When some triggers a scalar inference out of the blue
Barbet, Cécile; Thierry, Guillaume

Cognition

DOI:
10.1016/j.cognition.2018.03.013

Published: 01/08/2018

Peer reviewed version

Cyswllt i'r cyhoeddiad / Link to publication

Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA):

Hawliau Cyffredinol / General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
When *some* triggers a scalar inference out of the blue
An electrophysiological study of a Stroop-like conflict elicited by single words

Cécile Barbeta,*, Guillaume Thierryb

aUniversité de Genève, Faculté de Psychologie et des Sciences de l’Education, Uni Pignon, 42 Boulevard du Pont d’Arve, CH-1205 Genève
bBangor University, School of Psychology, Brigantia Building, LL57 2AS Bangor, UK

Abstract

Some studies in experimental pragmatics have concluded that scalar inferences (e.g., ‘*some* X are Y’ implicates ‘*not all* X are Y’) are context-dependent pragmatic computations delayed relative to semantic computations. However, it remains unclear whether strong contextual support is necessary to trigger such inferences. Here we tested if the scalar inference ‘not all’ triggered by *some* can be evoked in a maximally neutral context. We investigated event-related potential (ERP) amplitude modulations elicited by Stroop-like conflicts in participants instructed to indicate whether strings of letters were printed with all their letters in upper case or otherwise. In a randomized stream of non-words and distractor words, the words *all*, *some* and *case* were either presented in capitals or they featured at least one lower case letter. As expected, we found a significant conflict-related N450 modulation when comparing e.g., ‘aLl’ with ‘ALL’. Surprisingly, despite the fact that most responses from the same participants in a sentence-picture verification task were literal, we also found a similar modulation when comparing ‘SOME’ with e.g., ‘SoMe’, even though SOME could only elicit such a Stroop conflict when construed pragmatically. No such modulation was found for e.g., ‘CasE’ vs. ‘CASE’ (neutral contrast). These results suggest that *some* can appear incongruent with the concept of...
‘all’ even when contextual support is minimal. Furthermore, there was no significant correlation between N450 effect magnitude (‘SOME’ minus e.g., ‘sOMe’) and pragmatic response rates recorded in the sentence-picture verification task. Overall, this study shows for the first time that the pragmatic meaning of some can be accessed in a maximally neutral context, and thus, that the scalar inference ‘not all’ triggered by some should be construed as context-sensitive rather than context-dependent, that is, more or less salient and relevant depending on the context rather than entirely contingent upon it.

Keywords: Experimental semantics and pragmatics, non-literal meaning, context-dependency, Stroop, event-related brain potentials, N450 effect

1. Introduction

Consider the following exchange:

(1) A: What time is it?
 B: Some of the guests are already leaving. (Levinson, 2000, p. 16)

From B’s answer, it can be expected that A will understand that (i) it must be late, and (ii) not all of the guests are already leaving (see Levinson, 2000, pp. 16-17). Both (i) and (ii) contribute to the pragmatic rather than literal meaning of B’s utterance and are called implicatures (see e.g., Grice, 1975; Levinson, 2000; Sperber and Wilson, 1995). However, implicatures like (ii) can be derived because of the mere presence of particular words such as some, whereas implicatures like (i) require a specific context and can only be derived from the complete utterance. The difference is made apparent when changing A’s question into “Where is John?” for example (see e.g., Levinson, 2000, p. 17), in which case implicature (ii) remains valid, whereas implicature (i) does not.

In Grice’s (1975) terms, implicatures such as (i) are Particularized Conversational Implicatures (henceforth PCIs) and those such as (ii) are Generalized Conversational Implicatures (GCIs). A particular case of GCI is the scalar implicature or scalar inference (hereafter SI), which is triggered when a linguistic
expression has a stronger competitor along a scale of informativeness (see e.g., Horn, 1972; Horn, 1989; Levinson, 2000). For instance, in (1), some contrasts with all and thus can trigger the SI ‘not all’. Other examples of such lexical scales are (always, sometimes), (necessarily, possibly), (and, or), (finish, start), (love, like), (hot, warm) (see e.g., Levinson, 2000; van Tiel, van Miltenburg et al., 2014).

Following the footsteps of Grice, some scholars endorsed the GCI – PCI distinction and argued that a GCI is the preferred or standard interpretation of a word such as some “in the absence of special circumstances” (Grice, 1975, p. 56), relating to “a default mode of reasoning” (Levinson, 2000, p. 42). A GCI remains an implicature since it is defeasible, that is it can be cancelled without resulting in a contradiction since it is defeasible, that is it can be cancelled without

(2) Some of the students failed. In fact all of them failed.
#Some of the students failed. In fact none of them failed.

Other scholars have argued that the distinction between GCI and PCI is unfounded, because all implicatures, including SIs, should be considered particularized (see notably Sperber and Wilson, 1995; Carston, 2004).

The two views presented above have been referred as ‘default’ and ‘context-driven’ models of SI derivation (see e.g., Breheny, Katsos and Williams, 2006; Politzer-Ahles and Fiorentino, 2013). The former view predicts that SIs are relatively context-independent, realised immediately and effortlessly. The latter view predicts that SIs are context-dependent, only realised in contexts in which they are relevant, derived after the processing of semantic meaning and context, and require additional cognitive effort.

Some studies in experimental pragmatics have concluded that SIs are cognitively costly (see e.g., Bott and Noveck, 2004; De Neys and Schaeken, 2007; Chevallier et al., 2008) and akin to context-dependent pragmatic computations (see e.g., Breheny, Katsos and Williams, 2006) that are delayed relative to se-
mantic computations (see e.g., Huang and Snedeker, 2009). However, other studies have shown that SIs are not necessarily delayed (see e.g., Grodner et al., 2010; Degen and Tanenhaus, 2015), that the cognitive cost associated with them might not stem from the inferencing process itself (Marty and Chemla, 2013; Chemla and Bott, 2014), and that a strong contextual support may not be needed (Politzer-Ahles and Gwilliams, 2015).

