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Abstract 

Acoustic Doppler current profilers (ADCPs) are commonly used to assess mean currents and turbulence at energetic sites. Since 

2014, five-beam ADCP configurations have become more common, but conventional analysis of turbulence properties is still based 

on the four-beam Janus configuration. We use measurements from a single site to investigate whether improved estimates of 

turbulent kinetic energy (TKE)are made possible by the addition of a fifth vertical beam. We conclude that four-beam estimates of 

TKE are suitable in most cases, and exhibit lower variance than five-beam estimates, but are more prone to contamination by wave 

activity. 
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Nomenclature 

Bm’ fluctuation velocity along the direction of the mth ADCP beam 

HS significant wave height 

k; k4, k5 turbulent kinetic energy density; estimates of k  obtained with four- and five-beam ADCP configurations  

ui’ component of fluctuation velocity along the ith spatial dimension 
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θ angle of inclination for off-vertical ADCP beams 

ξ proportion of turbulent kinetic energy contained in vertical fluctuations  

1. Introduction 

Tidal energy converters (TECs) are renewable energy devices that transfer the kinetic energy of tidal currents into 

electricity, with most designs using similar principles to conventional horizontal-axis wind turbines. However, the 

marine environment in which they are deployed and operated poses its own set of technical hurdles that must be 

addressed  (1) (2) (3). Tidal current turbulence, defined as the fine-scale fluctuations in mean flow manifesting as 

discrete eddies and vortices caused by topographic, bathymetric and frictional effects, is one of these challenges, and 

an important consideration for the development of TECs due to its impact on loading, reliability and fatigue (4) (5). 

Ocean turbulence differs from atmospheric turbulence as the ocean’s surface acts as an upper-bound, where surface 

waves propagate, which can increase turbulence by introducing additional mass and momentu m to the flow (6). 

Therefore, knowledge of turbulence at tidal energy sites is of crucial importance for the design of resilient and efficien t  

TECs. 

 

Acoustic Doppler current profilers (ADCPs) are one of the most 

widely-used tools for measuring properties of marine flows, including  

turbulence characteristics. ADCPs use the Doppler shift in the echoes 

of pings along directed acoustic beams to measure flow velocities (7). 

The specifics of an ADCP model and its deployment will vary 

according to the needs of a particular measurement campaign;  

however, for highly energetic sites suitable for TECs the standard is to 

use an upward-looking ADCP with three or four diverging beams  (8) 

(9) (10). Five-beam ADCPs are similar to the conventional four-beam 

‘Janus’ configuration (cf. figure 1), but with the addition of a vertical 

beam. Such devices have seen occasional use for approximately a 

decade (11), but have only recently become widely available as off-

the-shelf instruments. In this paper, we examine how measurements of 

turbulence parameters may be improved by the additional data 

available from a fifth ADCP beam. 

 

Each ADCP beam samples a single component of velocity  from 

separate locations, so it is not possible to get direct measurements of the full turbulence velocity field at any given 

point. However, under certain assumptions regarding the flow statistics across the sampled area, it is possible to 

calculate some parameters of the turbulence. 

 

Fig. 1: Simplified diagram of upward-looking five-

beam ADCP showing beam layout. Blue beams are also 

present in conventional four-beam ‘Janus’ 

configuration.  
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1.1. Instrumentation deployment 

All data presented in this paper is taken from a 

deployment of an RDI Sentinel V five-beam acoustic 

Doppler current profiler (ADCP) near the West Anglesey 

Demonstration Zone (WADZ) off the Welsh coast (UK) 

between 19/9/14 and 19/11/14; a map of the deployment 

zone is shown in figure 2. Concurrently with this 

deployment, a directional wave buoy measured significant  

wave height and period approximately 2 km to the south 

of the ADCP location. Water depth at the ADCP’s  

location varied between 41.1 m and 46.2 m through the 

deployment period, and peak spring currents were 2.48 

ms -1. There was a blanking distance of 1.89 m between the 

instrument and the first bin, and subsequent bins had a 

vertical separation of 0.6 m. The ADCP collected fifteen  

minutes of data every hour; during a burs t, the sampling  

rate was 2 Hz. The ping frequency was 491 kHz, 

measurements having a standard deviation, σ = 0.28 cm s -

1. Further details of the site can be found in references (12) and (13). 

 

1.2. Measuring turbulence with ADCPs 

In the current work, we characterize turbulence through examination of the turbulent kinetic energy (TKE) density, 

k , which expresses the amount of energy contained in turbulent velocity fluctuations per kilogram of fluid. Using index 

summation, we can relate k  to the velocity fluctuations as: 

where ui' denotes the velocity fluctuation in the ith spatial dimension, and angle brackets denote an ensemble average 

– in practice, this is approximated by an average over a single fifteen-minute burst. k  is extremely useful for 

characterising turbulence – in its most basic sense, it can be thought of as a measure of how much turbulence there is 

– and so it is a good parameter for assessing how measurement of turbulence is changed by the use of five-beam rather 

than four-beam ADCP configurations. 

