sieving separa, future research study needs to look into the suitability of 465 

this method for aggregate separation in paddy soils. This is more important because the method 466 

has been mostly used for aerobic soils. 467 
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Figure captions 669 

Fig. 1 Effects of drying-rewetting cycles and N fertilisation on rice shoot and root biomass (dry 670 

weight) (a), C, and N contents (b, c), as well as plant (root and shoot) C/N ratio (d) at days 14 671 

and 22 of the 13C continuous labelling experiment. Alternate: alternating flooding-drying water 672 

management; Flooding: continuous flooding; No: no N fertiliser application; N250: urea at 250 673 

mg N kg-1 soil; D14: sampling on day 14 of continuous labelling; D22: sampling on day 22 of 674 

continuous labelling. Error bars represent one standard error of the mean (n = 3). Different 675 

lower- and uppercase letters respectively indicate significant differences (p < 0.05) of the shoot 676 

and root parameters, as well as their root/shoot ratio across treatments 677 

 678 

Fig. 2 Effects of drying-rewetting cycles and N fertiliser application on 13C content (a) and 679 

percentage (b) in shoot, root, rhizosphere soil (RS), and bulk soil (BS) at days 14 and 22 of the 680 

13C-continuous labelling experiment. Alternate: alternating flooding-drying water 681 

management; Flooding: continuous flooding; No: no N fertiliser application; N250: urea at 250 682 

mg N kg-1 soil; D14: sampling on day 14 of continuous labelling; D22: sampling on day 22 of 683 

continuous labelling. Error bars represent one standard error of the mean (n = 3). Different 684 

lowercase letters indicate significant differences (p < 0.05) of the measured shoot, root, RS 685 

(Rhzisphere soil), or BS (bulk soil) parameter across treatments; curved arrows link the letters 686 

to the corresponding sections of the bars they represent 687 

 688 

Fig. 3 Effects of drying-rewetting cycles and N fertiliser application on 13C-SOC and 689 

percentage, respectively, in rhizosphere-soil and bulk-soil aggregate fractions at day 14 (a & b) 690 

and 22 (b & c) of the 13C-continuous labelling experiment. Alternate: alternating flooding-691 
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drying water management; Flooding: continuous flooding; No: no N fertiliser application; 692 

N250: urea at 250 mg N kg-1 soil; RS: rhizosphere soil; BS: bulk soil. Error bars represent one 693 

standard error of the mean (n = 3). Different lowercase letters indicate significant differences 694 

(P< 0.05) of the parameter measured in soil aggregate fractions (>250, 250–53, or <53 µm) 695 

across treatments 696 

 697 

Fig. 4 Correlations between root biomass and 13C-SOC content in soil aggregate fractions, 698 

resulting from a 13C-continuous labelling experiment. All regression lines are significant at p < 699 

0.001 700 

 701 

 702 

 703 

 704 

  705 
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Figures 706 

 707 

Fig. 1 708 
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Fig. 2 711 
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Fig. 3 724 
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Fig. 4 729 

  730 

731 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0

4

8

12

16

 >250 µm

  250-53 µm

 <53 µm

  Fractions' Total

1
3

C
-S

O
C

 i
n
 s

o
il 

a
g
g

r.
 f
ra

c
ti
o
n
s
 (

m
g
.p

o
t-

1
)

Root Biomass (g.pot-1)

y=3.86x -1.72; R2=0.39

y=2.60x -1.53; R2=0.37

y=0.69x + 0.10; R2=0.33

y=0.53x- 0.27; R2=0.37



 36 

Supplementary material 732 

Table S1. 13C-SOC (mg C kg-1 soil) in rhizosphere soil (RS) or bulk soil (BS) aggregate 733 

fractions at day 14 (a & b) and 22 (b & c) of the 13C-continuous labelling experiment. Alternate: 734 

alternating flooding-drying water management; Flooding: continuous flooding; N0: no N 735 

fertiliser application; N250: urea at 250 mg N kg-1 soil; RS: rhizosphere soil; BS: bulk soil  736 

 737 

Water 

regime 

 level Day Sum of aggregate 

fractions 

>250 µm 250–53 µm <53 µm 

RS BS RS BS RS BS RS BS 

Alternate N0 D14 3.44 0.97 1.39 0.59 0.63 0.11 1.41 0.28 

D22 13.12 2.33 8.28 1.37 2.08 0.63 2.75 0.62 

N250 D14 6.27 0.43 4.11 0.30 0.31 0.03 1.85 0.11 

D22 17.82 2.76 10.85 2.13 2.26 0.26 4.69 0.38 

Flooding N0 D14 3.21 0.57 0.74 0.30 0.62 0.09 1.16 0.18 

D22 9.41 3.11 4.90 1.88 1.78 0.53 2.74 0.70 

N250 D14 6.18 0.60 4.12 0.44 0.54 0.11 2.31 0.11 

D22 12.22 2.59 7.56 1.92 1.67 0.28 2.99 0.38 

  738 
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Fig. S1. Effects of drying-rewetting cycles and nitrogen (N) fertiliser application on mass 739 

percentage and SOC, respectively, of rhizosphere soil and bulk soil aggregate fractions at two 740 

sampling days 14 (a & b) and 22 (c & d) in a 13C-continous labelling experiment. Alternate: 741 

alternating flooding-drying water management; Flooding: continuous flooding; No: No N 742 

fertiliser application; N250: Urea at 250 mg N kg-1 soil; RS: rhizosphere soil; BS: bulk soil. 743 

Error bars represent one standard error of the mean (n = 3). Different lowercase letters indicate 744 

significant differences (P < 0.05) of the parameter measured in soil aggregate fractions (>250, 745 

250–53, or <53 µm) across different treatments 746 
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