In the present study, we focused on the dependency of SI derivation upon the context. In experimental pragmatics, SI context-dependency has been mostly investigated in reading (see e.g., Breheny, Katsos and Williams, 2006; Politzer-Ahles and Fiorentino, 2013) by comparing SI-supportive and SI-non-supportive contexts. In an SI-supportive context, the SI answers the ‘question under discussion’ (henceforth QUD, see e.g., Roberts, 1996; Beaver and Clark, 2008), whereas in an SI-non-supportive context, the SI does not answer the QUD. In, e.g.:

\[(3) \text{ Mary was preparing to throw a party for John’s relatives. She asked John whether all/any of them were staying in his apartment. John said that some of them were. He added that the rest would be staying in a hotel. (Politzer-Ahles and Fiorentino, 2013) }\]

the predictions drawn from the default and context-driven models are the following: in non-supportive contexts (‘any’), the SI is not available, therefore ‘the rest’ requires more processing time than in supportive contexts (‘all’) in which ‘not all of the relatives’ becomes relevant and facilitates the bridging inference that the rest means ‘the rest of the relatives’. The two models differ regarding their account of SI unavailability in non-supportive contexts: either it is not derived because it is not relevant in the context (context-driven model), or it is automatically derived and then cancelled once it becomes apparent that it is not relevant (default model). Therefore, the context-driven model predicts an increase in reading time at the segment containing some in SI-supportive contexts relative to SI-non-supportive contexts. Contrastingly, the default model
predicts no difference between conditions since the SI should automatically be
derived in both cases. In self-paced reading studies such as Breheny, Katsos and
Williams (2006) or Politzer-Ahles and Fiorentino (2013), an increase in reading
time for the anaphoric noun phrase (e.g., the rest) was recorded in SI-non-
supportive contexts relative to SI-supportive contexts. However, the increase
in processing for the some-region predicted by the context-driven model was
observed in Breheny, Katsos and Williams’ (2006) study (see also Bergen and
Grodner, 2012), but not in Politzer-Ahles and Fiorentino’s (2013) study (see
also Hartshorne et al., 2015). In sum, the results obtained for the anaphoric
noun phrase suggest that the SI is context-sensitive and thus more salient in
supportive contexts in which it answers the QUD. However, it is remains unclear
whether SI derivation is actually context-dependent.

At this point, we note that Levinson’s (2000) default model of GCIs might
have been inadequately interpreted in the literature. Levinson uses the expres-
sion “implicature cancellation” in the case of:

(4) A: “Is there any evidence against them?”
 B: “Some of their identity documents are forgeries.” (Levinson, 2000
 p. 51)

However, this example of cancellation is given as an example of “predicted
(but nonoccurring) scalar implicature”, that is, an example of a case in which
“we do not let the inference through. That’s because, intuitively, A is only
interested in whether there is at least some evidence against the criminals; given
A’s question, all that is relevant is the possession of at least some evidence”
(Levinson, 2000 p. 51). Levinson concludes: “It seems then that Relevance
implicatures, or inferences about the speaker’s goals, can limit the amount of
further inference that is warranted. Thus even where these further inferences are
entirely consistent with all that is known, they do not go through.” (Levinson,
2000 p. 52). In other words, it seems that Levinson makes a similar prediction
as context-driven models: if the SI is irrelevant in the discourse context, it
does not arise. Non-supportive *any*-contexts may thus be part of these “special circumstances” (see above) in which SIs are not derived.

In a recent study, Politzer-Ahles and Gwilliams (2015) asked participants whether it was possible, in an example such as (5), that all of John’s relatives stay in his apartment:

(5) Mary was preparing to throw a party for John’s relatives. She asked John whether *all/*any of them were staying in his apartment. John said that *some of them* were.

Only slightly more than 20% of the responses were ‘yes’ (see [Corrigendum]), in either the *all*-contexts or the *any*-contexts. Thus, contrary to the predictions of both default and context-driven models, the SI ‘not all’ tends to be computed in *any*-contexts also, even though it is not relevant. Therefore, it appears that SI derivation does not in fact require much context support. Reciprocally, supposedly “blocking” contexts such as *any*-contexts do not guarantee that the SI will not be derived. MEG results from the same study (Politzer-Ahles and Gwilliams, 2015) using the same stimuli, showed greater activation for *some* in non-supportive contexts compared with supportive contexts, suggesting greater effort to derive the SI in non-supportive contexts. However, it is possible that the ‘not all’ interpretation may have been constrained by the presence of *of* following *some* in both contexts. Indeed, Grodner et al. (2010, Appendix A) showed that the partitive *some of* is more likely to give rise to the SI than the bare quantifier *some* (see also Geurts, 2010, p. 100; Degen and Tanenhaus, 2015).

Another way of investigating SI context-dependency would be to use *neutral* contexts, that is, contexts that are unbiased towards a lower or upper-bounded interpretation of *some*. This was the aim of Breheny, Katsos and Williams’ (2006) second self-paced reading experiment. In this experiment, there was no preceding context to the sentence containing *some*, however ‘*some of the*’ + noun was the grammatical subject or object of the sentence, that is, it was either
in a topical or non-topical position, respectively. The sentences containing some were followed by sentences beginning with a noun phrase meaning ‘the rest’ or ‘the others’:

(6) The director had a meeting with some of the consultants. / Some of the consultants had a meeting with the director. The rest did not manage to attend.

If the SI ‘not all consultants met with the director’ is triggered by default, the referent of ‘the rest’ should be equally accessible no matter where ‘some of the consultants’ is located in the preceding sentence. In contrast, if the SI is context-dependent, the referent of ‘the rest’ should be more accessible when ‘some of the consultants’ is in a topical position, resulting in shorter reading times for the anaphoric noun phrase ‘the rest’. This predicted difference was observed. However, it can be argued (i) that more time was available to compute the SI when its trigger was at the beginning rather than the end of the sentence and therefore that the SI was more likely to influence the processing of the anaphoric segment in the former case than the latter, and (ii) that the contexts were not genuinely neutral, because utterances appear to elicit an implicit context when they are presented in isolation (see e.g., Geurts, 2010, p. 91, 98; Tian, Ferguson and Breheny, 2016). Therefore, when ‘some of the consultants’ is the subject of the preceding sentence, it is more likely that the topic of the implicit discourse context concerns the consultants rather than the director, and thus that it answers the QUD as compared to when it is in non-topical position. In other words, sentence reading without stated context is not entirely free of contextual effects.