 

As mentioned in the introduction, in order to analyse turbulence with ADCP measurements it is necessary to make 

some assumptions regarding the behavior of the flow statis tics across the volume of space in which the ADCP 

measures. Specifically, we must assume that the second-order statistics are homogeneous across all beams, and we 

must assume that they do not significantly change over the averaging period (in this case, ov er each fifteen minute 

burst). In a conventional four-beam configuration, it is also necessary to assume that the anisotropy of the components 

of turbulence can be parametrized by a single variable ξ, representing the proportion of TKE contained in vertica l 

fluctuations (14) (15). This is typically assigned the value ξ = 0.1684, following the work of Nezu & Nakagawa (16). 

 

Using these assumptions, it is straightforward to relate the variance in the measured along -beam velocities to k . A 

detailed derivation can be found in the previous references; in this paper we simply present the formulations relating  

the beam variances to k using the four- and five-beam configurations, which are distinguished as k4 and k5. 

𝑘 = 1

2
〈𝑢𝑖

′𝑢𝑖
′〉, (1) 

𝑘4 =
∑ 〈𝐵𝑚

′2〉4
𝑚=1

4 sin2 𝜃 (1 − 𝜉(1 − cot2 𝜃))
  (2) 

Fig. 2: Location of ADCP and wave buoy off the coast of Anglesey. 

Extent of West Anglesey Demonstration Zone (WADZ) shown by 

dashed black line. Image credit: Simon Neill 
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In equations (2) and (3), Bm' denotes the fluctuation velocity along the mth beam, and θ denotes the inclination 

angle of the off-vertical beams (cf. figure 1); for the ADCP used in the current study, θ = 25°. Such use of beam 

variances to calculate k  and other turbulence parameters is conventionally referred to as the variance method. 

1.3. Bias and variance in k 

The above expressions relating k  and beam variances are simplified in that they do not consider the effect of 

instrument noise (17). To understand how noise affects the estimates of TKE density, we assume that the effect of 

noise on a given beam can be represented as a zero-mean Gaussian random variable error that causes a difference 

between the along-beam velocity values as measured and the actual velocities in the flow-field (15). We also assume 

that this noise is a property of the instrument alone, and is thus uncorrelated with the real velocity fluctuations (18). 

With these assumptions, it follows that the estimated variance for the along-beam velocity of the mth beam, 〈𝐵𝑚
′2〉, 

will be positively biased by an amount equal to the variance of the Gaussian noise term. Following this reasoning, we 

presume that for a sufficiently large number of beam variance estimates, particularly if some are taken at slack water, 

there will be at least some estimates for which the true along-beam velocity variance is negligibly small in comparison 

to the noise variance. We thus estimate the noise-induced bias in the beam variance as equal to the smallest observed 

value of the beam variance itself (recall that each observation is a fifteen minute burst average). It is then a trivial 

exercise to derive the bias in the TKE estimates from the biases of the individual beam variances. All results presented 

in this paper have been corrected for bias using this method. 

 

Determining the variance of TKE estimates is not quite so straightforward. We start by observing that equations 

(2) and (3) are both of the form 𝑘 = ∑ 𝑐𝑚
〈𝐵𝑚

′2〉
𝑚 , where the variables cm are constant coefficients. It is then clear that 

in calculating the variance of k , we are finding the variance of a sum of weighted random variables: 

 

 

Thus, in order to find the variance of k , we must first evaluate Var(〈𝐵𝑚
′2〉). Since each variance estimate is calculated 

by an ensemble average over the entirety of a fifteen-minute burst, we do not have a broader population of 〈𝐵𝑚
′2〉 values 

that can be used to calculate Var(〈𝐵𝑚
′2〉); we therefore use bootstrapping from each burst’s population of 𝐵𝑚

′2 values 

to estimate the variances of variances. 

 

2. Results 

An overview comparison of the four- and five-beam estimates of turbulent kinetic energy for the entire deployment 

period is presented in figure 3. This figure also shows the significant wave height (HS) as measured by the wave buoy 

during the same period. 

 

Note the colour range used for these contour plots does not cover the full range of estimat ed k  values, which go as 

high as 1.10 m2s -2 in the four-beam case and 1.18 m2s -2 in the five-beam case. However, as is obvious from the plots, 

these extremely high values are always found near the surface and coincide with strong wave activity. We conclude , 

then, that these extreme observations are a result of the variance method including the oscillation about mean 

velocity due to wave orbital motion, rather than random velocity fluctuations due to turbulence.  

