How does grazing management influence the functional diversity of oak woodland ecosystems? A plant trait approach.

Ford, Hilary; Healey, John; Markesteijn, Lars; Smith, Andrew

Agriculture, Ecosystems and Environment

DOI: 10.1016/j.agee.2018.02.025

Published: 15/04/2018

Peer reviewed version

Cyswllt i'r cyhoeddiad / Link to publication

Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA):

Hawliau Cyffredinol / General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
How does grazing management influence the functional diversity of oak woodland ecosystems? A plant trait approach.

Hilary Ford*, John R. Healey, Lars Markesteijn, Andrew R. Smith

School of Environment, Natural Resources and Geography, Bangor University, Bangor, LL57 2DG, UK.

*Corresponding author. Email address: hilary.ford@bangor.ac.uk (H. Ford).

Abstract

Traditional approaches to conservation often focus on plant species composition. In contrast, trait-based approaches highlight the role plant species play in ecosystem function, with a focus on functional diversity and its importance for ecosystem resilience. Here we utilise a plant-trait approach to explore the association between livestock grazing intensity and plant functional diversity in Atlantic oak woodlands, a conservation priority habitat. In two historically un-grazed woodlands (subject to periods of light sheep grazing in winter) paired with two grazed woodlands (intensively grazed by sheep or feral goats), in north-west Wales, UK, field plant-trait data were recorded in three (30 x 4 m) plots per woodland for trees, saplings and understory plants. For trees and saplings, plant-trait data from the field (specific leaf area (SLA) and leaf dry matter content (LDMC)) were combined with plant tolerance indices from the scientific literature (shade, drought and water-logging tolerance) and used to calculate community weighted means (CWM) and functional diversity for plot-level communities. Three plant traits (LDMC, mean foliage height and growth form) and two Ellenberg indices (light and moisture) were combined to calculate CWM and functional diversity for understory plant communities. Tree and sapling communities from grazed...
woodlands were characterised by response traits associated with grazing avoidance strategies (high LDMC, low SLA), and higher shade- and drought-tolerance scores but lower water-logging-tolerance scores than in un-grazed woodlands. Tree and sapling communities in the un-grazed woodlands had greater seedling establishment, sapling recruitment and functional diversity than in the grazed woodlands. Plant-trait values and functional diversity did not differ with grazing intensity for understory plants. Land managers are increasingly being asked to manage semi-natural habitats for ‘resilience to future events’ such as droughts or floods. Here we demonstrate how a plant-trait approach, including assessment of community-level tolerance indices, allows us to infer potential associations between grazing management, functional diversity and ecosystem resilience.

Keywords:

Atlantic oak woodlands, Ecosystem resilience, Forest pasture, Herbivory, Stress tolerance, Wood pasture.

1. Introduction

Atlantic oak woodlands are a priority ecosystem for conservation within Europe (European Commission, 2015), characterised by high rainfall, base-poor soils and biodiverse bryophyte communities. Despite their high conservation importance many are listed as having unfavourable conservation status, threatened by fragmentation, inappropriate grazing management and invasive species (JNCC, 2013). Traditional approaches to woodland conservation focus on plant community composition and diversity (Hansson, 2001; McEvoy et al., 2006) and sapling recruitment (Palmer et al., 2004), with poor regeneration of oak
(Quercus spp.) of particular concern (Shaw, 1968a; 1968b). More recently, trait-based approaches to plant community ecology have been advocated, as a basis for conservation management, in a range of terrestrial ecosystems (Cadotte, 2011) including forests (Andersen et al., 2012; Craven et al., 2016; Mokany et al., 2015). These trait-based approaches highlight the role plant species play in ecosystem function, exploring the emerging relationship between functional diversity and resilience to future perturbations (Standish et al., 2014).

Here we define **resilience** as the degree to which ecosystem function can resist or recover rapidly from environmental perturbations (Oliver et al. 2015) as mediated by plant functional traits.

Plant functional traits can be defined in two broad ways: i) as any measurable characteristics at the individual level that directly or indirectly affect plant fitness (Lavorel et al., 1997; Violle et al., 2007); or ii) characteristics of individuals or species that influence ecosystem-level properties and processes (Petchey and Gaston, 2006). Plant traits are commonly categorised as either: i) **response traits** – traits associated with an individual or species response to environmental change such as grazing, drought or flooding; or ii) **effect traits** – traits that determine the effect of plants on ecosystem functions such as nutrient or biogeochemical cycling (Lavorel and Garnier, 2002). A greater functional diversity (i.e. variation in functional traits within a community) of effect traits is expected to result in enhanced community-level plant productivity and resource-use efficiency (Díaz et al., 2001). For response traits, greater functional diversity can enhance a community’s resilience to a range of environmental disturbances (Díaz et al., 2001; Elmqvist et al., 2003; Loreau et al., 2001; Standish et al., 2014), such as grazing by large herbivores, flooding or drought, by providing a higher response diversity.
The impact of livestock grazing on community-level plant traits has been summarised by several classic plant-resource models: Grime’s (1977) CSR (Competitor, Stress-tolerator, Ruderal) model, Coley et al.’s (1985) resource availability model and Westoby’s (1998) LHS (leaf-height-seed) model. These models predict that: i) selective or low-intensity grazing favours unpalatable plants with low specific leaf area (SLA) (Cornelissen et al., 1999; Coughenour, 1985) and higher leaf dry matter content (LDMC) (grazing avoidance); and ii) intensive non-selective grazing favours short, often palatable, plants with high SLA indicating fast regrowth of high-quality tissue with low structural defence (grazing tolerance), particularly in humid or productive grassland systems (Díaz et al., 2001). This framework, particularly relevant in woodlands to understory plant species, may also be affected by canopy openness with more open woodlands characterised by fast-growing understory species with traits indicative of grazing tolerance strategies such as high SLA (Brocque et al., 2009). For sapling communities, grazing avoidance strategies may be favoured, with low SLA and high LDMC effective at deterring herbivory (Westoby et al. 2002) as these traits tend to be coupled with the allocation of more tannins, phenols or other defensive compounds to leaves (Coley, 1983). Indeed, under open-canopy and intensive livestock-grazing conditions, sapling SLA was found to be lower than in un-grazed forests (Carlucci et al., 2012).