In sum, reading studies have shown that SIs are context-sensitive (see also Bonnefon, Feeney and Villejoubert, 2009; Bergen and Grodner, 2012; Breheny, Ferguson and Katsos, 2013; Goodman and Stuhlmüller, 2013) as predicted by both default and context-driven models. However, context-dependency remains undemonstrated, probably owing to the fact that the context of an utterance
can essentially never be neutral. In other words, the question addressed here is: do SIs need strong contextual support to be accessed? Thus, in the present study, we elected to present the quantifier *some* in isolation in order to test the context-dependency of the SI ‘not all’ when context is maximally neutral. It is indeed highly unlikely that words presented in isolation would be contextualised to any great extent. We asked participants to perform a task unrelated to the meaning of the words presented and investigated whether the ‘not all’ inference would hinder the expected response via Stroop-like interference in an event-related brain potentials (ERPs) experiment.

Most of previous ERP studies have investigated the time course of SIs (see e.g., Noveck and Posada, 2003; Nieuwland, Ditman and Kuperberg, 2010; Hunt et al., 2013), their processing cost (see e.g., Hartshorne et al., 2015), or their neural correlates (see e.g., Politzer-Ahles, Fiorentino et al., 2013), but, to our knowledge, no previous study has tested context-dependency directly, and *a fortiori* N450 effects in a Stroop-like paradigm.

In a typical colour-word Stroop task, participants are asked to name the physical colour of a word which can either be congruent with the meaning of the word (e.g., BLUE presented in blue) or incongruent (e.g., BLUE presented in red). Performance is usually worse, and naming latencies usually slower, for incongruent trials as compared with congruent (or neutral, e.g., SHOE presented in blue) trials. Such interference appears to arise from parallel analysis of task-relevant (physical colour) and task-irrelevant (word meaning) stimulus dimensions (for a review, see MacLeod, 1991). ERP studies investigating such interference have primarily identified a robust N450 effect (see e.g., West, 2003; Markela-Lerenc et al., 2004; Szűcs and Soltész, 2010; Tillman and Wiens, 2011), alternatively labelled Ni (negativity for incompatible Stroop trials, Eppinger et al., 2007), N400 (Rebai, Bernard and Lannou, 1997) or MFN (medial frontal negativity, Chen et al., 2011). This conflict-sensitive ERP modulation manifests as an increased negativity over fronto-central to centro-parietal regions between 300–500 ms after stimulus onset for incongruent as compared with congruent (or neutral) trials. This effect is found in a variety of contexts, e.g., overt verbal re-
spontaneous response, covert verbal response, or manual response (see e.g., Liotti et al., 2000), as well as in numerical Stroop tasks (see e.g., Szűcs, Soltész and White, 2009).

Here, we presented the words *all*, *some* and *case* in isolation amongst non-words and distractor words. The stimuli were presented either with all letters in upper case (e.g., ALL) or as a mix of upper and lower cases letters (e.g., aLI).

Participants were asked to indicate whether or not each stimulus was presented with all its letters in upper case. Over and above a classical effect of physical form (mixed vs. upper case) expected from the literature (see e.g., Mayall, Humphreys and Olson, 1997; Mayall, Humphreys, Mechelli et al., 2001; Juhasz et al., 2006; Arditi and Cho, 2007; Lien, Allen and Crawford, 2012), in the case of stimuli such as ‘aLI’, we expected greater conflict as compared to the case of ‘ALL’, manifesting as a modulation of the N450, because of the incongruence between the word’s guise and its meaning. As regards *some*, two scenarios were possible. *Some* can either mean ‘some and possibly all’, or ‘some but not all’ if an SI is derived. On the one hand, if SI derivation is strongly context-dependent, the stimuli ‘SOME’ and ‘SoMe’, for instance, should yield similar responses because the meaning would not be incongruent with the expected response. On the other hand, if *some* can evoke ‘not all’ when contextual support is minimal, an N450 modulation should be expected for ‘SOME’ as compared to ‘SoMe’. In the latter situation, the difference between ‘SOME’ and ‘SoMe’ should resemble the difference observed between ‘aLI’ and ‘ALL’.

Finally, we presented the stimulus ‘CASE’ and variants such as ‘CaSe’ as a neutral control with the expectation that no Stroop conflict would occur for this word.

We also investigated participant’s pragmatic behaviour in a task similar to that used by van Tiel and Schaeken (2016) to measure literal vs. pragmatic response styles in the presence of contextual information. In this second experiment, participants had to indicate whether under-informative *some*-statements (e.g., “Some of the circles are green.”) provided a good description of a situation depicted by means of a figure (e.g., a mixed line-up of circles and squares in which all circles are green). Results from this off-line experiment allowed
us to compare spontaneous processing of *some* indexed by ERPs in a minimal context condition with pragmatic behaviour in a context-rich condition.

2. Methods

2.1. Participants

Thirty-four native speakers of English (20 females; mean age = 21.8, SD = 7.2) gave written consent to take part in the experiment approved by the Ethics Committee of Bangor University, United Kingdom. All were students from the School of Psychology and were given course credits for their participation. All had normal or corrected-to-normal vision. The data of 7 participants had to be dismissed due to excessive artefacts in the EEG recordings (see section 2.2.3 for details). Therefore, statistical analyses of behavioural and ERP results are based on 27 individual data sets.

2.2. ERP experiment

2.2.1. Materials

Critical stimuli were the words *some* (pragmatic test), *all* (semantic test), and *case* (neutral control) intermixed with three or four-letter filler non-words (rop, fusk, cauv, urbe, tarb, demb, soys, tovs, gyte, kilv) and four-letter distractor words (*font*, *zero*, *each*, *none*, *most*) so as to avoid directing special attention to the critical stimuli. All stimuli appeared in Courier New size 14 points subtending approximately 1 degree of visual angle at the centre of a 19” CRT monitor with all letters in upper case or as a mix of upper and lower case letters (see Fig. 1).

