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Stereo Viewing Modulates Three-Dimensional Shape Processing During
Object Recognition: A High-Density ERP Study

Zoe J. Oliver, Filipe Cristino, and Mark V. Roberts
Bangor University

Alan J. Pegna
University of Queensland

E. Charles Leek
Bangor University

The role of stereo disparity in the recognition of 3-dimensional (3D) object shape remains an unresolved issue
for theoretical models of the human visual system. We examined this issue using high-density (128 channel)
recordings of event-related potentials (ERPs). A recognition memory task was used in which observers were
trained to recognize a subset of complex, multipart, 3D novel objects under conditions of either (bi-)
monocular or stereo viewing. In a subsequent test phase they discriminated previously trained targets from
untrained distractor objects that shared either local parts, 3D spatial configuration, or neither dimension, across
both previously seen and novel viewpoints. The behavioral data showed a stereo advantage for target
recognition at untrained viewpoints. ERPs showed early differential amplitude modulations to shape similarity
defined by local part structure and global 3D spatial configuration. This occurred initially during an N1
component around 145–190 ms poststimulus onset, and then subsequently during an N2/P3 component around
260–385 ms poststimulus onset. For mono viewing, amplitude modulation during the N1 was greatest
between targets and distracters with different local parts for trained views only. For stereo viewing, amplitude
modulation during the N2/P3 was greatest between targets and distracters with different global 3D spatial
configurations and generalized across trained and untrained views. The results show that image classification
is modulated by stereo information about the local part, and global 3D spatial configuration of object shape.
The findings challenge current theoretical models that do not attribute functional significance to stereo input
during the computation of 3D object shape.

Public Significance Statement
The aim of this research is to elucidate how the human visual system processes sensory information
about shapes of 3-dimensional (3D) objects so that we can perceive, and recognize, them. We asked
whether these processes are sensitive to both monocular and stereo visual input. To answer this
question we measured electrophysiological responses generated in the brain while people viewed,
and made recognition judgments about, mono or stereo images of 3D objects. The objects could
differ from each in terms of their part structure, or overall 3D spatial configuration. The results
showed that the visual system processes these sorts of shape properties differently, and that how it
does so is influenced differently by mono and stereo visual input. The findings shed new light on the
role of stereo information in the visual perception and recognition of 3D object shape.

Keywords: 3D object recognition, evoked potentials, local and global shape, stereo disparity

The human visual system is remarkable for its ability to rapidly and
accurately classify three-dimensional (3D) objects despite variability
in sensory input (e.g., Arguin & Leek, 2003; Bar, 2003; Bar, Kassam,

Ghuman, et al., 2006; Cichy, Pantazis, & Oliva, 2014; Fabre-Thorpe,
2011; Harris, Dux, Benito, & Leek, 2008; Kirchner & Thorpe, 2006;
Leek, 1998a, 1998b; Leek, Atherton, & Thierry, 2007; Leek, Davitt,
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& Cristino, 2015; Leek & Johnston, 2006; Leek, Roberts, Oliver,
Cristino, & Pegna, 2016; Lloyd-Jones, Roberts, Leek, Fouquet, &
Truchanowicz, 2012; Tarr & Bulthoff, 1998; Thorpe, Fize, & Marlot,
1996; VanRullen & Thorpe, 2001).

One important, and unresolved, issue is whether, and under what
conditions, information derived from stereo (binocular) disparity
influences the recognition of 3D object shape (e.g., Bennett &
Vuong, 2006; Chan, Stevenson, Li, & Pizlo, 2006; Cristino, Davitt,
Hayward, & Leek, 2015; Edelman & Bülthoff, 1990; Koenderink,
van Doorn, & Kappers, 1992; Li, Pizlo, & Steinman, 2009; Nor-
man, Todd, & Phillips, 1995; Pegna, Darque, Roberts, & Leek,
2016; Pizlo, Sawada, Li, Kropatsch, & Steinman, 2010; Welch-
man, Deubelius, Conrad, Bul̆thoff & Kourtzi, 2005). Some current
theories attribute little, if any, significance to stereo information
(e.g., Bülthoff & Edelman, 1992; Chan et al., 2006; Pizlo, 2008;
Riesenhuber & Poggio, 1999; Serre, Oliva, & Poggio, 2007). For
example, in the HMAX model (Riesenhuber & Poggio, 1999),
image classification is accomplished within a multilayer feedfor-
ward architecture in which hierarchically structured edge-based
representations of object shape are computed from monocular
image contour—see also other recent approaches to image classi-
fication based on hierarchical deep networks (e.g., Cichy, Khosla,
Pantazis, Torralba, & Oliva, 2016; Khaligh-Razavi & Krieges-
korte, 2014; Krizhevsky, Sutskever, & Hinton, 2012). Pizlo (2008;
see also Li et al., 2009; Pizlo et al., 2010) has proposed that 3D
object structure is computed solely from 2D shape information
subject to the application of simplicity constraints (symmetry,
compactness, planarity and minimum surface area). On other ac-
counts, the contribution of stereo input is not ruled out, but neither
explicitly incorporated into the proposed theoretical framework
(e.g., Biederman, 1987; Leek, Reppa, & Arguin, 2005; Ullman,
2007). This contrasts with theoretical models that have attributed
functional significance to certain kinds of stereo-defined shape
information in object recognition—such as the computation of
local surface depth orientation, and the specification of 3D object
structural descriptions (Marr & Nishihara, 1978).

Although binocular disparity has been shown to contribute to
the perception of surface properties such as slant, tilt, and curva-
ture (e.g., Ban & Welchman, 2015; Norman et al., 1995; Norman
et al., 2009; Welchman et al., 2005; Wexler & Ouarti, 2008;
Wismeijer, Erkelens, van Ee, & Wexler, 2010), its role in the
recognition of complex 3D object shape remains unclear. Indeed,
it has been argued that although stereo information (i.e., local
depth disparity) facilitates processing of 3D surfaces properties
this does not, in itself, establish a functional link between stereo
vision and the perception (and recognition) of complex (i.e., mul-
tipart) 3D object shape per se (Li et al., 2009; Pizlo, 2008; Pizlo et
al., 2010). This issue has been investigated in previous studies by
assessing the effects of stereo disparity on the perceptual matching
of object shape across changes in viewpoint. The results provide a
mixed picture with stereo advantages reported in some studies
(e.g., Bennett & Vuong, 2006; Burke, 2005; Burke, Taubert, &
Higman, 2007; Chan et al., 2006; Edelman & Bülthoff, 1990;
Hong Liu, Ward, & Young, 2006; Lee & Saunders, 2011; Rock &
DiVita, 1987; Simons, Wang, & Roddenberry, 2002), but not in
others (Humphrey & Khan, 1992; Pasqualotto & Hayward, 2009).
Recently, Cristino et al. (2015) have proposed that stereo infor-
mation is computed during the visual perception of object shape. It
is more likely to be used to supplement shape information derived