In addition to commonly studied response traits such as SLA and LDMC, traits linked to plant response to variation in the physical environment, e.g. tolerance of shade, drought and water-logging, have recently been incorporated into studies evaluating the impact of land-use intensity on functional diversity and ecosystem resilience (Carreño-Rocabado et al., 2012; Carreño-Rocabado et al., 2016; Craven et al., 2016). Some studies have focused on how grazing interacts with response plant-traits related to the physical environment, especially drought tolerance (Deléglise et al., 2015, Leiva et al., 2013; Plieninger et al., 2011; Tucker et
In a further advance, Niinemets and Valladares (2006) developed proxies for environmental response plant-traits based primarily on Ellenberg indices of shade, drought and water-loggin tolerance which they extrapolated to over 800 species of trees and shrubs from the northern hemisphere, in lieu of trait-specific information.

The effect of grazing on plant functional diversity has been discussed through the lens of ‘environmental filtering’ where strong abiotic or biotic filtering effects (e.g. heavy grazing pressure) are expected to select for convergent trait values for co-occurring species, leading to a loss of functional diversity (Ackerly and Cornwell, 2007; Cavendar-Bares et al., 2004; Kraft et al., 2008). Most studies on the impact of livestock grazing on functional diversity in woodland ecosystems have focused on the understory plant community, finding that an increase in grazing intensity leads to either increased (Mandle & Ticktin, 2015) or decreased (de Bello et al., 2006) functional diversity. Results from studies of the response of grassland functional diversity to livestock grazing are also inconsistent, with grazing either reducing plant functional diversity by favouring a limited set of trait values related to either avoidance or tolerance strategies (Catorci et al., 2014) or enhancing it, when compared to un-grazed grasslands where tall grasses dominate (Komac et al., 2015; Vandewalle et al., 2014).

In this study we utilised a plant-trait approach to explore the association between livestock grazing and plant community response traits, tolerance indices and functional diversity in oak woodlands. We expected: 1) in the understory plant community of grazed woodlands response trait values associated with grazing tolerance strategies (low LDMC, low mean foliage height) to dominate; 2) in the tree and sapling communities of grazed woodlands response traits linked to grazing avoidance strategies (e.g. low SLA, high LDMC) to dominate; 3) in the tree and sapling communities of both grazed and un-grazed woodlands trait values
associated with shade and water-logging tolerance scores to be greater than those associated with drought tolerance due to the high year-round rainfall in the study area; 4) in the un-grazed woodland plant communities functional diversity to be greater due to the effect of environmental filtering on the grazed woodlands.

2. Methods

2.1 Study area and sampling design

Two pairs of Atlantic oak woodlands, identified as upland oakwood, a priority habitat for conservation and designated as Site(s) of Special Scientific Interest (SSSI), were selected in north-west Wales, UK. One pair is in the area of Ceunant Llennyrch and the other 15 km away in Nant Gwynant (Table 1). These woodlands are managed by the government conservation agency Natural Resources Wales (NRW), alongside two non-governmental organisations: the Woodland Trust (at Ceunant Llennyrch) and the National Trust (at Nant Gwynant). These woodlands are remnants of natural woodland that originally covered most of the Atlantic fringe of Europe, influenced by the Gulf Stream to create the warm, wet microclimate of a temperate rainforest with > 200 days per year of precipitation ≥ 1 mm (JNCC, 2013). Annual precipitation is ~3400 mm with mean, maximum and minimum temperatures of ~10, 19 and -1.5 C respectively (Robinson et al. 2017). These woodlands are dominated by Quercus petraea, with lower abundance of Betula pubescens, Corylus avellana, Fraxinus excelsior, Sorbus aucuparia and Ilex aquifolium. Within each of the two study areas, one woodland was selected that had a known history of intensive grazing (managed sheep or feral goat) for at least the past 25 years, and the other managed with no or only light winter grazing over the same time period due to fencing to exclude the animals (Table 1). Sheep and feral goats were
the only large mammal herbivores in the study area over this period with cattle and deer
absent [Local Environmental Records Centres Wales, http://www.lercwales.org.uk/]. For
Ceunant Llennyrch the paired woodlands were adjacent to each other, with the intensively
grazed woodland close to sheep grazed pasture-grassland. For Nant Gwynant the selected
woodlands were on opposite sides of the valley, 1 km apart, separated by a road and a lake
(Llyn Dinas) but both of similar elevation and adjacent to heathland habitat. Soils were
classified for both sets of paired woodlands as freely draining acid loamy soils on rock using
Soilscapes, a 1:250,000-scale, simplified soils map covering England and Wales developed by

After a preliminary survey to assess the conditions typical of each woodland (i.e. species
composition and relative abundance of trees, saplings and understory plants, and slope
angle), three 30 m x 4 m plots were established within each of the four study woodlands to
represent these conditions. Plots were positioned ≥ 10 m away from woodland edges with
large rocky outcrops excluded. All plots included Q. petraea and other tree species
representative of each woodland. In addition, three 1 m x 1 m sub-plots were established,
equally spaced along the length of each plot, for assessment of environmental and understory
characteristics including seedling establishment (Appendix, Fig. A1).