The analysis focused on two factors: word-type (*all*, *some*, *case*) and case-type (upper case, mixed case), resulting in a 3×2 experimental design. In the mixed case condition, the number and position of upper case letters systematically varied within words and non-words (i.e., aLl, aLL, ALl, aLL, aLl; SOme, SoMe, sOMe, soME, sOmE; etc.). ‘All’, ‘Some’, ‘Case’, ‘Font’, etc. were avoided because of regular sentence case, and *some* with only one upper case letter was
also avoided because of the ambiguity surrounding its minimal meaning (‘at least one’ or ‘more than one’?). Importantly, stimulus congruence was manipulated in opposition to case-type for the two critical stimuli all and some, since ‘ALL’ was semantically congruent with its guise whereas ‘SOME’ was pragmatically incongruent with its guise.

2.2.2. Procedure
Participants were told that they would see strings of letters presented one at a time. They were asked to indicate as quickly and as accurately as possible whether or not all letters were capital letters by pressing designated left and right buttons on a response box. Response side was counterbalanced between participants. Stimuli were presented in a fully randomized sequence with the words some, all and case appearing 60 times in upper case (CAPS condition) and 60 times as a mix of upper and lower case letters (MiXEd condition). Each of the four-letter filler non-words appeared 22 times in each of the CAPS and MiXEd conditions, the three-letter filler non-words appeared 24 times and each of the 5 distractor words appeared 60 times, leading to a total of 1044 filler/distractor trials and 360 test trials. Each stimulus was displayed for 1000 ms or until participant’s response, whichever was the shortest, with a randomly selected inter-stimulus interval of 460, 480, 500, 520, or 540 ms in order to reduce cross-trial ERP contamination. A training phase preceded the experiment involving 36 exemplars of the stimuli. Participants needed less than 30 minutes to complete the task in 4 blocks, and were invited to take a break between blocks at their convenience.
2.2.3. EEG recording and analysis

Electroencephalographic (EEG) data were recorded continuously at a rate of 1 kHz in reference to electrode CZ with an online bandpass filter set between 0.01–200 Hz from 64 Ag/AgCl electrodes using SynAmp2 amplifiers (Neuroscan Inc., El Paso, TX, USA). Electrodes were attached to an elastic cap (Easycap™, Herrsching, Germany) and placed according to the extended 10-20 convention. The ground electrode was placed at FPz. Bipolar electrodes were placed to the left of the left eye and to the right of the right eye (HEOG) and above and below the right eye (VEOG) to record eye movement artefacts. Impedances were kept below 5 kΩ for the 64 recording electrodes and below 10 kΩ for the eye electrodes.

Before segmentation, continuous EEG activity was filtered low-pass using a zero phase shift digital filter with a cut-off frequency of 20 Hz and high-pass filter with a cut-off frequency of 0.1 Hz. After visual inspection to dismiss major artefacts (dismissing 157 trials out of 12240, i.e. 1.3 %), eye blinks were mathematically corrected based on the procedure advocated by Gratton, Coles and Donchin (1983). After correction, any trial with amplitude exceeding ±100 μV at any point within an epoch and at any recording site except VEOG and HEOG was discarded from analysis (2.2 % of the remaining trials). Continuous EEG activity was segmented into epochs ranging from -100 to 1000 ms after stimulus onset. Baseline correction was performed in reference to pre-stimulus activity, and individual averages were digitally re-referenced to the global average reference. Only correct trials were kept for the analyses (discarding 11.1 % of the remaining trials). Seven individual data sets were discarded due to excessive noise and/or alpha contamination resulting in undetectable early components (P1-N1 complex), leading to an average of 51.4 (SD = 5.6) trials per condition.

We proceeded with data analysis in two stages: (i) Comparing mean ERP amplitude differences between experimental conditions; (ii) Conducting a corrected Stroop-like conflict analysis with ERP data controlled for physical differences between conditions induced by case-type, i.e., after subtracting from each
individual condition the signal contribution of *case-type* in order to validate the *congruence* effects.

(i) In the first analysis, we investigated the main effects of *word-type* and *case-type* and, critically, the interaction between the two factors. We measured the N1-P2 complex between 175–225 and 265–315 ms, respectively (that is 50 ms around grand-average peak times and in good agreement with component morphology in the literature), at posterior sites of predicted and observed maximal amplitude (P7, PO7, PO9, P8, PO8, and PO10).

The negative modulation by Stroop conflict was analysed between 350–450 ms (the predicted time-window based on previous studies, see e.g., Rebai, Bernard and Lannon, 1997; Liotti et al., 2000; West, 2003; Markela-Lerenc et al., 2004; Eppinger et al., 2007; Szűcs, Soltész and White, 2009; Szűcs and Soltész, 2010; Tillman and Wiens, 2011; Chen et al., 2011, the average N450 temporal window computed from these 9 studies is 354–460 ms) over 9 predicted fronto-centro-parietal electrodes (FC1, FCz, FC2, C1, Cz, C2, CP1, CPz, CP2).

In addition, we observed a late positive complex (LPC) between 500–700 ms at electrodes FC1, FCz, FC2, C1, Cz, C2, CP1, CPz, and CP2 where it reached maximum observed amplitude.

(ii) In the corrected Stroop conflict analysis, we first subtracted the mean amplitude of CAPS and MiXEd combined averages across *all*, *some* and *case*, in each participant and each individual condition. In other words, this analysis compared the ERPs elicited by each of the critical stimuli after deducting Mean(ALL, SOME, and CASE) from CAPS conditions, and Mean(aLI, aIL, ALI, aLL, SOme, SoMe, sOMe, sOME, sOMe, sOME, cASe, cASE etc.) from MiXEd conditions.

We then analysed again the N1-P2 complex, N450 and LPC in the same temporal windows and at the same electrode locations as before.