from mono-ocular cues when object recognition (i.e., target/non-
target discrimination or view generalization) is facilitated by the
derivation of 3D object structure. In support of this hypothesis,
they showed that stereo input facilitates the classification of com-
plex multipart 3D objects across large, but not small, changes in
depth rotation. In other recent work, Pegna et al. (2016) have found
early perceptual sensitivity to stereo versus mono input in a per-
ceptual matching task using event-related potentials (ERPs). In
that study, ERPs were recorded while observers made shape equiv-
alence judgments about pairs of sequentially presented novel 3D
objects under conditions of stereo or mono viewing. The results
showed an early perceptual sensitivity to the mode of input shown
by a negative amplitude modulation between 160 and 220 ms
poststimulus onset. The results also showed later modulation of
ERP amplitude during an N2 component between 240 and 370 ms
for stereo and mono input that was linked to the perceptual
matching of shape.1

The aim of the current study was to determine whether stereo
disparity contributes to object processing during the recognition of
3D object shape. The rationale was based on recent work by Leek
et al. (2016), who found evidence for early differential sensitivity
of ERP amplitudes to local part structure and global shape con-
figuration of complex 3D objects in mono displays. In that study
ERPs were recorded while observers made shape matching judg-
ments to sequentially presented pairs of novel objects under con-
ditions of mono viewing. Different object pairs could either share
local parts but differ in global shape configuration, share global
shape configuration but have different local parts, or share neither.
The results showed differential N1 sensitivity to local and global
shape similarity between stimulus pairs occurring around 170 ms
poststimulus onset. These findings provide evidence that mental
representations of complex 3D object shapes comprise both local
higher-order parts, and the global spatial configuration of these
parts—consistent with theoretical models, and other empirical
evidence, supporting this distinction (e.g., Arguin & Saumier,
2004; Behrmann, Peterson, Moscovitch, & Suzuki, 2006;
Behrmann & Kimchi, 2003; Biederman, 1987; Hummel, 2013;
Hummel & Stankiewicz, 1996; Marr & Nishihara, 1978). We
hypothesized that one way in which stereo disparity may contrib-
ute to recognition is by facilitating the computation of 3D object
representations via depth information. These representations could
augment a range of shape information including surface depth
gradients and curvature, higher-order part boundaries, and the 3D
spatial configuration of (volumetric) object parts. Of relevance to
the current study is whether stereo input might differentially mod-
ulate the sensitivity of object recognition processes to local part
and global 3D spatial configuration information. For example,
under some structural description accounts, object parts are com-
puted directly from 2D image-based input derived from local edge
relations (e.g., nonaccidental properties or NAPs—Biederman,
1987). This level of representation may be sufficient where object
recognition can be based on a parts-based description of object
identity, or where the discrimination of target and nontarget ob-

1 Throughout the paper we use the term ‘mono’ to describe nonstereo
‘bimonocular’ visual input (that is, where there is no disparity between
visual inputs to the left and right eye). Stereo refers to visual input with
binocular disparity (i.e., different left and right eye images for a given
viewpoint).
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jects can be achieved based on part composition. In other situa-
tions, it may be beneficial to compute a global 3D object model
which specifies (among other attributes) the spatial configuration
of local object parts—for example, where recognition depends on
discrimination among objects with similar parts but different spa-
tial configurations.

To test this prediction we used ERPs, which have been previ-
ously shown by Leek et al. (2016) to show differential amplitude
sensitivity to local and global shape structure. Unlike earlier work,
we also wanted to examine this issue in the context of an object
recognition task rather than the perceptual matching of sequen-
tially presented stimuli. Object recognition differs from perceptual
matching in that the former requires indexing a (stored) long-term
memory representation of object shape. We used a recognition
memory task in which observers had to first memorize a subset of
complex novel 3D objects (targets) and subsequently discriminate
them from visually similar nontarget (not previously memorized)
objects. We then contrasted effects of target/nontarget similarity
defined by local part and global 3D shape configuration under
conditions of stereo and mono viewing. We predicted that stereo
presentation would enhance ERP modulations related to object
discrimination weighted toward perceptual analysis of 3D global
shape configuration.

Method

Participants

Forty Bangor University students (24 female, mean age 21.46,
SD � 3.16, 3 left-handed) participated for course credit. The
sample was recruited through an online participation portal. All
participants had normal or corrected-to-normal visual acuity. Eth-
ics approval was granted by the Local Ethics Committee and in
accordance with British Psychological Society guidelines. In-
formed consent was obtained and participants were free to with-
draw from the study at any time without penalty.

Apparatus and Stimuli

The stimuli comprised a set of 48 novel computer-generated 3D
objects. There were 12 target objects and 36 nontargets (distract-
ers) varying in visual similarity to the targets (see Figure 1). Each

stimulus comprised a unique spatial configuration of four different
volumetric parts. The parts were defined by variation among
nonaccidental properties (NAPs) comprising: edges (straight vs.
curved), symmetry of the cross section, tapering (colinearity), and
aspect ratio (Biederman, 1987). The object models were produced
using Strata 3D CX software (Strata, U.S.A.), then rendered in
Matlab using a stereo camera rig programmed with custom code.
To create the stereo images left and right eye images were ren-
dered without ‘toeing in’ using an Inter Pupillary Distance (IPD)
of 62 mm. In both mono and stereo viewing conditions, partici-
pants wore polarized 3D glasses to view the stimuli presented on
a passive interleaved 3D stereo monitor (60Hz 27” AOC 3D
monitor (D2769VH), resolution � 1920x1080 pixels). In the ste-
reo condition, participants viewed objects rendered from two view-
points (left eye and right eye). In the (bi-) mono condition, par-
ticipants viewed the objects with the same (right eye) rendered
image presented to both eyes.