2.2 Environmental characterisation

Total basal area (m² ha⁻¹) and stems per hectare (ha⁻¹) of trees and saplings were calculated
from the mean of plot-level measurements and scaled up. Seedling density (m⁻²) was
calculated from 1 m x 1 m sub-plots. Soil temperature, moisture, pH and bulk density were
recorded in each sub-plot. Soil temperature was measured across the top 10 cm of soil with
a Checktemp thermometer (Hanna Instruments). Soil pH was measured in water according to
Smith and Doran (1996) in a 1:2.5 v/v slurry. Soil bulk density in the top 5 cm of soil was measured using a stainless steel ring (5 cm height, 5 cm diameter). Gravimetric soil moisture content (%) was also calculated from each bulk density soil sample. All environmental characteristics were measured during July 2016; on four days within a 14 day window, avoiding days with precipitation ≥ 3 mm.

2.3 Plants traits

All plant trait data were collected in July 2016, in tandem with the environmental sampling. Within each plot all trees (≥ 10 cm diameter at breast height (1.3 m, DBH) and saplings (<10 cm DBH but > 1.3 m height) were identified to species level, with DBH and height (of saplings) recorded. Relative abundance of each species was assessed for trees and saplings combined, based on relative density (stems per hectare), with leaf traits assessed for the species collectively contributing to ≥90 % of total woody plant density, as in de la Riva et al. (2016).

Within each sub-plot percentage cover of each understory plant species (including bryophytes) was assessed by eye, tree seedling density recorded and mean foliage height of each species of plant also measured. Epiphytes were not recorded. Leaf traits were also assessed for understory species contributing to approximately ≥90 % of woodland understory cover and were sampled at the main plot level.

For each species of tree or sapling selected for leaf trait assessment, three individuals were selected for sampling in each plot. For each individual, three leaves were selected on the basis of: i) height of leaves on trees, all leaves were located on branches accessible from the ground ~1-2 m high; ii) excluding leaves with obvious signs of vertebrate or invertebrate herbivore damage, pathogen damage or necrosis; iii) outer canopy leaves were collected, either sun exposed or least shaded dependant on plot canopy openness (for woodland stand
characteristics see Table 2). For each understory species selected for leaf trait assessment three individuals were selected for sampling in each plot. For each individual, three leaves were selected on the basis of: i) foliage height of leaves, with leaves selected from the uppermost foliage in the least shaded part of the plot; ii) avoiding leaf damage as stated above for trees and saplings; iii) for plants with very small or rolled leaves more than three leaves were collected; iv) for bryophytes the top 2 cm of each gametophyte (stem and leaflets) was used as a leaf substitute.

Leaves selected for plant trait assessment were collected (while still attached to a length of stem of ~2 cm) for trees, saplings and understory plants, wrapped in moist paper and sealed in plastic bags (to avoid dehydration and maximise humidity during temporary storage) as in Perez-Harguindeguy et al. (2013) and placed in a cool box (~10 °C). Leaf traits were assessed within 24 hours of leaf collection. Prior to measurement of leaf traits each leaf (including petiole) was cut from its stem and patted dry. One-sided projected leaf area was measured using a Portable Area Meter (LI-3000A, LI-COR) attached to a Belt Conveyer (LI-3050A, LI-COR). Fresh mass and oven-dry mass (60 °C for 72 hours) of each leaf were measured with a 4-figure balance. Specific leaf area was calculated by dividing the one-sided area of a fresh leaf by its oven-dry mass (m² kg⁻¹ or mm² mg⁻¹). Leaf dry matter content was calculated by dividing the oven-dry mass (mg) of a leaf by its water-saturated fresh mass (g), expressed as mg g⁻¹. For Calluna vulgaris, Festuca rubra and bryophyte species projected leaf area was not measured due to their non-flat leaf surface but LDMC was recorded. Each understory plant was allocated one of five growth forms: bryophyte, fern, forb, graminoid (grass, rush and sedge) and shrub.

2.4 Plant tolerance indices
Shade, drought and water-logging tolerance scores [0 (no tolerance) to 5 (maximal tolerance)] were assigned to tree species using indices developed for European tree species (Niinemets and Valladares, 2006). Shade tolerance indices were largely derived from the Ellenberg indicator for light, drought tolerance indices were based primarily on the inverse of Ellenberg indicator values for moisture and water-logging tolerance (i.e. tolerance of reduced root-zone soil oxygen availability) were based on multiple studies. Ellenberg indicator scores for light [1 (plant in deep shade) to 9 (plant in full light/sun)] and moisture [1 (indicator of extreme dryness) to 9 (submerged plant)] were allocated to understory plants using updated UK values (Hill et al., 1999; Hill et al., 2000) as in Smart et al. (2010) and Kimberley et al. (2014).