In all cases, mean amplitudes, and peaks latency, were analysed using repeated
measures ANOVAs with case-type, and word-type as within-subject factors.

2.3. Sentence-picture verification task

2.3.1. Materials

The sentence-picture verification task included 54 some-trials: 18 unambiguously true, that is, informative (see Fig. 2A), 18 unambiguously false (Fig. 2B) and 18 under-informative (Fig. 2C). Sentences were built on the following template: ‘Some of the [circles/squares/triangles] are [blue/green/red]’ and paired with an image depicting five coloured geometrical shapes. The 9 possible different associations of shapes and colours were presented twice but paired with different images. The sentence-picture verification task also comprised 342 filler trials involving all, none, most, two, conditional perfection (e.g., Each of the shapes is green if it is a triangle, see e.g., Geis and Zwicky, 1971), exhaustivity in it-clefts (e.g., It is the squares that are blue), and free choice inferences (e.g., Each of the circles are red or blue, see Chemla and Bott, 2014; van Tiel and Schaeken, 2016).

Some of the triangles are green.

A

B

C

Figure 2: Example of some-statement in the sentence-picture verification task. A. Informative, B. False, and C. Under-informative trials.
2.3.2. Procedure

Participants were asked to indicate whether or not sentences were good descriptions pictures by pressing dedicated buttons on a response box. Response side was counterbalanced between participants, and the stimuli were randomly presented. When participants had read a sentence (presented for a maximum of 4 seconds), they could press any button for the associated picture to be displayed, and then had up to 3 seconds to provide their response. A short training session involving 14 unambiguous trials with feedback preceded the main task. Participants needed around 30 minutes to complete the task in 4 blocks, and were invited to take a break between blocks at their convenience.

3. Results

3.1. ERP experiment

3.1.1. Behavioural results

Accuracy (M = 88.2 %, SD = 32.25, see Fig. 2A) was analysed using logit mixed models \(^1\) (see e.g., Jaeger, 2008) including the maximal random effect structure justified by the design (see e.g., Barr et al., 2013), namely by-participant random intercepts and by-participant random slopes for word-type, case-type and their interaction. We computed \(p\)-values by performing likelihood ratio tests in which a model with the fixed effect of interest was compared with an otherwise identical model without the said fixed effect.

The first model revealed a significant word-type \(\times\) case-type interaction \(\chi^2(2) = 28.06, p < .001\). Analyses by word-type conditions showed that the interaction was driven by a significant effect of case-type restricted to all \(\chi^2(1) = 31.05, p < .001\); some: \(\chi^2(1) = 1.97, p = .16\); case: \(\chi^2(1) = 0.19, p > .6\).

Analyses by case-type conditions showed no effect of word-type in the CAPS condition \(\chi^2(2) = 2.2, p > .3\), but a significant effect of word-type in the MiXEd

\(^1\)Logit mixed models fitted using the R (R Core Team, 2014) package lmerTest (Kuznetsova, Brun Brockhoff and Haubo Bojesen Christensen, 2014).
Figure 3: Behavioural results. **A.** Accuracy, **B.** Reaction times, for all, case, and some as a function of case-type. Integers indicate means, and error bars represent SEM by participants.

*** $p < .001$, ** $p < .01$, * $p < .05$.

condition ($\chi^2(2) = 44.4$, $p < .001$). Tukey’s post-hoc tests within the MiXEd condition showed that accuracy was significantly higher for some relative to case ($\beta = 0.41$, $SE = 0.15$, $z = 2.69$, $p < .05$) and all ($\beta = 1.51$, $SE = 0.16$, $z = 9.48$, $p < .001$), and for case relative to all ($\beta = 1.1$, $SE = 0.15$, $z = 7.3$, $p < .001$).

Reaction times (see Fig. 3B) were analysed using linear mixed models\(^2\) (see e.g., Bates, 2005; Baayen, Davidson and Bates, 2008; Baayen and Milin, 2010) including maximal random structure justified by the design, that is, by-participant random intercepts and by-participant random slopes for case-type, word-type and their interaction. The final models included removal of outliers (data points with absolute standardised residuals exceeding 2.5 standard deviations, see e.g., Baayen and Milin, 2010). Only reaction times from accurate responses were kept for the analysis, 11.8 % of data points were therefore dismissed, leaving 8574 data points out of 9720.

There was a significant effect of case-type on reaction times ($F(1,26) = 23.7$, \(p < .001\)).

\(^2\)Tukey’s post-hoc tests were performed using the *glht* function of the R package *multcomp* (Hothorn, Bretz and Westfall, 2008).

\(^3\)Linear mixed models fitted using the R package *lmerTest*.

16
RTs to *all* and *case* increased by around 27 ms in the MiXEd compared with the CAPS condition, but only by around 19 ms for *some*, see Fig. 3B. However, there was no interaction between *case-type* and *word-type* ($p > .5$).

3.1.2. ERP results

Grand-average ERP waveforms are displayed in Fig. 4, 5, and 6. CAPS and MiXEd conditions markedly differed in ERP amplitude starting at around 180 ms after stimulus onset (see Fig. 4).

![ERP waveforms](image)

Figure 4: **ERP modulations elicited by case-type.** Left, Grand-average ERP waveforms elicited over the parieto-occipital region (linear derivation of P7, PO7, PO9, P8, PO8, PO10) in the CAPS (black line) and MiXEd (grey line) conditions; Right, Grand-average ERP waveforms elicited over the central region (linear derivation of FC1, FCz, FC2, C1, Cz, C2, CP1, CPz, CP2) in the CAPS (black line) and MiXEd (grey line) conditions.

