The effects of carbohydrate supplementation on multi-day wilderness expedition performance
Oliver, S.J.; Macdonald, J.H.

Published: 01/01/2008

Publisher's PDF, also known as Version of record

Dyfyniad o’r fersiwn a gyhoeddwyd / Citation for published version (APA):

Hawliau Cyffredinol / General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
The Effects of Carbohydrate Supplementation on Multi-day Wilderness Expedition Performance

S.J. Oliver and J.H. Macdonald, for the JXH2030 module research group

Introduction

During expeditions and military field training energy expenditure often exceeds intake (Tharion et al., 2006). Inadequate diets compromise physical exercise capacity and health. Consequently, it is pertinent to devise practical nutritional strategies to increase energy and fluid provision in these scenarios.

High carbohydrate diets have been shown to improve or preserve exercise capacity during periods of intense training compared with normal mixed diets (Kirwan et al., 1988; Simonsen et al., 1991; Achten et al., 2004). These diets were also associated with greater percentage of completed training and preserved body weight.

Compared with water alone the addition of carbohydrate to beverages has been shown to increase voluntary fluid intake and aid fluid retention during and following exercise (Maughan et al., 1997).

Where food availability and preparation is compromised, carbohydrate drinks may prove a palatable and practical method to maximise performance. Therefore, the purpose of this study was to investigate the effect of carbohydrate supplementation on physical performance, body composition and hydration status during a five-day wilderness expedition.

Methods

With institutional ethical approval, 20 students (16 males, 4 females; age mean = 20.7, s = 1.6 years; body mass mean = 73.1, s = 11.3 kg) completed a five day, self-supported, expedition. Environmental conditions varied from -4 to 20 °C. Throughout, participants consumed ad-libitum a flavoured 10% solution carbohydrate energy drink (CHO; PSP) or an indistinguishable placebo (PLB) in a randomised, double blind manner.

Performance was measured fasted on days 1, 3, 5 (0800 h) by the time to complete a 400 m rucksack walk-step task where males and females carried 15 and 13.5 kg, respectively. Participants completed eight circuits of 50 m; where each circuit began with 20 steps on to a 22 cm platform.

Energy balance was calculated as energy intake minus energy expenditure on Day 3. Energy expenditure was estimated from MET tables (Ainsworth et al., 2000) whilst intake and dietary composition was estimated from self-report weighed diet records (Dietmaster, Version 4, Swift computer systems).

Body composition was measured fasted by a three compartment model (Lohman, 1986) pre (Day 0, 1800 h) and post expedition (Day 5, 1800 h). Fat mass, bone mineral content and residual were determined by underwater weighing and dual energy x ray absorptiometry (QDR 1500, Hologic). Residual lung volume was predicted from total and supplement fluid intake was recorded by self report diary at the end of each day.

Data were analysed by mixed model analysis of variance (allocation x time) or by independent t tests (CHO vs. PLB). Appropriate adjustments to the degrees of freedom were made in cases where the assumptions of sphericity and normality were violated.

Results

Time to complete the performance task was not affected by allocation (p = 0.269) but tended to change over time (Day 1 vs. 3; s: mean 376 ± 43 vs. 383 ± 41 vs. 367 ± 52 seconds, p = 0.088, p² = 0.2). There was no interaction for any of the body composition parameters (p > 0.48). However, body mass and fat mass decreased whilst fat-free mass increased post vs. pre-expedition in CHO and PLB groups (p = 0.007 - 0.001, p² = 0.3 - 0.6, Figure 1).

Both CHO and PLB groups were in negative energy balance, albeit trends of reduced energy deficit in the CHO group were observed (CHO vs. PLB: mean -1862 ± 1223 vs. -2981 ± 1586 kcals-day¹, p = 0.094, p² = 0.1). Total dietary carbohydrate intake was significantly higher in participants receiving CHO (CHO vs. PLB: mean 7.1 ± 1.6 vs. 4.2 ± 1.8 g·kg⁻¹·BM·day⁻¹, p = 0.001, p² = 0.5).

Discussion

During the five-day wilderness expedition, participants were in a negative energy balance; however, physical performance was unaffected, possibly because of beneficially altered body composition or adequate carbohydrate intake. Furthermore, carbohydrate supplementation did not alter energy intake, body composition or performance.

The carbohydrate supplementation successfully increased carbohydrate intake and improved hydration status most probably via an increase in total fluid intake. Future research should examine the use of chronic carbohydrate supplementation in scenarios where energy and carbohydrate intake are restricted.

In conclusion, carbohydrate beverages are a practical method to increase carbohydrate intake and promote hydration status in expedition settings where food availability and preparation are compromised.

References and Acknowledgements


This study was supported by Science In Sport (Ashwood Laboratories, Blackburn, BB6 8BB).