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Abstract 16 

Most ecosystems are affected by multiple anthropogenic stressors simultaneously, however, 17 

there is a lack of information describing the cumulative effects of many common stressor 18 

pairs. Consequently, we have but a rudimentary understanding of the roles that stressor 19 

characteristics and environmental context play in determining interactions among 20 

stressors. Nutrient enrichment often affects coastal ecosystems that may have already been 21 

affected by invasive species. To identify the effects of nutrient enrichment on communities 22 

under different invasion scenarios, the presence of the invasive fucoid 23 

algae, Sargassum muticum, and nutrient conditions were manipulated in the field to test for 24 

their independent and cumulative effects. Their combined effects on the diversity and 25 

functioning of rock pool communities were quantified. Rock pools with S. muticum contained 26 

fewer species, lower macroalgal and microalgal biomass, and their overall benthic 27 

assemblage structure differed from pools without S. muticum. Both the presence of S. 28 

muticum and nutrient enrichment affected different functional groups of algae differently. 29 

Their cumulative effects, however, did not differ with increasing intensity of nutrient 30 

enrichment. Furthermore, invaded communities from which S. muticum had been removed 31 

manually, tended towards greater species richness following removal than pools where S. 32 

muticum remained present, indicating a potential for recovery. These findings highlight the 33 

importance of identifying the cumulative effects of multiple stressors on the responses of 34 

individual functional groups, alongside effects on overall assemblage structure, in order to 35 

fully understand the consequences for ecosystems.  36 

 37 

Keywords: Sargassum muticum, eutrophication, community ecology, biodiversity, multiple 38 

stressors, coastal ecology39 
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Introduction 40 

An emerging field of research aims to disentangle the impacts of multiple anthropogenic 41 

stressors and to better predict their cumulative effects on ecosystems (Crain et al. 2008, 42 

Darling & Côté 2008, Russell & Connell 2012, Boyd & Hutchins 2012). Among the most 43 

common anthropogenic stressors in marine ecosystems are invasive species (Crain et al. 44 

2008). Invasive species often occur in coastal and estuarine environments that are already 45 

affected by one or more anthropogenic stressors, which may affect invasion success and 46 

impact (Vitousek et al. 1997, Lotze et al. 2006). Predicting the impacts of invasive species 47 

under multiple stressor scenarios is limited by our lack of understanding of how 48 

environmental or experimental context determines their effects in natural communities and 49 

similarly, how invasive species alter the impacts of other stressors. The introduction of a 50 

secondary stressor, such as nutrient enrichment, to a system that is already under stress from 51 

an invasive species, may lead to stress-induced tolerance or stress-induced sensitivity of the 52 

community (Vinebrooke et al. 2004). Stress-induced sensitivity may occur when the effects 53 

of a stressor leads to a community that is less resilient towards the second stressor and the 54 

cumulative impact of the stressors is synergistic or greater than the sum of the individual 55 

effects. Alternatively, stress-induced tolerance may occur when the effects of the initial 56 

stressor drives the community to be more resilient to the effects of the second stressor and 57 

thus, the second stressor has a reduced impact and the cumulative impact of the two stressors 58 

is antagonistic (Folt et al. 1999, Vinebrooke et al. 2004). Where the combined effects of 59 

multiple stressors do not interact, their cumulative effect is additive, or equal to the sum of 60 

the individual effects (e.g. Vye et al. 2017). 61 

Coastal ecosystems that are influenced by invasive species are often exposed to both press 62 

and pulse nutrient enrichment from a range of sources, such as land run-off and sewage 63 

outfalls (Lotze & Worm 2002, Lapointe et al. 2004). Nutrient enrichment may influence the 64 
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invasion process in some invasive seaweeds (Sanchez & Fernandez 2006, Vaz-Pinto et al. 65 

2013, Uyà et al. 2017, Vieira et al. 2017). For example, nutrient enrichment has been shown 66 

to increase the invasion success of Sargassum muticum, a common invasive macroalga in 67 

Europe (Vieira et al. 2017), suggesting not only could nutrient enrichment affect the native 68 

community independently, but it could also increase the impacts of the invader on the native 69 

community structure and functioning. Therefore, the cumulative effect of these stressors 70 

would be synergistic. Alternatively, S. muticum could reduce the impacts of nutrient 71 

enrichment itself on the native community by exploiting the excess resource in nutrient 72 

enriched ecosystems, as outlined in the fluctuating resources theory presented by Davis et al. 73 