N1 mean amplitudes were significantly modulated by *case-type* ($F(1,26) = 87.9, p < .001, \eta_p^2 = .77$), see Fig. 4 and 5. This factor marginally interacted with *word-type* ($F(2,52) = 2.7, p = .077, \eta_p^2 = .09$), due to the N1 effect varying

*We used the `anova` function of *lmerTest* which provides analysis of variance tables of type 3 with denominator degrees of freedom calculated based on Satterthwaite’s approximation.*
Figure 5: N1, P2 and LPC mean amplitudes as a function of case-type, and MiXEd minus CAPS topographies. Left, N1 (175–225 ms) mean amplitudes in the parietal-occipital region elicited in the CAPS and MiXEd conditions, and MiXEd minus CAPS N1 topography; Middle, P2 (265–315 ms) mean amplitudes in the parietal-occipital region elicited in the CAPS and MiXEd conditions, and MiXEd minus CAPS P2 topography; Right, LPC (500–700 ms) mean amplitudes in the central region elicited in the CAPS and MiXEd conditions (error bars represent SEM), and MiXEd minus CAPS LPC topography. *** p < .001, ** p < .01, * p < .05.
slightly in magnitude between word conditions (all: \(M = -1.41 \mu V \); case: \(M = -1.95 \mu V \); some: \(M = -2.08 \mu V \)). Nonetheless, the MiXEd condition elicited significantly greater amplitude than the CAPS condition for all word-types (all: \(F(1,26) = 32.1, p < .001, \eta^2 = .55 \); case: \(F(1,26) = 50.12, p < .001, \eta^2 = .66 \); some: \(F(1,26) = 61.3, p < .001, \eta^2 = .70 \)). N1 mean peak latencies were marginally modulated by case-type (F(1,26) = 3.2, \(p < .1, \eta^2 = .11 \)), in the absence of an interaction with word-type (\(p > .6 \)). MiXEd elicited slightly delayed N1s compared to CAPS.

P2 mean amplitudes were also significantly modulated by case-type (F(1,26) = 14.32, \(p < .001, \eta^2 = .35 \)), but this factor did not interact with word-type (\(p > .5 \)). MiXEd elicited greater P2 amplitudes than CAPS words, see Fig. 4 and 5. P2 mean peak latencies were not significantly modulated by case-type (F(1,26) = 2.5, \(p = .13 \)), and there was no interaction with word-type (\(p > .6 \)).

Critically, in the N450 range, previously established as the Stroop conflict time-window, mean amplitudes were marginally modulated by word-type (F(2,52) = 2.45, \(p < .1, \eta^2_p = .09 \)), were not modulated by case-type (\(p > .6 \)), and there was a significant interaction between the two factors (F(2,52) = 11.18, \(p < .001, \eta^2_p = .30 \)). Analyses by word-type conditions showed a significant effect of case-type for all (F(1,26) = 6.7, \(p < .05, \eta^2 = .20 \)), and some (F(1,26) = 5.6, \(p < .05, \eta^2 = .18 \)), but not for case (F(1,26) = 1.54, \(p = .226 \)), see Fig. 6. MiXEd (incongruent) all significantly increased N450 mean amplitudes relative to CAPS (congruent) all. As for some, this effect was reversed, that is, N450 mean amplitudes were significantly increased for CAPS relative to MiXEd.

There was no significant difference between CAPS and MiXEd case.

LPC mean amplitudes, see Fig. 4 and 5 were significantly modulated by case-type (F(1,26) = 12.3, \(p < .01, \eta^2 = .32 \)), such that MiXEd elicited greater LPC amplitudes than CAPS, but this factor did not interact with word-type (\(p > .6 \)).

5Note that the N1 effects reported here were mirrored over central regions of the scalp in the form of a vertex positive potential (VPP, see e.g., Eimer, 2011), see fig. 4 and 6.
Figure 6: **Effect of case-type and congruence in the N450 range.** Grand-average ERP waveforms elicited over the central region (linear derivation of FC1, FCz, FC2, C1, Cz, C2, CP1, CPz, CP2) in the CAPS (solid black line) and MIXEd (solid grey line) conditions, mean amplitudes in the central region between 350–450 ms as a function of case-type, and N450 effect (incongruent minus congruent) topography, for all (top), some (middle), and case (bottom). *** $p < .001$, ** $p < .01$, * $p < .05$.

20
We then proceeded to analysing ERP amplitudes after correction of physical differences (see Methods section 2.2.3). There was no main effect of case-type on N1 mean amplitudes ($p > .1$), but there was a marginal interaction between case-type and word-type ($F(2,52) = 2.7, p = .08, \eta_{p}^{2} = .08$) driven by stimulus all ($F(1,26) = 6.2, p < .05, \eta^{2} = .19$). There was no main effect of case-type or interaction between case-type and word-type on N1 mean peak latency of corrected ERPs, but a marginal main effect of word-type ($F(2,52) = 2.9, p = .07$) driven by a significant difference between some and case (Bonferroni adjusted $p < .05$).

Corrected P2 mean amplitudes were not significantly modulated by either case-type or word-type, and there was no interaction between the two factors (all $ps > .1$). Corrected P2 latencies were only affected by word-type ($F(2,52) = 3.8, p < .05$), an effect driven by a significant difference between case and some (Bonferroni adjusted $p < .05$).

In the N450 range, the effect of case-type was preserved ($F(1,26) = 9.8, p < .01, \eta_{p}^{2} = .27$) and the interaction between case-type and word-type was significant ($F(2,52) = 11.2, p < .001, \eta_{p}^{2} = .30$). Analyses by word-type showed that the effect of case-type was significant for the semantic test condition all ($F(1,26) = 17.2, p < .001, \eta^{2} = .40$), the pragmatic test condition some ($F(1,26) = 10.2, p < .01, \eta^{2} = .28$), but not the neutral control condition case ($F(1,26) = 1.538, p = .226$), see Fig. 7. Furthermore, when excluding the neutral condition case from the analysis, and after conversion of the case-type factor to congruence since the meaning of ALL was congruent with its physical form whereas that of SOME was pragmatically incongruent, the N450 effect proved of lesser magnitude for some than all, as shown by a marginal congruence \times word-type interaction ($F(1,26) = 3.95, p = .057, \eta_{p}^{2} = .13$, see Fig. 7).