2.5 Statistical analyses

All analysis was carried out in R (R core team, 2016). To assess the association between grazing management (grazed versus un-grazed) and environmental variables (e.g. soil temperature) linear mixed-effect models were used with plot nested within location to avoid pseudo-replication (i.e. ‘random = ~1|Location/Plot’). ‘Woodland’ is not included as part of the random effect as each pair of woodlands within each location constituted one grazed and one un-grazed woodland, therefore this is accounted for in the grazing effect.

Community-level weighted means (CWM) of trait values were calculated for a set of communities (i.e. plots, n = 3 for each woodland) for: i) trees and saplings combined; ii) trees only; iii) saplings only; and iv) understory plants. For trees and saplings (i, ii and iii) CWM were calculated for 2 plant traits (SLA, LDMC) and 3 tolerance indices (shade, drought and water-logging). For understory plants (iv) CWM were calculated for 3 plant traits (LDMC, mean foliage height, growth form) and 2 Ellenberg indices (light and moisture). For a numeric trait (e.g. SLA), CWM is the mean trait value of all species present in the community (plot),
weighted by their relative abundances (i.e. stem density per plot for trees and saplings, % cover for understory plants), calculated from a species-by-trait(s) matrix. For categorical traits (e.g. growth form), the dominant class is returned as the result (e.g. graminoid or bryophyte).

Mean trait values of plant species were used for the calculation of CWM for understory plants (iv) in this study. However, as trees and saplings of the same species (e.g. Q. petraea) were often dimorphic (open grown trees versus understory saplings), and differed in mean values of plant traits measured in the field (SLA, LDMC) they were considered as separate ‘species’ for the purpose of calculating CWM for (i) trees and saplings combined. The mean trait (SLA and LDMC) value for each species of tree (ii) or sapling (iii) was used in the species-by-traits matrix. Trees and saplings of the same species were allocated the same score for tolerance indices in the species-by-traits matrix. CWM were calculated using the FD package (Laliberté et al., 2014). Separate CWM values for each of the three plots per woodland were used in a further analysis to assess the association between grazing management and tree, sapling and understory plant traits utilising linear mixed-effects models, nested as described above.

Functional diversity of each woodland community was calculated at the plot level (n = 3 per woodland) for trees and saplings for 2 plant traits (SLA, LDMC) and 3 tolerance indices (shade, drought and water-logging combined). For understory plants, functional diversity was calculated for 3 plant traits (LDMC, mean foliage height, growth form) and 2 Ellenberg indices (light and moisture) combined. Functional diversity was calculated, from the same species-by-traits matrices used in the CWM analysis, using principal coordinates analysis (PCoA) to return PCoA axes, which were then used as ‘traits’ to compute functional diversity indices, specifically functional dispersion, of each plot using the FD package. Functional dispersion was defined as the mean distance in multi-dimensional trait space of individual species to the centroid of all species, weighted by abundance (Laliberté and Legendre, 2010). For model (i),
trees and saplings combined, trees and saplings of the same species were again considered as separate ‘species’ for the calculation of functional diversity. Functional dispersion was an appropriate index to use in this study as: (a) it is unaffected by species richness, therefore allowing the different trait values of species measured on three individual trees or saplings per plot to be entered into the analysis as different ‘species’ without artificially inflating the diversity index; (b) it can be computed when traits outnumber species, as occurred for some plots and; (c) it requires only two species to compute functional diversity. In contrast, the suite of three commonly used functional diversity measures, functional richness, evenness and divergence need a minimum of three species per community to be computed.

3. Results

3.1 Environmental and plant community characterisation

The two grazed woodlands were characterised by greater basal area and tree density (total basal area of trees and saplings, and number of tree stems per hectare) than the two un-grazed woodlands, with sapling and tree seedling density greater in the un-grazed woods (Table 2). Diameter size-class distributions showed a greater dominance of the combined tree and sapling populations by the smaller size classes in the two un-grazed than the two grazed woodlands (Appendix, Fig. A2). The two grazed woodlands were dominated by Q. petraea trees with some C. avellana and F. excelsior, while the two un-grazed woodlands were co-dominated by Q. petraea and B. pubescens trees with saplings of these two species, S. aucuparia and I. aquifolium (Appendix, Fig. A3). Bryophytes, such as Thuidium tamariscinum, and the fern Pteridium aquilinum occurred in all four woodlands, with graminoids more prevalent in the grazed than the un-grazed woodlands, with cover varying in magnitude with
location. Understory shrubs such as C. vulgaris, Vaccinium myrtillus and Rubus fruticosus were only found in un-grazed woodlands (Appendix, Fig. A4). Soil temperature and pH were greater in the grazed than un-grazed woodlands with soil moisture content greater in the un-grazed woodlands (Table 2). Soil bulk density did not differ significantly with grazing.

3.2 CWM of plant traits and tolerance indices

Tree and sapling communities in the main plots had significantly greater LDMC in the grazed than the un-grazed woodlands, with SLA significantly lower in the grazed woodlands (Table 3). Tree and sapling communities had significantly higher shade- and drought-tolerance scores but lower water-logging-tolerance scores in the grazed than un-grazed woodlands. The relationship between grazing and LDMC in the woodland plots appeared to be linked primarily to saplings, with differences in the tolerance indices associated mainly with trees (Table 3). In contrast, understory plant trait values did not differ significantly between the grazed and un-grazed woodlands (Table 4). Mean SLA and LDMC of tree, sapling and understory plant species are shown in the Appendix (Fig. A5-A6).