The stimuli were then normalized in size across objects to
sustain in average on screen size of 17° � 17°). All stimuli were
rendered using a mustard yellow color: R � 227, G � 190, B �
43, and presented on a white background to facilitate figure/ground
segmentation. Object models were rendered with shading using a
single top-left light source but without (internal or external) cast
shadow (Leek et al., 2015).

For each of the 12 target objects, 3 corresponding nontargets were
designed: one variation was composed of the same parts arranged in
a different spatial configuration (SD – Same Parts/Different spatial
configuration – ‘locally similar’); a second variation was composed of
different parts arranged in the same configuration as the target (DS –
Different parts/Same spatial configuration – ‘globally similar’); fi-
nally, in a third variation comprised different parts and spatial con-
figuration (DD – Different parts/Different spatial configuration –
‘Dissimilar’). Each object was rendered at six different viewpoints
varying by 60 degree rotations in depth around a vertical axis per-
pendicular to the line of sight.

Measures of target/nontarget image similarity using three models
based on (a) Pixel overlap, (b) Gabor filter bank, and (c) HMAX - C1
output layer (Serre, Oliva, & Poggio, 2007) were computed on the 2D
mono stimulus images using the Matlab Image Similarity Toolbox (Seib-
ert & Leeds https://github.com/daseibert/image_similarity_toolbox). In
the toolbox, the pixel overlap model computes the sums of squared
differences in pixel intensity values between images. The Gabor
filter bank model projects the image onto a Gabor wavelet pyramid
as a model of V1 orientation selectivity (Kay, Naselaris, Prenger,
& Gallant, 2008), using filters spanning eight orientations, four
sizes (image %), and x, y positions. The Euclidian distance be-
tween the resulting vector of filter responses is compared between
images. The HMAX model is based on the C1 output layer of the
hierarchical feed-forward image classification model of Serre et al.
(2007). We use this model to provide an estimate of image-based
stimulus similarity between target and nontarget conditions. Table
1 shows the mean normalized similarity values of the three models
for both target versus SD (locally similar), DS (globally similar)
and DD (dissimilar) distracter image contrasts between trained and
untrained viewpoints. A 2 (Viewpoint: Trained, untrained) �
3(Stimulus type: SD; DS; DD) � 3 (Model: pixel overlap; HMAX;
Gabor) repeated measures ANOVA, showed no significant main
effects. However, there was an interaction between Stimulus type
and Model, F(4, 44) � 3, p � .029. Post hoc analyses showed that

Figure 1. An example of one target object and its three corresponding SD
(locally similar), DS (globally similar), and DD (dissimilar) nontargets. See
the online article for the color version of this figure.
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there were no differences between stimulus types for the pixel
overlap or Gabor models. For HMAX there was a significant
difference between SD (locally similar) and DS (globally similar)
stimulus types (p � .02) driven by the lower mean (normalized)
similarity values for trained views of target/DS (globally similar)
relative to either target/SD (locally similar) or target/DD (dissim-
ilar) stimulus contrasts.

A 2 (Display: mono/stereo) � 4 (Stimulus type: Target, SD
(locally similar), DS (globally similar, DD (dissimilar)) mixed
factorial design was used, with Display as a between-subjects
factor and Stimulus type as a within-subjects factor. Participants
were randomly allocated to either the mono or stereo display
group. There were 20 participants in each group. The stereo
display group completed a verification task to assess their ability to
fuse stereo images using interleaved polarized displays. During
this task they were seated 60 cm from the screen and shown a
random-dot stereogram with an embedded figure eight that was
only perceivable with stereo fusion using polarized glasses. Par-
ticipants were asked to report what they saw. All participants
correctly reported the embedded stereo figure. The main study
comprised two phases: learning and test. One group completed
both the learning and test phases in mono. The other group
completed both the learning and test phases in stereo. This aspect
of the design ensured that any observed differences between the
viewing conditions during the test phase cannot be due to mis-
matches in stimulus presentation formats between the learning and
test phases. During the learning phase for both Groups 12 objects
were memorized. In the learning phase each target was seen at
three viewpoints distinguished by rotations of 120 degrees around
a vertical (y) axis defined with reference to the object—see Figure
2. In the test phase, each target and nontarget was seen from six
different viewpoints distinguished by 60 degree rotations around
the y axis. In the learning phase each target was shown at each of
three viewpoints three times. In the test phase, the 12 targets were
presented at each of six viewpoints three times (216 target trials in
total). There were also 36 nontargets (three distracters for each of
the 12 targets). Each nontarget was presented once at each of the

six test viewpoints (six trials per nontarget � 216 nontarget trials
in total, 72 trials per nontarget condition). In total there were 432
trials in the test phase comprising equal numbers of target and
nontarget trials. Trial order was randomized.

Procedure

Learning phase. During the learning phase participants in
both the stereo and mono groups wore polarized glasses but
viewed stereo or mono images depending on the group assignment.
The learning phase comprised three identical training sessions

Figure 2. (a) All 12 target objects used in the study, with three distractor
objects: SD (locally similar); DS (globally similar); DD (dissimilar). (b)
One target object at the three learning (0°; 120°; 240°) and additional three
test phase viewpoints (60°; 180°; 300°). See the online article for the color
version of this figure.

Table 1
Mean (SD) Normalized (0–1) Image Similarity Between Targets
and Distractors (Nontargets) for the Pixel Overlap, HMAX, and
Gabor Models

Model

View

Trained Untrained

M SD M SD

Pixel Overlap
SD (Locally-similar) .42 .19 .39 .17
DS (Globally-similar) .34 .16 .35 .18
DD (Dissimilar) .39 .18 .39 .14

HMAX
SD (Locally-similar) .31 .10 .31 .09
DS (Globally-similar) .17 .11 .31 .09
DD (Dissimilar) .30 .14 .28 .09

GABOR
SD (Locally-similar) .30 .15 .31 .13
DS (Globally-similar) .33 .11 .35 .14
DD (Dissimilar) .26 .12 .25 .07

Note. Smaller values indicate lower similarity.
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conducted over three days in separate training sessions. The pur-
pose of the learning phase was for participants to memorize each
of the 12 targets, and an associated unique stimulus number. Only
participants who were able to identify targets to a criterion level of
80% after the three training sessions proceeded to the test phase.
Each training session comprised a memorization stage and a ver-
ification stage. During the memorization stage target objects were
presented centrally (duration � 3s) on a computer monitor sequen-
tially at three different training viewpoints denoted 0°, 120° and
240° (see Figure 2). Target presentation was preceded by an
identification number (1–12). Target identification numbers were
randomly assigned across the target set but were the same for all
participants. There were 36 trials (12 objects � 3 viewpoints) in
each block of memorization trials. After the memorization phase,
participants completed a verification task in which the 12 targets
were shown randomly, one-at-a-time and for unlimited duration
(until response), at each of the three viewpoints. After each stim-
ulus, participants provided the associated target number via a key
press on a standard PC keyboard. Feedback was given via a
‘Correct’ or ‘Incorrect’ message displayed centrally on the moni-
tor. The memorization and verification tasks were repeated three
times per training session (9 times across the three training ses-
sions). All participants completed all three training sessions (re-
gardless of whether they reached criterion accuracy earlier).