Finally, LPC effects did not survive physical differences correction (all $ps > .5$).
Figure 7: Stroop-like conflict effect on ERPs corrected for physical differences. Grand-average corrected ERP waveforms elicited over the central region (linear derivation of FC1, FCz, FC2, C1, Cz, C2, CP1, CPz, CP2) in the CAPS (solid black line) and MiXEEd (solid grey line) conditions for all (top), some (middle), and case (bottom). *** $p < .001$, ** $p < .01$, * $p < .05$.

22
3.2. Sentence-picture verification task

Logical response rates were high overall (Mean = 0.79, Median = 0.94, SD = 0.28; see Fig. 8). Six participants gave 9 or less logical responses out of 18, 12 participants gave 10 to 17 logical responses, and 9 participants only gave logical responses. Therefore, only 6 participants out of 27 could be considered “pragmatic”.

![Figure 8: Distribution of logical responses to under-informative *some*-statements.](image)

There was no significant correlation between the number of logical responses and the N450 effect elicited by *some* in the ERP experiment (i.e. incongruent SOME minus congruent e.g., SoMe N450 amplitude, $r = -.24$, $p = .22$).

4. Discussion

Using ERPs in a Stroop-like paradigm involving upper case and mixed case letter strings, we investigated whether the scalar inference ‘not all’ triggered by *some* is derived when *some* is presented in isolation, i.e. in a situation of minimal context.

As expected, longer RTs for MiXEd than CAPS stimuli showed that the MiXEd condition proved more demanding than the CAPS condition (see e.g., Mayall, Humphreys and Olson, 1997; Mayall, Humphreys, Mechelli et al., 2001).
Juhasz et al., 2006; Arditi and Cho, 2007; Lien, Allen and Crawford, 2012. Significant differences in accuracy expected from the Stroop conflict only appeared for all. ERPs collected simultaneously also revealed a main effect of physical form in N1, P2 and LPC time-windows, with greater amplitudes and/or delayed latencies generally observed for MiXEd as compared to CAPS stimuli. Critically, raw ERPs, and ERPs corrected for physical differences, showed significant increases in amplitude for incongruent relative to congruent stimuli in the predicted N450 time-window. Some, in particular, produced the ERP modulations that one would expect if its meaning were construed pragmatically.

Accuracy results obtained in the all condition suggest that our Stroop conflict manipulation worked: Performance was hindered for incongruent MiXEd all as compared to congruent CAPS all. We note however that, in the case of incongruent all, ‘l’ having the same physical height as ‘L’ as in e.g., ‘ALl’, could have relatively increased the magnitude of the Stroop-like conflict for all.

Furthermore, the relative lack of a clear behavioural Stroop effect in the case of some (e.g., when comparing SOME vs. SomE) could be due to the MiXEd condition (in which some was congruent under our hypothesis) being overall more demanding as discussed above. Nevertheless, accuracy in this condition was higher for some than for case, suggesting that some was processed with more ease than case when its pragmatic meaning (‘some but not all’) was consistent with its guise. The absence of a clear behavioural Stroop effect for some may also be due to its suboptimal appearance (from a pragmatic point of view) when presented in MiXEd form. Indeed, a stimulus featuring two upper case and two lower case letters is compatible with quantifiers such as ‘half’ or ‘two’.

Whereas upper case all may be considered perfectly congruent, and mixed case all, perfectly incongruent with the meaning of all, some only enjoys a perfect status in its upper case, pragmatically incongruent form (SOME). In its pragmatically congruent form (e.g., sOmE), half or two rather than merely some of

6After removal of the ambiguous occurrences of MiXEd all (‘ALl’ and ‘All’) from the analysis, the Stroop-like effect on accuracy vanished (mean accuracy incongruent all = 92%).

24
the letters are in upper case, which is pragmatically suboptimal, because some is taken to mean at least/more than one and less than half, and numbers tend to be preferred to some in the subitising range (see e.g., Kaufman et al., 1949; Degen and Tanenhaus, 2015). Considering the fact that the word has only four letters, we could not implement a pragmatically optimal form of some in this experiment.

The overall processing difficulty of the MiXEd relative to the CAPS condition was also reflected in event-related brain potentials through greater mean amplitudes in the N1, P2 and LPC ranges. The modulation by case-type in the N1 and P2 ranges reflects difficulty with visual feature-to-letter mapping as predicted by models of visual word recognition (see e.g., Bi-modal interactive activation model (BIAM), Grainger and Holcomb, 2009). The N1 modulation observed for MiXEd as compared to CAPS is compatible with the kind of modulation observed previously when letters are rotated in words (see Kim and Straková, 2012). The interaction between case-type and word-type further suggested a reduced case-type effect for all, probably because the letter ‘l’ has the same height as an upper case letter (whereas all letters in some or case have a different height in upper and lower case), or because ‘l’ can be confused with ‘I’, making its status as a lower case letter ambiguous. After correction for physical differences, a marginal congruence × word-type interaction remained, driven by all, arguably due to the correction process: The case-type modulation was smaller in the all than in the some and the case word-type conditions, resulting in a harsher correction for all than for some or case, thus artificially increasing the CAPS/congruent vs. MiXEd/incongruent difference. Note that the case-type effect which extended into the LPC window in the raw ERP analysis, disappeared

7Note that we found no sign of a P1 amplitude modulation by low-level physical differences between case-type conditions. This is surprising given the controversy in the face-processing literature regarding the sensitivity of the P1 to differences between stimuli in terms of e.g., size, disparity and shape (see Thierry et al., 2007; Dering et al., 2011 vs. Rossion and Jacques, 2008; Eimer, 2011).
after correction for physical differences.

The Stroop conflict revealed by an N450 modulation (see e.g., Liotti et al., 2000; West, 2003; Markela-Lerenc et al., 2004; Szücs, Soltész and White, 2009; Szücs and Soltész, 2010; Tillman and Wiens, 2011) was obtained in the semantic test condition *all* (e.g., *aLL* vs. *ALL*), as well as the pragmatic test condition *some* (SOME vs. e.g., *SoMe*), indicating that *some* presented in isolation is construed as incongruent with ‘all’, that is, even when extraction of its meaning is irrelevant and not required to complete the task at hand. The Stroop conflict effect elicited by *some* was however less strong than that elicited by *all*. This needs not indicate that, albeit pragmatic in origin, the meaning of *some* was less compelling than that of *all*. Indeed, this may be interpreted as a task/stimulus effect: As noted above, whereas *all* may be considered perfect in its congruent guise (ALL) or incongruent (e.g., *aLL*) guises, *some* only enjoys a perfect status in its pragmatically incongruent guise (SOME).