3.3 Functional diversity

Tree and sapling communities had significantly greater functional diversity in the un-grazed than grazed woodlands ($P < 0.01$, Table 5). Understory plant functional diversity did not differ significantly with grazing.

4. Discussion

4.1 Understory community: response-traits
In this study, the understory community did not exhibit clear differences in field-measured plant response traits (LDMC, mean foliage height and growth form) between the grazed and un-grazed Atlantic oak woodlands. We can therefore reject our first hypothesis, based on classic plant-resource models (Coley et al., 1985; Grime, 1977; Westoby, 1998), that response traits associated with grazing tolerance strategies (low LDMC and low mean foliage height) will dominate in grazed understory plant communities. Despite this, there are differences apparent between the woodlands that have not been adequately captured by the plant-trait approach. Whilst bryophytes (high LDMC) occurred in both the grazed and un-grazed study woodlands, the woody shrubs *C. vulgaris*, *V. myrtillus* and *R. fruticosus* (with medium -LDMC values) were only found in the un-grazed woodlands. The understory vegetation of the intensively sheep-grazed woodland was characterised by bryophytes and a mixture of fine (e.g. *F. rubra*) and coarse (e.g. *Deschampsia flexuosa*) grasses (with variable SLA). However, the understory of the feral goat-grazed woodland was dominated by the unpalatable tall tussocky grass species, *Molinia caerulea* (high LDMC). In summary, the understory vegetation of the grazed woodlands was dominated by species exhibiting either grazing tolerance (e.g. small stature, high SLA, low LDMC) or grazing avoidance (e.g. low SLA, high LDMC) strategies, sometimes in combination. A caveat of the plant-trait approach is that community-level plant response trait means for each woodland do not accurately represent these compensatory responses to grazing pressure, especially where antagonistic and synergistic responses cancel each other out.

4.2 Tree and sapling community: response-traits

Whilst the understory plant community is subject to direct contemporary grazing effects, tree and sapling communities are more reflective of the longer-term direct and indirect effects of
grazing on their recruitment and earlier performance. We therefore consider the plant-trait response to grazing of the tree and sapling community separately to the understory community. For the two grazed woodlands in this study, results conformed to the prediction that response traits linked to grazing-avoidance strategies (low SLA and high LDMC) dominate in tree and sapling communities. These results are in line with the findings of Carlucci et al. (2012) but not the grazing tolerance-avoidance frameworks of classic plant-resource models (Coley et al., 1985; Grime, 1977; Westoby, 1998). Whilst potentially useful for characterising plant-response-trait in woodland understory plant communities, these models are not supported by the results of our study, which we suggest indicates that they are not as useful for defining grazing tolerance-avoidance strategies for perennial plants such as trees where true tolerance is rare. Indeed, evidence for grazing-tolerance in woodland ecosystems is sparse and tends to focus on arid woodlands (Meers et al., 2008; Vesk et al., 2004).

An alternative explanation to grazing avoidance or tolerance strategies driving the species composition of grazed woodland communities, is that un-grazed tree and sapling communities contain pioneer trees such as B. pubescens as a result of reduced competition, due to the relative lack of mature trees in comparison to the grazed woodlands. These grazing intolerant species exhibit a more ‘acquisitive’, rapid growth strategy (high SLA, low LDMC) than the species dominant in grazed woodlands, such as Q. petraea with a more ‘conservative’ slow-growth strategy (Díaz et al., 2004). In addition, the two field-measured plant traits (SLA and LDMC) are both leaf traits and do not take into account the variation between tree species in palatability of their bark to grazing livestock, which is important for sapling recruitment. There is evidence that livestock tend to strip the bark of more palatable species, e.g. Acer pseudoplatanus and Castanea sativa, whereas the bark of others such as Q. petraea is more impenetrable to livestock teeth when older (Mayle, 1999). Despite differing in feeding.
strategies, both sheep (primarily grazers) and goats (browsers) feed on both whole saplings and tree leaves within reach, particularly when other good quality forage is limited (Pollock et al., 2005). High intensity browsing can reduce growth rates of saplings resulting in trees with a short, wide dwarfed stature and highly branched canopies (Kinnaird, 1974).

4.3 Tree and sapling community: plant tolerance indices

We predicted that shade- and water-logging-tolerance scores would be greater than drought-tolerance scores for both grazed and un-grazed woodlands, due to the high rainfall in the study area. However, results showed that this was not the case, with large differences in scores between the grazed and un-grazed woodlands. Water-logging tolerance scores were greater in the un-grazed than grazed tree and sapling communities reflecting, in part, the low water-logging tolerance score attributed to *Q. petraea* (1.2), dominant in grazed sites, and high score for *B. pubescens* (2.98), found only in un-grazed woodlands. In contrast, drought and shade tolerance scores were greater in grazed woodlands. The characterisation of the grazed woodlands as drought-tolerant communities was largely attributable to their greater dominance by *Q. petraea*, which has a relatively high drought tolerance score (3.02) compared with the species that were more abundant in the un-grazed woodlands, e.g. *B. pubescens* (1.27) and *S. aucuparia* (2.11). Plant species with traits associated with drought avoidance (e.g. leaf shedding or investment in elaborate deep root systems that can reach the water table all year round) can be amongst the best drought survivors, with evidence from tropical dry forests (Poorter and Markesteijn, 2008). The functional traits that describe such drought tolerance or avoidance strategies are at opposite ends of the ‘acquisitive-conservative’ trait value continuum, e.g. high LDMC, wood density and low SLA in drought tolerant species, low LDMC, wood density and high SLA in drought avoiders. They would
nonetheless have similar Ellenberg values and so would not be distinguished by the indices used in this study.