Test phase. During the test phase, participants in both the
stereo and mono groups wore polarized glasses but viewed stereo
or mono images depending on the group assignment. After the
participants had completed three training sessions and had
achieved the criterion level of performance in the learning phase,
they completed the test phase involving a recognition memory
task. The final training session of the learning phase was com-
pleted immediately before the test phase. EEGs were recorded
during the test phase (see below). Each trial involved presentation
of one stimulus (either a target or nontarget) at one of six view-
points. At the start of each trial a small central fixation cross was
presented in the center of the monitor at 0.7° of visual angle. The
duration of the fixation cross was jittered randomly in 50 ms
increments between 500 and 800 ms. Following onset of the
fixation marker the test stimulus was shown for 750 ms. This
stimulus was replaced by a response screen (centrally presented
question mark). All trial events were separated by an interstimulus
interval of one screen refresh (17 ms). Participants were instructed
to respond via a button press using a standard PC keyboard (“1”
for target and “2” for nontarget—with the fore and middle fingers
of the right hand respectively for all participants) indicating
whether the stimulus shown was one of the 12 objects that they had
previously memorized regardless of its orientation. They were
alerted to the fact that the stimuli could be presented at previously
seen and novel viewpoints. Participants could only respond fol-
lowing onset of the response screen, and not during presentation of
the stimulus. This was done to help reduce potential motor re-
sponse artifacts in the EEG. The response screen remained until a
response was given (see Figure 3). The intertrial interval was a
blank screen presented for 1000 ms. For the behavioral data the
dependent measure was response accuracy. RTs were not collected
because keyboard responses were only acquired from the onset of
the response screen. This was done to reduce motor artifacts in the
ERPs associated with the stimulus event.

Electrophysiological recording and processing. The elec-
troencephalograph (EEG) was recorded continuously through 128
electrodes placed on an ECI cap (Electro-Cap International, Ohio,
U.S.A.) using the Active-Two Biosemi EEG system (Biosemi
V.O.F Amsterdam, Netherlands). Eye movements and blinks were
corrected using the ICA protocol in Analyser 2 software and
segmented data was then visually inspected with trials containing
artifacts rejected. Epochs that contained muscle or skin potential
artifacts were rejected. Only trials on which participants gave a
correct response were included. The mean number of correct trials
per subject after artifact rejection was: 189.25 (SS/target), 62.61
(SD/locally similar), and 67.61 (DS/globally similar) and 67.82
(DD/dissimilar). Activity from all electrodes was sampled at a rate
of 1024Hz. Offline 30 Hz low pass and 0.1 Hz high-pass filters
were applied to the data. Data were rereferenced to an average
reference which was then used to generate the grand averages. We
used a 100-ms prestimulus interval for the baseline correction.
Continuous recording took place during the test phase and trials
were epoched/segmented from �100 ms to stimulus offset (750
ms). All ERP data acquired from onset of the response prompt
were discarded.

EEG analyses. Four early visual evoked potential compo-
nents P1, N1, P2, and an N2–P3 complex were identified based on
the topography, global field power (GFP) deflection and latency
characteristics of the respective grand average ERPs time-locked
to stimulus presentation. Preliminary epochs of interest for each
component were defined based on deflection extrema in the mean
local field power (e.g., Brunet, Murray, & Michel, 2011; Lehmann
& Skrandies, 1980; Murray, Brunet, & Michel, 2008). Peak de-
tection was time-locked to the electrode of maximal amplitude for
each component. The latency of peak amplitude was used to define
epochs for analyses of four components: Mono - P1 (85–125 ms;
Peak latency (A10) � 105 ms; N1 (145–185 ms; Peak latency
(B7) � 165 ms); P2 (200–240 ms; Peak latency (A8) � 220 ms);
N2–P3 complex (285–385 ms; Peak latency (A8) � 335 ms);
Stereo - P1 (90–130 ms; Peak latency (B7) � 110 ms); N1
(150–190 ms; Peak latency (A11) � 170 ms); P2 (195–235 ms;
Peak latency (A8) � 215 ms); N2–P3 (260–360 ms; Peak latency
(A7) � 310 ms).

Symmetrical clusters were extracted over the left (LH) and right
(RH) hemispheres comprising nine spatially adjacent posterior
electrodes: RH: A32, B3, B4, B5, B6, B7, B8, B10, B11, and LH:
A5, A6, A7, A8, A9, A10, A11, D31, and D32, which correspond
with electrode locations CP2, P4, P6, P8, PO8 and CP1, P3, P5,
P7, PO7 of the extended 10–20 system. These electrode clusters

Figure 3. An illustration of the trial sequence comprising: (1) jittered
fixation from 500-800 ms, (2) stimulus (target or nontarget) presentation
for 750 ms, (3) response prompt. See the online article for the color version
of this figure.
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formed the regions-of-interest (ROIs) for the subsequent analyses
of contrasts between stimulus conditions. Standard waveform anal-
yses were based on the amplitude data as a measure of differential
ERP sensitivity to 3D shape similarity between mono and stereo
viewing. Mean amplitudes were analyzed using the General Linear
Model by way of ANOVA. Greenhouse-Geisser corrections were
applied to all analyses of ERP data. Corrected degrees of freedom
are reported where applicable. An a priori alpha level of .05
(two-tailed) was adopted. Exact p values are reported (p � x)
except where p � .001.