 

 

 𝑘4 =
∑ 〈𝐵𝑚

′2〉4
𝑚 =1

4 sin2 𝜃
+ (

1

2
− cot2 𝜃) 〈𝐵5

′2〉 (3) 

Var(𝑘) = ∑ 𝑐𝑚
2 Var(〈𝐵𝑚

′2〉)𝑚 , (4) 
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The formulation of the relationship between k4 and the beam variances 〈𝐵𝑚
′2〉 is such that k4 is expressed as a sum 

of squares (cf. equation (2)), and will therefore always be positive even after correction for the positive bias introduced 

by Doppler noise described in section 1.3. In contrast, for all practical values of θ  we have cot2 𝜃 > 1

2
, meaning that 

equation (3) for k5 includes a difference of squares, and therefore may take a negative value. The true value of k  must 

always be greater than zero, so any values of k5 < 0 shown as white in the lower panel of figure 3 must be caused  by 

variance in the estimate. Based on the variance associated with measurement error as calculated with equation (4), 

only 0.37% of k5 observations fall more than one standard deviation below zero, and only 0.12% more than two 

standard deviations below. This is well within what is expected for a normally-distributed observation error. 

 

Overall, k4 and k5 estimates of TKE density are very similar, suggesting that any improvement introduced by using 

a five-beam configuration will be relatively minor. It is difficult to compare k4 and k5 across the whole water column 

due to the strong dominance of wave 

effects in the near-surface region. We 

attempt to mitigate this by comparing  

only the deepest 20 m of the column, 

but even with this restriction wave 

action still has a significant effect on 

estimates of k . To further reduce the 

influence of wave effects, we exclude 

bursts from times where HS is above 

its own 75th percentile. With this 

exclusion condition in place, k4 and k5 

estimates of TKE density differ by 

only 3.6% on average, and by no more 

than 10.7% at any particular bin 

height. 

Fig. 4: Mean k4 and k5 profiles for the lower 20 m of the water column, separated by tidal 

phase. Dashed lines show one standard deviation above and below mean value. Times of 

strong wave activity have been excluded as described in text. 

Fig. 3: Upper panel shows significant wave height from wave buoy deployment. Middle panel shows k4 and lower panel shows k5. Data appearing 

in white in lower panel corresponds to k5 values that are below zero after bias correction; see text for discussion. 
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The similarity of k  profiles between the two formulations  

persists if we examine slack, flood and ebb phases separately, as 

depicted in figure 4. The two formulations differ by an average 

of only 4.2% on floods and 5.8% on ebbs; the slack average error 

takes a higher value of 9.9%, but this is due to the low turbulence 

at slack meaning that a similar difference in the absolute values 

of k4 and k5 yields a larger relative difference. Note that there is 

a tidal asymmetry (19) in k  at this location: TKE density is 

between 26% and 32% lower on floods than on ebbs, depending 

on which estimate is used. 

 

The standard deviations of the k  profiles shown in figure 4 also 

illustrate the fact that variance in the estimate of TKE density is 

significantly greater in the five-beam case. On average, Var(k5) 

exceeds Var(k4) by a factor of 8. This is due to the fact that each 

of the beam variances is heavily weighted (in the sense of 

equation 4) compared to the four-beam case; there is a 

particularly heavy weighting on the variance of the vertical beam. 

The increased variance of the k5 estimate is a consequence of this 

weighting in combination with the fact that the vertical beam is 

narrower, and hence noisier. 

 

As mentioned above, the TKE density estimates in the upper half of the water column are biased high by wave 

action, and thus cannot be taken as an accurate measure of the actual energy contained in turbulent fluctuations. It is 

nonetheless instructive to compare the four- and five-beam estimates for the whole water depth, as shown in figure 5. 

These results show that the k4 estimate of TKE density tends to exceed the k5 estimate by an increasing margin as we 

move upwards through the water column. This implies that four-beam observations of k  are more contaminated by 

wave action than the five-beam case. Indeed, near-surface k4 is on average greater than k5 by a factor of 1.9, although 

only slightly better correlated with HS (R = 0.88 vs. R = 0.84). 

3. Conclusions 

The overview comparison of four- and five-beam estimates of TKE density shown in figure 3 indicates that using 

the data from the vertical beam to calculate turbulence strength will not lead to any great changes in observations of 

k . This is further borne out by the more detailed breakdown of TKE estimates into tidal phases shown in figure 4, 

which indicates that, except where wave action starts to dominate turbulent fluctuations, k4 and k5 agree to within one 

standard deviation. This leads to another salient point: due to the heavier weighting of the scalar coefficients relating  

beam variances to the TKE density in the five-beam case, the variance of k5 is much greater than the variance of k4. 

Therefore, observations from this study indicate that using data from the additional 5th vertical beam in an ADCP does 

not substantially improve the ability to estimate TKE density in low wave climate regions , and users may prefer to 

vertical beam data for measurement of other parameters e.g., surface tracking . 

 

We also find, however, that since the variance method cannot distinguish between velocity fluctuations driven by 

turbulent action and those driven by wave action, strong waves lead to unrealistically high estimates of TKE density. 

As shown in figure 5, this effect is more pronounced for four-beam estimates. Thus, for sites where significant wave 

activity is expected and where measurements of turbulence near the surface are of interest, a five-beam configuration 

may be preferred. 

Fig. 5: Ratio of four- and five-beam estimates of TKE 

density for whole water column 
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