4.4. Tree and sapling community: Functional diversity and resilience

Whilst uncertainty as to the relative tolerance of individual species to future perturbations such as drought or flooding remains, there is now broad consensus that diversity of species, functional diversity in particular, is key to ecosystem resilience (Standish et al., 2014). Therefore, it is likely that communities such as the un-grazed trees and saplings of the present study, which exhibit a wide range of functional diversity for both tolerance indices (e.g. shade, drought and water-logging) and response-plant-traits (e.g. SLA and LDMC), would be more resilient to future perturbations than the grazed plant communities. In addition, the near complete absence of saplings of any species in grazed woodland communities, indicating the indiscriminate impact of grazing on young plants of tree species, with even seedlings of species exhibiting grazer-avoidance traits unable to survive intensive grazing by either sheep or goats. This lack of recruitment leads to even-aged and species-poor grazed woodland communities, low in functional diversity, with potentially compromised resilience to future disturbances. Of particular relevance to this study are climate-related perturbations, i.e. a projected increase in flood and drought intensity, due to the inherent relationship between functional diversity, as defined here, and certain tolerance indices directly linked to water-logging and drought. It is less clear how grazing intensity and functional diversity would relate to non-climatic disturbances such as fragmentation, or afforestation.

4.5. Intraspecific variation or tree/sapling variation?

Increasingly, plant trait-based approaches are addressing the importance of including intraspecific variation in trait values, as using a single trait value to describe a given species
can hide functional variation within species, particularly along environmental gradients (Albert et al., 2010). For the present study both Q. petraea and B. pubescens saplings exhibited greater SLA and lower LDMC than their trees thus allowing for some of the intraspecific difference in traits to be accounted for by entering saplings and trees of the same species into the CWM analysis with different trait values for field-measured traits. There are several reasons why saplings may differ from trees: i) light levels (for photosynthesising leaves) are likely to be lower for saplings than trees, therefore higher SLA and lower LDMC in saplings may increase their carbon gain under these conditions (Spasojevic et al., 2014); ii) leaves from taller trees experience greater drought stress than saplings, as it is drier high up in the canopy. Thicker cell walls and fibres associated with higher LDMC can be important to maintain leaf turgor under lower leaf water potentials in these drier canopy conditions (Kusar et al., 2009; Zimmerman, 1978); iii) exposure of foliage to both livestock herbivores and small mammals such as voles and rabbits is likely to be greater for seedlings and saplings than for larger trees (Palmer et al., 2004), regardless of their growth or defence response-trait strategies, with seedlings and saplings more likely to suffer grazing-induced mortality; and iv) greater LDMC may provide defence against an accumulated invertebrate herbivore population in older trees (Coley, 1983).

4.6 Oak recruitment and grazing

Q. petraea saplings were exclusively found in the un-grazed woodlands, indicating a detrimental effect of grazing animals on recruitment of saplings via seedling grazing, as found by Mountford and Peterken (2003) and Vera (2000), though some limited evidence to the contrary was provided by Annighöfer (2015). Coupled with susceptibility to grazing, Q. petraea is a light-demanding species that can germinate in the shade but needs open
conditions for long-term survival and growth of saplings (Kelly, 2002). In this study Q. petraea saplings occurred in semi-open conditions, often close to the thorny shrub R. fruticosus, offering the potential of protection from grazing (Kelly, 2002; Vera, 2000). An exclosure experiment, conducted in multiple sites across Europe, found that transplanted Quercus robur seedlings grew best in grassland exclosures and on the edge of thorny shrub thickets (Bakker et al., 2004), which may be viewed as an optimal balance between sufficient protection from large herbivores and sufficient light availability.

5. Conclusions

Traditional approaches to woodland conservation and grazing management focus primarily on plant community composition, with sapling recruitment and regeneration of oak (Quercus spp.) being a particular concern in the British Isles. More recently, trait-based approaches have been advocated as a basis for conservation management, highlighting the role plant species play in ecosystem function and exploring the relationship between functional diversity and resilience to future perturbations such as flooding or drought. Here, we took a primarily trait-based approach, with plant response-traits, tolerance scores (to shade, drought and water-logging) and functional diversity considered (alongside seedling establishment and sapling recruitment) as potential indicators of ecosystem resilience. In this study, woodlands with a recent history of being un-grazed were characterised by greater seedling establishment, sapling recruitment and tree-level functional diversity than their grazed counterparts, indicating a potential association between management to control grazing and ecosystem resilience in Atlantic oak woodlands.

Acknowledgements
All authors acknowledge the financial support provided by the Welsh Government and Higher Education Funding Council for Wales through the Sêr Cymru National Research Network for Low Carbon, Energy and Environment. Thanks also to the National Trust and the Woodland Trust for site access.

Appendix. Supplementary data

Supplementary data associated with this article can be found, in the online version, at xxxx
References


JNCC, 2013. Habitat accounts - Forests: 91A0 Old sessile oak woods with *Ilex* and *Blechnum* in the British Isles [WWW Document].