Mass univariate analyses. Mass Univariate analyses (Groppe,
Urbach, & Kutas, 2011; Guthrie & Buchwald, 1991; Murray et al.,
2008) were used to complement the standard waveform analyses.
This involved using pair wise, frame-by-frame, repeated measures
t tests across all 128 electrodes. An a priori criterion for signifi-
cance was adopted in which a threshold of p � .01 (two-tailed)
must be attained for at least 12 consecutive time frames in at least
5 neighboring electrodes over time windows of 150 ms (Guthrie &
Buchwald, 1991). For this purpose, the mass univariate analyses
were conducted on 150-ms bins (0–150 ms; 151–300 ms; 301–450
ms) encompassing the P1, N1, P2, and N2/P3 components.

Results

Behavioral Results

Accuracy data were log transformed prior to statistical analyses.

Learning Phase

A 3(Training day) � 2(Display: mono; stereo) mixed ANOVA,
with Display as a between subjects factor showed significant main
effects of Training day, F(2, 60) � 58.06, p � .001, with accuracy
(% correct) increasing over time, from day one (M � 69.48, SD �
17.38) to two (M � 94.71, SD � 8.06), p � .001, and two to three
(M � 98.09, SD � 4), p � .006. There were no differences
between mono and stereo display groups and all participants
passed criterion by the end of the third training session.2,3

Test Phase

Figure 4 shows mean percent correct responses per condition. The
data were analyzed using a 4 (Stimulus type: Target; SD [locally
similar]; DS [globally similar]; DD [dissimilar]) � 2 (Stimulus view-
point: trained/untrained) � 2 (Display: mono/stereo) mixed ANOVA,
with Display as a between subjects factor. There were significant
main effects of Stimulus type, F(3, 90) � 13.5, p � .001, and
Stimulus viewpoint, F(1, 30) � 10.41, p � .003, with higher overall
accuracy for trained (M � 97.05%, SD � 2.65) than untrained (M �
95.4%, SD � 3.42) viewpoints. There was also a significant three-
way interaction, F(3, 87) � 3.19, p � .027. To investigate this
further we analyzed mono and stereo data separately using 4
(Stimulus type) � 2 (Stimulus viewpoint) repeated measures
ANOVAs. For the mono viewing group, there was an interaction
between Stimulus type and Stimulus Viewpoint, F(3, 45) � 5.9,
p � .002. This derived from significantly higher accuracy for
trained than untrained viewpoints for target stimuli, p � .003 (see
Figure 4). In contrast, for the stereo viewing group there were no
significant main effects or interactions. Finally, accuracy for tar-

gets presented at untrained views was higher for stereo (M �
94.68%, SD � 5.09) than mono (M � 85.19%, SD � 14.46)
displays (p � .035). This pattern of results is consistent with a
stereo advantage in view generalization for targets between trained
and untrained views.

Analyses of ERP Data

The aims of these analyses were as follows: (a) to determine
whether the ERP showed sensitivity to the manipulation of stereo
and mono viewing; (b) to establish whether the ERPs were differ-
entially sensitive to target/nontarget shape similarity defined by
either shared local parts or global 3D spatial configuration; and (c)
to determine whether differential perceptual sensitivity to these
shape attributes was modulated by mono versus stereo viewing.

ERP analyses I: Perceptual sensitivity to stereo/mono
presentation. We first wanted to determine whether our display
manipulation of stereo versus mono presentation was sufficient to

2 Nine of twenty-eight participants reached criterion accuracy after the
first training session.

3 Patterns of behavioral and ERP data for the three left-handed partici-
pants and the group were the same across conditions.

Figure 4. Accuracy for targets in mono and stereo viewing conditions in
the test phase. Bars show standard error. See the online article for the color
version of this figure.
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induce a measurable early perceptual sensitivity in visual evoked
potentials. Mass univariate analyses were used to identify a tem-
poral marker defining the earliest time point of differential ERP
sensitivity to mono versus stereo viewing. A point-wise mass
univariate contrast between the mono and stereo viewing across all
conditions revealed differences in the ERP from around 50 ms
poststimulus onset over a large group of posterior, temporal-
occipital and anterior leads. This difference was sustained during
the P1 component over left occipital and some frontal electrodes
(see Figure 5). These analyses confirm an early perceptual sensi-
tivity to mono versus stereo viewing.

ERP analyses 2: Perceptual sensitivity to 3D shape similarity
as a function of mono/stereo viewing. Our next goal was to
establish whether perceptual processing of object shape resulted in
differential sensitivity to local parts and global 3D shape config-
uration as a function of mono versus stereo viewing. To do so we
conducted both standard waveform analyses and mass univariate
contrasts.

Standard Waveform Analyses

P1. This was defined by a 40-ms time window (85–125 ms for
mono and 90–130 ms for stereo). A 4 (Stimulus type: Target; SD
[locally similar]; DS [globally similar]; DD [dissimilar]) � 2
(Laterality) � 2 (Display: mono/stereo) mixed ANOVA, with
Display as a between subjects factor, showed a main effect of
Display, F(1, 30) � 5.41, p � .028, with higher amplitudes (�V)
for stereo (M � 4.03, SD � 0.54) than mono viewing (M � 2.72,
SD � 0.15; see Figure 6a and 6b). There was also a main effect of
Laterality, F(1, 30) � 8.28, p � .007, with greater amplitudes on
the right (M � 3.63, SD � 0.99) than left (M � 3.12, SD � 0.46)
hemisphere electrodes. No other main effects or interactions were
significant.

N1. This was defined by a time window of 145–185 ms for
mono, and 150–190 ms for stereo viewing. A 4 (Stimulus type:
Target; SD [locally similar]; DS [globally similar]; DD [dissimi-
lar]) � 2 (Laterality) � 2 (Display: mono; stereo) mixed ANOVA,
with Display as a between subjects factor, showed a significant
three-way interaction, F(2.82, 84.51) � 2.98, p � .044. No other
main effects or interactions were significant. As can be seen in
Figure 6 this interaction derives from the contrasting patterns of
amplitude modulation in the SD (locally similar) and DS (globally
similar) conditions between mono and stereo viewing. To inves-
tigate this further we conducted two separate 4 (Stimulus type:
Target; SD [locally similar]; DS [globally similar]; DD [dissimi-
lar]) � 2 (Laterality) repeated measures ANOVAs for the mono
and stereo display conditions.