The N450 conflict effect observed for *SOME* is overall incompatible with a strong context-dependency view of the SI ‘not all’, given that in a situation of minimal linguistic context, *SOME* is not construed as congruent with the concept of ‘all’. Our results suggest that the ‘not all’ meaning of *some* might be represented in memory rather than computed on the fly as suggested by some theoretical accounts (see e.g., Sperber and Wilson, 1995; Carston, 2004), and thus that *some* may be ambiguous in the mental lexicon. Psycholinguistic studies have provided empirical evidence that multiple meanings of ambiguous words are activated during early stages of processing, before a single interpretation is ultimately selected based on meaning frequency and context (see e.g., Swinney, 1979; Onifer and Swinney, 1981). However, lexical and semantic information retrieval is expected to occur at around 200 ms post-stimulus onset (see e.g., Martin et al., 2014; Hauk et al., 2012), and thus the N450 effect reported here cannot inform lexical-semantic stages of information processing. Overall, our results are consistent with the view that the SI is the predicted meaning of *some* in the absence of special circumstances (Levinson, 2000; see Introduction section 1). Our results may also be consistent with a grammatical account according
to which SIs are derived within grammar and are not pragmatic in essence. Indeed, it seems that a specific context is needed for SIs not to arise according to such view: A silent operator *Only* is inserted whenever possible, and SIs are not licensed only in specific contexts (see e.g., Chierchia, 2004; Chierchia, Fox and Spector, 2012).

Our results show that *some* does not need a strong contextual support to appear inconsistent with the meaning ‘all’. An alternative hypothesis could be that *all* appearing as frequently as *some*, might have rendered the lexical scale \(\langle\text{all, some}\rangle\) (see e.g., de Carvalho et al., 2016) and thus the contrast between *some* and *all* salient to participants despite the presence of a high number of filler and distractor trials. More likely, making all/not all CAPS decisions may have elicited an implicit context calling for an ‘all in CAPS?’ Question Under Discussion (see Introduction section 1). Such QUD may have resulted in word association participating in the Stroop conflict. Indeed, the words *some* and *all* are strongly associated (see e.g., Edinburgh Associative Thesaurus, Kiss et al., 1973), and psycholinguistic studies have shown that interference effects are modulated by association strength: Colour words that are less strongly associated with the concept of colour produce less Stroop interference (see e.g. Scheibe, Shaver and Carrier, 1967; Proctor, 1978). Therefore, the Stroop conflict found for *some* could also partly originate from the association between the words *some* and *all*. However, the ‘all in CAPS?’ QUD fails to account entirely for the effect observed for *some* because it predicts a Stroop-like effect also for *case* since neither *SOME* nor *CASE* are forms of the word *all*. Furthermore, even if an ‘all in CAPS?’ QUD in the experimental context was sufficient to support the SI ‘not all’, it remains that the SI was irrelevant in the task at hand, and the results therefore do not support the view according to which SI derivation is dependent upon contextual relevance.

A strong context-driven model of SI, or at least of the ‘not all’ SI triggered by *some* (generalising to all SIs would probably be flawed, see e.g., van Tiel, van Miltenburg et al., 2014), according to which an SI is only computed when it is contextually relevant, is not supported by our data. Reading the word
some appears sufficient to evoke inconsistency with ‘all’. Note that we are not arguing here for context-insensitivity: Even if the SI is evoked by some in isolation, hearers should be more or less committed to it depending on contextual information.

Interestingly, most of the participants of this study could be considered “logical” since almost 80% of the under-informative some-statements were considered good descriptions in the sentence-picture verification task. Yet, the same participants exhibited a Stroop-like conflict when presented with the pragmatically incongruent stimulus SOME in the ERP experiment. This seems to indicate that “logical” behaviour may stem from cognitive strategising rather than mere linguistic processing. At least, this result calls for caution when making hypotheses concerning processing on the basis of metalinguistic judgements.

5. Conclusion

In this study, we aimed at testing the context-dependency of the SI ‘not all’ triggered by some. In order to do so, we presented the quantifier in a minimal, that is, single word context in a Stroop-like task. An N450 modulation, marker of Stroop conflict, elicited by the pragmatic incongruent CAPS some, similar to that found for the semantic incongruent MiXEd all, revealed that the quantifier on its own can evoke the inference ‘not all’, or at least can be considered inconsistent with ‘all’. This argues for context-sensitivity rather than strong context-dependency of SI derivation in the case of some: The scalar inference ‘not all’ should be construed as more or less salient and relevant depending on the context rather than entirely contingent upon it. Further research is however required to clarify interactions between lexical-semantics, default heuristics, predicted meaning, and genuine pragmatic processing.

Funding

This work was supported by the Swiss National Science Foundation (grant numbers P2NEP1_155426 and P300P1_164558, CB).
Acknowledgements

The authors thank Si Jing Tan, Emma Jones, Yang Li, Ondřej Zíka, and Jielui Hu for their assistance with data collection.

References

Jaeger, T.F. (2008). “Categorical data analysis: Away from ANOVAs (transformation or not) and towards logit mixed models”. In: Journal of Memory and Language 59, pp. 434–446.

Martin, Clara, X. Garcia, A. Breton, Guillaume Thierry and Albert Costa (2014). “From literal meaning to veracity in two hundred milliseconds”. In: *Frontiers in Human Neuroscience* 8, pp. 1–12.

Mayall, Kate, Glyn W Humphreys, Andrea Mechelli, Andrew Olson and Cathy J Price (2001). “The effects of case mixing on word recognition: Evidence
from a PET study”. In: *Journal of Cognitive Neuroscience* 13.6, pp. 844–853. DOI: 10.1162/08989290152541494.