Shaw, M.W. 1968b. Factors affecting the natural regeneration of sessile oak (Quercus petraea) in North Wales: II. Acorn losses and germination under field conditions. J. Ecol. 56, 647-60.


### Table 1 Characteristics of the four study woodlands in north-west Wales, UK.

<table>
<thead>
<tr>
<th>Location</th>
<th>Ceunant Llennyrch (L)</th>
<th>Coed Felinrhyd (F)</th>
<th>Hafod y Llan (H)</th>
<th>Llyndy Isaf (I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lat/Long (WGS84)</td>
<td>52°55′30.07″N</td>
<td>52°56′06.85″N</td>
<td>53°02′07.49″N</td>
<td>53°01′26.21″N</td>
</tr>
<tr>
<td>Elevation (of plots)</td>
<td>~100 m</td>
<td>~ 70 m</td>
<td>~ 70 m</td>
<td>~ 70 m</td>
</tr>
<tr>
<td>Grazing category</td>
<td>G</td>
<td>U</td>
<td>G</td>
<td>U</td>
</tr>
<tr>
<td>Grazing history</td>
<td>Intensively sheep grazed (80-100 years)</td>
<td>Un-grazed or light sheep grazing in winter only (80-100 years)</td>
<td>Feral goat grazed but sheep excluded (40 years +)</td>
<td>Un-grazed or light sheep grazing in winter only (25 years +)</td>
</tr>
<tr>
<td>Condition</td>
<td>Unfavourable</td>
<td>Favourable</td>
<td>Unfavourable</td>
<td>Favourable</td>
</tr>
</tbody>
</table>

Condition was reported according to Common Standards Monitoring (CSM) criteria set by the Joint Nature Conservation Committee (JNCC) for Ceunant Llennyrch (Woodland Trust, 2016) and Nant Gwynant (Allen and Brash, 2012; Hearn, 2004; Nouvet et al., 2000). Information on grazing history was also obtained from these references.
Table 2 Association of grazing with environmental characteristics of four study woodlands (L, F, H, I) in two locations. Tree (T), sapling (S) and tree seedling summary information are shown for each woodland. Soil variable means are presented for each woodland (n = 3) ± standard error.

<table>
<thead>
<tr>
<th></th>
<th>Ceunant Llennyrch</th>
<th>Nant Gwynant</th>
<th>Grazing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L (G)</td>
<td>F (U)</td>
<td>H (G)</td>
</tr>
<tr>
<td>Trees and saplings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total basal area (m² ha⁻¹)</td>
<td>263</td>
<td>138</td>
<td>293</td>
</tr>
<tr>
<td>T: Stems per hectare (ha⁻¹)</td>
<td>1111</td>
<td>889</td>
<td>667</td>
</tr>
<tr>
<td>S: Stems per hectare (ha⁻¹)</td>
<td>0</td>
<td>528</td>
<td>83</td>
</tr>
<tr>
<td>Tree seedlings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individuals m⁻²</td>
<td>0.4</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Soil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>16.0 ± 0.23</td>
<td>13.6 ± 0.14</td>
<td>14.7 ± 0.10</td>
</tr>
<tr>
<td>Moisture (%)</td>
<td>60 ± 4.20</td>
<td>76 ± 4.70</td>
<td>69 ± 2.97</td>
</tr>
<tr>
<td>pH (H₂O)</td>
<td>4.4 ± 0.07</td>
<td>4.2 ± 0.04</td>
<td>4.4 ± 0.08</td>
</tr>
<tr>
<td>Bulk density (g cm⁻³)</td>
<td>0.26 ± 0.05</td>
<td>0.17 ± 0.05</td>
<td>0.20 ± 0.04</td>
</tr>
</tbody>
</table>

G = intensively sheep or feral goat grazed, U = un-grazed or light winter sheep grazing

↑ = larger value, ↓ = smaller value, for G than U woodlands

* = P < 0.05, ns = non-significant
Table 3. Association of grazing with tree and sapling community weighted means (CWM) of 2 plant response traits (SLA, LDMC) and 3 plant tolerance indices (shade, drought and water-logging) for four study woodlands (L, F, H, I) from two locations. CWM are presented for trees and saplings combined and separately. Means for each woodland (based on n = 3) ± standard error.