For the mono condition (see Figure 6a), there was a main effect
of Stimulus type, F(2.27, 34.05) � 3.85, p � .03, driven by a
significant difference between the target and DS (globally similar)
nontargets, p � .02, with greater negativity for targets (M � �0.75,
SD � 0.26) than DS (globally similar) (M � �0.23, SD � 0.25)
stimuli. No other main effects or interactions were significant. In
contrast, for the stereo condition (see Figure 6b) there was a
significant interaction between Stimulus type and Laterality,
F(2.76, 41.47) � 2.88, p � .046. Post hoc contrasts showed a
significant difference between the targets and SD (locally similar)
nontargets in the left hemisphere only, t(15) � 2.29, p � .036, with
increased negativity for targets (M � �1.39 SD � 0.46) compared

with SD (locally similar) (M � �0.97, SD � 0.43) stimuli. No
other main effects or interactions were significant.

P2. This was defined by a time window of 200–240 for mono
and 195–235 ms for stereo viewing. A 4 (Stimulus type: Target;
SD [locally similar]; DS [globally similar]; DD [dissimilar]) � 2
(Laterality) � 2 (Display: mono; stereo) mixed ANOVA, with
Display as a between subjects factor showed that no main effects
or interactions were significant.

N2–P3 complex. The N2–P3 complex was defined by a time
window of 285–385 ms for mono and 260–360 ms for stereo
viewing. A 4 (Stimulus type: Target; SD [locally similar]; DS
[globally similar]; DD [dissimilar]) � 2 (Laterality) � 2 (Display:
mono; stereo) mixed ANOVA, with Display as a between subjects
factor showed a significant main effect of Stimulus type, F(2.48,
74.24) � 2.97, p � .046. There was also a significant three-way
interaction, F(2.82, 84.51) � 3.48, p � .022. There were no other
significant main effects or interactions. To investigate this further
we analyzed mono and stereo data separately using 4 (Stimulus
type) � 2 (Laterality) repeated measures ANOVAs. For the mono
viewing group (Figure 7a) there were no significant main effects or
interactions. In contrast, for the stereo viewing group (Figure 7b)
there was a significant interaction between Stimulus type and
Laterality, F(2.76, 41.47) � 4.51, p � .009. Planned comparisons
showed that there were no differences between stimulus types in
the left hemisphere, but in the right hemisphere mean amplitude
for targets was lower than SD (p � .022), DS (p � .024) and DD
(p � .002). No other main effects or interactions were significant.

Further Analyses I: Mass Univariate Contrasts Across
All 128 Electrodes

Mass univariate analyses were used to complement our standard
waveform analyses of the effects of mono and stereo viewing on
the discrimination between targets and critical SD (locally similar)
and DS (globally similar) nontargets. Unlike the standard analysis,
the mass univariate approach allows us to examine the patterns of
contrasts between conditions across all 128 electrodes (rather than
restricting the analysis to the 9 electrode cluster in each hemi-
sphere). The temporal distributions of these contrasts across all
128 electrodes for mono viewing are shown in Figure 8a–8h.

These mass univariate contrasts show the differential sensitivity
between targets and SD/DS nontargets for mono and stereo view-
ing in the N1, P2 and N2/P3 components. A time series plot of the
frequency distribution of significant differences is shown in
Figure 9. These data were analyzed as a nonparametric time-series
using the Friedman test. For the N1 during mono viewing there
was a higher frequency of significant differences between targets
and DS (globally similar) nontargets in both the left, �2(1) � 4,
p � .046 and right hemispheres, �2(1) � 5, p � .025. For stereo
viewing there was a higher frequency of significant differences
between targets and SD (locally similar) nontargets in the left
hemisphere only, �2(1) � 4, p � .046. The same pattern for stereo
viewing was also found during the P2, �2(1) � 4, p � .046, but
there was no significant differences for the mono group. The
N2/P3 component also showed a striking contrast in perceptual
sensitivity to SD (locally similar) and DS (globally similar) non-
targets between mono and stereo viewing. For mono viewing there
was a higher frequency of significant differences between targets
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Figure 5. Raster plots of mass univariate contrasts for mono versus stereo presentation for anterior and
posterior left and right hemisphere electrodes (y axis), across time frames from 0–450 ms poststimulus onset (x
axis); (a) shows a color-coded t-map displaying the polarity of contrasts and max/min t values; (b) thresholded
plot showing significant pairwise contrasts (p � .01). The electrode montages show the electrodes significant at
p � .01 at 50 ms (above) and 100 ms (below) poststimulus onset in black. See the online article for the color
version of this figure.
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Figure 6. Grand average waveforms for the N1 component (blue highlight) across conditions at the electrode
cluster encompassing P7 and PO7 (left hemisphere) and P8 and PO8 (right hemisphere) for (a) Mono and (b)
Stereo viewing groups. See the online article for the color version of this figure.
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Figure 7. N2–P3 grand average waveforms (highlighted in blue shaded area) for (a) Mono and (b) Stereo
viewing groups for all conditions at the electrode clusters encompassing P3 and CP1 (left hemisphere) and P4
and CP2 (right hemisphere). See the online article for the color version of this figure.
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Figure 8. Raster plots of mass univariate contrasts for (a/e) Mono Target-SD (Locally similar); (b/f) Stereo
Target-SD (Locally similar); (c/g) Mono Target-DS (globally similar) and (d/h) Stereo Target-DS (globally similar).
Posterior/anterior and right/left electrodes are shown (y-axis) across time frames from 0-450 ms poststimulus onset;
(a–d) show color-coded t-maps displaying the polarity of contrasts and max/min t values; (e–h) thresholded plots
showing significant pairwise contrasts (p � .01). The electrode montages show the electrodes significant at p � .01
at 50 ms (above) and 100 ms (below) poststimulus onset in black for each contrast. The blue highlighted areas show
the N1, P2, and N2/P3 components. See the online article for the color version of this figure.
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and DS (globally similar) nontargets in the right hemisphere,
�2(1) � 10, p � .002. The opposite pattern was found for stereo
viewing with a higher frequency of significant differences between
targets and SD (locally similar) nontargets in the left hemisphere,
�2(1) � 6.4, p � .011.

Further Analyses II: Effects of Training Viewpoint

The analyses so far show differential sensitivity to SD (locally
similar) and DS (globally similar) nontargets between mono and
stereo viewing. In brief, during mono viewing there is a greater
response modulation to target versus DS (globally similar) nontargets
in both the left and right hemisphere that begins during the N1 and
continues into the later N2/P3 component. During stereo viewing,
there is a greater response modulation to target versus SD (locally
similar) nontargets that is predominant in the left hemisphere and
which begins during the N1 but only peaks during the later N2/P3. In
a final analysis, we wanted to examine whether these differential
response patterns are modulated by viewpoint familiarity; that is,
whether they generalize across image classification at trained and
untrained views. Figure 10 shows a time series plot of the frequency

distribution of significant differences between target and nontarget
conditions for trained and untrained viewpoints. The data were ana-
lyzed as a nonparametric time-series using the Friedman test. For the
mono viewing group the higher frequency of significant differences
between target and DS (globally similar) distracters in the left and
right hemispheres during the N1 was found for trained viewpoints but
did not generalize to untrained viewpoints (LH: �2(1) � 4, p � .046,
RH: �2(1) � 4, p � .046). In contrast, for the stereo viewing group,
there were no differences between trained and untrained viewpoints at
the N1. For the mono group at the N2/P3, however, there was a higher
frequency of significant differences between target and SD (locally
similar) distracters for trained than untrained viewpoints in the left
hemisphere, �2(1) � 6.4, p � .011. There was also a higher frequency
of differences between target and DS distracters in the left and right
hemispheres for trained than untrained viewpoints (LH: �2(1) � 10,
p � .002; RH: �2(1) � 10, p � .002). For the stereo group, there was
a higher frequency of significant differences between target and SD
(locally similar) distracters for trained than untrained viewpoints in
the left hemisphere, �2(1) � 6.4, p � .011 and a higher frequency of
differences between target and DS (globally similar) distracters for

Figure 9. Time series distribution showing the frequency of significant difference contrasts from the mass
univariate analysis between 0 and 450 ms. Contrasts shown are between Target and SD (locally similar; red) and
Target and DS (globally similar; purple) for both mono in the (a) left and (b) right hemispheres and stereo in the
(c) left and (d) right hemispheres. See the online article for the color version of this figure.
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Figure 10. Time series distribution showing the frequency of significant difference contrasts from the mass
univariate analysis between 0 and 450 ms. Contrasts shown are between target and SD (locally similar) in red
and target and DS (globally similar) nontargets in purple for mono (a-d)/stereo (e-h) viewing, left and right
hemispheres and trained versus untrained views. See the online article for the color version of this figure.

530 OLIVER, CRISTINO, ROBERTS, PEGNA, AND LEEK



trained than untrained viewpoints in the right hemisphere, �2(1) �
6.4, p � .011.

Discussion

The main findings can be summarized as follows: First, the
behavioral data provided evidence for an advantage in view gen-
eralization for stereo over mono displays. This was shown by
higher accuracy in target classification of untrained views for
stereo displays. Second, the ERP data showed differential ampli-
tude responses to mono versus stereo viewing as early as 50–100
ms poststimulus onset, with higher amplitudes on the P1 compo-
nent for stereo displays. Third, we observed differential amplitude
modulations of evoked potentials to targets and nontargets defined
by shared parts (SD; locally similar) or shared spatial configura-
tion (DS; globally similar) starting at the N1 component between
145 and 200 ms poststimulus onset. N1 amplitudes for mono
displays showed greater differential sensitivity to DS (globally
similar) nontargets. For stereo displays, there was a greater differ-
ential amplitude modulation for SD (locally similar) nontargets in
left hemisphere electrodes. Fourth, a pattern of differential ampli-
tude modulation was also found at the later N2/P3 component
around 260–385 ms poststimulus onset. This was most clearly
shown in the mass univariate analysis. For mono viewing, there
was a higher frequency of significant differences between targets
and DS (globally similar) nontargets. For stereo viewing, there was
a higher frequency of significant differences between targets and
SD (locally similar) nontargets. Fifth, under mono viewing, the
differential sensitivity to DS (globally similar) nontargets was
found for trained but not untrained views. In contrast, the ampli-
tude sensitivity in stereo viewing to SD (locally similar) nontargets
was found with both trained and untrained views.

These new empirical findings have several important implica-
tions for models of object recognition. First, the results provide
new evidence that the representation of complex 3D object shape
involves the specification of higher-order part structure and 3D
part configuration. This is shown by the differential sensitivity in
the ERPs to shape differences between targets and nontargets
defined by either shared local parts or 3D shape configuration.
These differences emerged during the N1 component between
approximately 145–200 ms poststimulus onset, and were also
found during the N2/P3 component around 260–385 ms post-
stimulus onset. This finding is consistent with theoretical models,
and other supporting empirical evidence, that the perceptual rep-
resentation of complex 3D object shape involves the specification
of higher-order part structure and global 3D spatial configuration
(e.g., Arguin & Saumier, 2004; Behrmann et al., 2006; Behrmann
& Kimchi, 2003; Biederman, 1987; Hummel & Stankiewicz, 1996;
Marr & Nishihara, 1978). The results challenge theoretical models
which do not attribute functional significance to these properties of
object shape representations - including the hierarchical, feed-
forward HMAX deep (i.e., multilayer) network architecture (e.g.,
Riesenhuber & Poggio, 1999; Serre et al., 2007), and others (e.g.,
Bulthoff & Edelman, 1992; Chan et al., 2006; Khaligh-Razavi &
Kriegeskorte, 2014; Krizhevsky et al., 2012; Li & Pizlo, 2011; Li
et al., 2009; Pizlo, 2008).

Second, the results also provide new evidence that the recogni-
tion of complex 3D object shape can be modulated by stereo visual
input. This was shown in both the behavioral and ERP data