<table>
<thead>
<tr>
<th></th>
<th>Ceunant Llennyrch</th>
<th>Nant Gwynant</th>
<th>Association with grazing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L (G)</td>
<td>F (U)</td>
<td>H (G)</td>
</tr>
<tr>
<td><strong>SLA</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trees and saplings</td>
<td>16.6 ± 1.60</td>
<td>18.4 ± 1.04</td>
<td>17.0 ± 1.15</td>
</tr>
<tr>
<td>Trees only</td>
<td>16.6 ± 1.60</td>
<td>16.7 ± 0.50</td>
<td>16.2 ± 1.17</td>
</tr>
<tr>
<td>Saplings only</td>
<td>-</td>
<td>21.7 ± 0.15</td>
<td>23.8 ± 0.0</td>
</tr>
<tr>
<td><strong>LDMC</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trees and saplings</td>
<td>400 ± 9.8</td>
<td>364 ± 13.5</td>
<td>411 ± 0.6</td>
</tr>
<tr>
<td>Trees only</td>
<td>400 ± 9.8</td>
<td>379 ± 9.4</td>
<td>411 ± 0.6</td>
</tr>
<tr>
<td>Saplings only</td>
<td>-</td>
<td>335 ± 1.7</td>
<td>414 ± 0.0</td>
</tr>
<tr>
<td><strong>Shade tolerance</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trees and saplings</td>
<td>2.77 ± 0.04</td>
<td>2.30 ± 0.10</td>
<td>2.91 ± 0.10</td>
</tr>
<tr>
<td>Trees only</td>
<td>2.77 ± 0.04</td>
<td>2.27 ± 0.14</td>
<td>2.84 ± 0.11</td>
</tr>
<tr>
<td>Saplings only</td>
<td>-</td>
<td>2.14 ± 0.17</td>
<td>3.53 ± 0.00</td>
</tr>
<tr>
<td><strong>Drought tolerance</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trees and saplings</td>
<td>2.99 ± 0.03</td>
<td>2.00 ± 0.25</td>
<td>3.02 ± 0.00</td>
</tr>
<tr>
<td>Trees only</td>
<td>2.99 ± 0.03</td>
<td>2.10 ± 0.27</td>
<td>3.02 ± 0.00</td>
</tr>
<tr>
<td>Saplings only</td>
<td>-</td>
<td>1.56 ± 0.15</td>
<td>3.04 ± 0.00</td>
</tr>
<tr>
<td><strong>Water-logging tolerance</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trees and saplings</td>
<td>1.32 ± 0.12</td>
<td>2.25 ± 0.26</td>
<td>1.31 ± 0.06</td>
</tr>
<tr>
<td>Trees only</td>
<td>1.32 ± 0.12</td>
<td>2.13 ± 0.28</td>
<td>1.26 ± 0.06</td>
</tr>
<tr>
<td>Saplings only</td>
<td>-</td>
<td>2.72 ± 0.14</td>
<td>1.68 ± 0.00</td>
</tr>
</tbody>
</table>

G = intensively sheep or feral goat grazed, U = un-grazed or light winter sheep grazing
SLA = Specific leaf area, LDMC = Leaf dry matter content
↑ = larger value, ↓ = smaller value, for G than U woodlands
*** = P < 0.001, ** = P < 0.01, * = P < 0.05, ns = non-significant
Table 4. Association of grazing with understory plant community weighted means (CWM) of 3 response traits (LDMC, mean foliage height, growth form) and 2 Ellenberg indices (light and moisture) for four study woodlands (L, F, H, I) from two locations. Dominant growth form is a categorical variable so is shown for each woodland at the plot level. Means for each woodland (based on n = 3) ± standard error.

<table>
<thead>
<tr>
<th></th>
<th>Ceunant Llennyrch</th>
<th>Nant Gwynant</th>
<th>Association with grazing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L (G)</td>
<td>F (U)</td>
<td>H (G)</td>
</tr>
<tr>
<td>LDMC</td>
<td>336 ± 26.3</td>
<td>337 ± 11.4</td>
<td>314 ± 18.4</td>
</tr>
<tr>
<td>Mean foliage height</td>
<td>17.4 ± 6.7</td>
<td>26.6 ± 7.6</td>
<td>34.2 ± 0.8</td>
</tr>
<tr>
<td>Light Ellenberg ind.</td>
<td>5.7 ± 0.12</td>
<td>5.6 ± 0.18</td>
<td>6.2 ± 0.09</td>
</tr>
<tr>
<td>Moisture Ellenberg ind.</td>
<td>5.8 ± 0.15</td>
<td>5.9 ± 0.19</td>
<td>6.5 ± 0.28</td>
</tr>
<tr>
<td>Growth form</td>
<td>Bry/Bry/Fer</td>
<td>Shr/Bry/Fer</td>
<td>Gra/Gra/Gra</td>
</tr>
</tbody>
</table>

G = intensively sheep or feral goat grazed, U = un-grazed or light winter sheep grazing
LDMC = Leaf dry matter content, Bry = bryophyte, Fer = fern, Shr = shrub, Gra = graminoid
ns = non-significant
Table 5. Association of grazing intensity with functional diversity (functional dispersion), for trees and saplings based on 2 response traits (SLA, LDMC) and 3 tolerance indices (shade, drought and water-logging) and for understory plants based on 3 response traits (LDMC, mean foliage height, growth form) and 2 Ellenberg indices (light and moisture) for four woodlands (L, F, H, I) from two locations. Means for each woodland (based on n = 3) ± standard error.

<table>
<thead>
<tr>
<th></th>
<th>Ceunant Llennyrch</th>
<th>Nant Gwynant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L (G)</td>
<td>F (U)</td>
</tr>
<tr>
<td>Trees and saplings</td>
<td>0.07 ± 0.07</td>
<td>0.26 ± 0.02</td>
</tr>
<tr>
<td>Trees only</td>
<td>0.43 ± 0.43</td>
<td>1.35 ± 0.14</td>
</tr>
<tr>
<td>Saplings only</td>
<td>-</td>
<td>0.18 ± 0.09</td>
</tr>
<tr>
<td>Understory</td>
<td>0.28 ± 0.02</td>
<td>0.24 ± 0.02</td>
</tr>
</tbody>
</table>

G = intensively sheep or feral goat grazed, U = un-grazed or light winter sheep grazing
↓ = smaller value for grazed than un-grazed.
** = $P < 0.01$, * = $P < 0.05$, ns = non-significant