patterns. Behaviorally, we found an advantage for object recogni-
tion under conditions of stereo viewing in relation to classification
accuracy for targets presented at previously untrained views. This
observation adds to a growing body of behavioral evidence that
stereo input can facilitate 3D object recognition—at least under
some conditions (e.g., Bennett & Vuong, 2006; Burke, 2005;
Burke et al., 2007; Chan et al., 2006; Edelman & Bülthoff, 1990;
Hong Liu et al., 2006; Lee & Saunders, 2011; Rock & DiVita,
1987; Simons et al., 2002). According to Cristino et al. (2015),
stereo input provides additional cues to 3D object shape including,
for example, the specification of surface slant, curvature polarity
and 3D part configuration. We also found differential modulation
of ERP amplitudes during mono and stereo viewing as a function
of target/nontarget shape similarity. Notably, we found evidence
for differential modulation of ERP amplitudes under mono and
stereo viewing for DS (globally similar) and SD (locally similar)
distractors. This shows that stereo viewing can modulate percep-
tual processing of different attributes of 3D shape—contrary to the
predictions of theoretical models that do not attribute functional
significance to stereo information in the derivation of 3D object
representations (e.g., Bulthoff & Edelman, 1992; Chan et al., 2006;
Li & Pizlo, 2011; Li et al., 2009; Pizlo, 2008; Riesenhuber &
Poggio, 1999; Serre et al., 2007). One interpretation of the results
is that stereo viewing enhances processing of information about
the 3D spatial configuration of object parts, and that this informa-
tion facilitates the classification of SD (locally similar) distracters
as nontargets on the basis of their distinct global 3D spatial
configuration. In contrast, under conditions of mono viewing, we
found early differential sensitivity to DS (globally similar) dis-
tracters that shared spatial configuration but not local parts (that is,
where targets and distractors can be differentiated on the basis of
distinct local parts). This raises the possibility that, in the absence
of stereo input (as is the case in most previous empirical studies of
object processing), the perceptual analysis of 3D object shape is
weighted toward differences in 2D local shape attributes. Further-
more, the enhanced processing of local part structure did not
generalize to untrained views, suggesting that under monocular
viewing conditions object shape processing may be weighted
toward an ‘image-based’ processing strategy. Taken together,
these findings suggest that mental representations of 3D object
shape in human vision are rich in structure, encoding both 2D
image-based local features, and 3D shape properties, broadly con-
sistent with a ‘hybrid’ approach to object recognition mediated by
representations combining both 2D and 3D object structure (Foster
& Gilson, 2002; Hummel, 2013; Hummel & Stankiewicz, 1996).4

A recent study by Leek et al. (2016), using a sequential novel
object matching task under conditions of mono viewing only, also
reported early differential perceptual sensitivity to shape differ-
ences defined by either shared parts or global spatial configuration.
In that work, differential sensitivity in perceptual matching of

4 In relation to the HMAX hypothesis in particular, it is of interest to
note that in terms of image similarity, we also found lower mean (normal-
ized) HMAX target-distractor similarity values for trained views. This
could potentially have also contributed to the differential sensitivity of ERP
amplitudes to DS and SD nontargets found for mono viewing consistent
with an image-based processing strategy. However, this would not account
for the why the opposite pattern of amplitude modulation was found with
stereo input.
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novel 3D objects was—as in the current study, found to emerge
earliest on amplitude modulations during the N1 component over
posterior electrodes between objects sharing either local parts or
global spatial configuration. The current data extend these findings
in several important ways. First, we have shown that this differ-
ential perceptual sensitivity extends to an object recognition task
where observers are required to match a perceptual description of
3D object shape to a (previously learned) long-term memory
representation. Second, the results also show that this differential
perceptual sensitivity is modulated by mono versus stereo in-
put—in which mono viewing enhances local differences in part
structure, while stereo viewing enhances differences in global 3D
spatial configuration. Third, we also found that this stereo viewing
effect generalizes across changes in 3D object viewpoint, whereas
perceptual sensitivity to local differences in part structure found
under conditions of mono viewing were restricted to trained view-
points.

An additional important issue arises from our observation of
early perceptual sensitivity of ERPs to shape similarity between
targets and distracters on the N1 component. This implies that
some properties of the shape of 3D objects can modulate percep-
tual processing prior to recognition (e.g., Bar, 2003; Bar et al.,
2006; Leek et al., 2016; Leek, d’Avosssa, Yuen, Hu et al., 2012;
Lloyd-Jones, Roberts, Leek, Fouquet et al., 2012). One interpre-
tation of this effect is that the early perceptual modulation reflects
partial activation of stored (i.e., target) shape representations on
the basis (in this case) of parts-based object descriptions. More
broadly, this hypothesis is consistent with a conception of object
shape processing that is based on parallel analyses of shape across
multiple spatial scales (e.g., Bar, 2003; Bar et al., 2006; Hegdé,
2008; Heinze, Johannes, Munte, & Mangun, 1994; Heinze, Hin-
richs, Scholz, Burchert, & Mangun, 1998; Navon, 1977; Peyrin,
Chauvin, Chokron, & Marendaz, 2003; Peyrin, Baciu, Segebarth,
& Marendaz, 2004; Peyrin et al., 2010).

Finally, one other issue merits brief discussion. Although our
primary goal was to examine whether mono versus stereo visual
input differentially modulates the perceptual processing of 3D
object shape during recognition, we also observed an early per-
ceptual sensitivity, and lateral asymmetry, to stereo disparity. We
found the earliest differential responses to mono versus stereo
input from around 50 ms poststimulus onset over a large group of
posterior, temporal-occipital and anterior leads. This difference
was sustained during the P1 component over left occipital and
some frontal electrodes. Additionally, we also found greater P1
amplitudes for right over left hemisphere electrode sites. We have
taken this to reflect early perceptual sensitivity to mono- versus
stereo input in our design. One might argue that these differences
do not reflect the resolution of stereo disparity per se, but rather
sensitivity to the presentation of different images to the left and
right eye in the stereo condition. However, if this were the case, we
would expect to find differences between mono- and stereo pre-
sentation in all conditions regardless of target-distracter similarity.
The observed interactions between stimulus type and viewing
condition show that this was not the case.

In summary, we investigated whether stereo viewing modulates
perceptual processing of 3D object shape. A recognition memory
task was used in which observers were trained to recognize a
subset of 3D novel objects under conditions of either mono or
stereo viewing. In a subsequent test phase, they discriminated

trained objects from nontargets that shared either local parts, 3D
spatial configuration or neither dimension, across both previously
trained and novel viewpoints. The behavioral data showed a stereo
advantage for generalization between trained and untrained views.
ERPs amplitudes also showed early differential sensitivity to local
part, and 3D spatial configuration, similarity between targets and
distracters. This occurred during an N1 component from 145–200
ms poststimulus onset and during an N2/P3 component from
260–385 ms poststimulus onset. For mono viewing, amplitude
modulation during the N1 was greatest between targets and dis-
tracters with different local parts for trained views only. For stereo
viewing, amplitude modulation during the N2/P3 was greatest
between targets and distracters with different global 3D spatial
configurations and generalized across trained and untrained views.
The results show that image classification is modulated by stereo
information about the local part, and global 3D spatial configura-
tion of object shape. The findings challenge current theoretical
models that do not attribute functional significance to stereo input
during the computation of 3D object shape.
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