(2000). In this scenario, there may be effects of increased invasion success of the invader on 74 

the community, however, the interactive effect may be antagonistic as the effect of nutrient 75 

enrichment on community structure and functioning would be lessened.  76 

The majority of experimental studies to date have focused primarily on the introduction of 77 

both nutrient enrichment and invasive species simultaneously (Vye et al. 2015, Vieira et al. 78 

2017). Nutrient enrichment events, however, often occur in systems where invasive species 79 

are already established (Lotze et al. 2006). Testing how an established invasive species alters 80 

the impacts of a nutrient enrichment event on the native community is important to enable us 81 

to understand the cumulative effects of the stressors in a realistic scenario (Strayer 2012). 82 

Furthermore, a common management approach to invasive species is to undertake manual 83 

removal of individuals either for eradication or population control (Thresher & Kuris 2004). 84 

If the invasive species is modulating the impacts of another stressor, such as nutrient 85 

enrichment, indirect effects of removing the invader from the system can be complicated and 86 

unpredictable. As such, there is a need for experimental studies that allow a better 87 

understanding of the future consequences of invasive species management in coastal 88 

ecosystems influenced by multiple stressors (Zavaleta et al. 2001). 89 
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In addition to the presence or absence of stressors, other stressor characteristics, such as 90 

intensity or temporal variability, may also have a role in determining the cumulative effects 91 

of multiple stressors (Benedetti-Cecchi et al. 2006, Molinos & Donohue 2010, O’Connor et 92 

al. 2015). Stressor intensity has been shown previously to determine the cumulative impacts 93 

of invasive species and other stressors (Vye et al. 2015). Specifically, a recent study 94 

identified an antagonistic cumulative effect of the presence of the invasive fucoid, S. 95 

muticum, and nutrient enrichment on total algal biomass accumulation in an assembled rock 96 

pool community, but only at certain levels of nutrient enrichment (Vye et al. 2015). Such 97 

shifts in algal biomass production are an important proxy for energy flow and although not 98 

analogous with primary productivity per se, are indicative of an implicit change in ecosystem 99 

functioning (O’Connor & Crowe 2005, Masterson et al. 2008).  100 

The aim of this study, therefore, was to identify and characterise the effects of nutrient 101 

enrichment on communities in rock pools that have been invaded by S. muticum and compare 102 

them with rock pool communities that have not been invaded by S. muticum. We also 103 

removed S. muticum manually from pools and compared these communities to those with and 104 

without S. muticum. This removal treatment was an essential control for the potentially 105 

confounding influences of factors that may covary with the presence of S. muticum. It also 106 

allowed us to assess the potential impacts of invader management by means of targeted 107 

removal over the peak growth season. The hypotheses tested were that: 1) the presence of an 108 

invasive species will modulate the effects of nutrient enrichment on benthic assemblage 109 

structure and diversity; 2) the presence of invasive species and nutrient enrichment will have 110 

different cumulative effects on different algal functional group biomass; and 3) the level, or 111 

intensity, of nutrient enrichment will determine the cumulative impacts of the presence of an 112 

invader and nutrient enrichment on benthic assemblage structure, diversity and functional 113 

group biomass.  114 
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Materials and methods 115 

Experimental site 116 

The experiment was conducted in intertidal rock pools on an exposed rocky shore at 117 

Muighinis, Co. Galway, Ireland (53°17'39.46"N, 9°51'2.87"W) between April and June 2014. 118 

The shore is comprised of exposed granite bedrock and has a tidal range of approximately 119 

four metres (Firth & Crowe 2010). These rock pool assemblages were comprised of many 120 

different morphological forms of algae including fucoids, such as Fucus serratus and 121 

Halidrys siliquosa, ephemeral green algae, including Ulva spp. and Cladophora rupestris and 122 

many species of red algae, both encrusting (e.g. Lithothamnium sp. and Mesophyllum 123 

lichenoides) and branched (e.g. Gelidium spp. and Polysiphonia spp.). Invertebrate 124 

communities in the pools included gastropod grazers, such as the limpet, Patella 125 

ulyssiponensis, the topshell, Gibbula umbilicalis and the periwinkle, Littorina littorea 126 

(O’Connor & Crowe 2005). Within the past two decades, a large proportion of the rock pools 127 

have also been colonised by the invasive fucoid Sargassum muticum (Baer & Stengel 2010), 128 

which increases in percentage cover during summer (February to July locally; Baer & Stengel 129 

2010).  130 

Experimental design 131 

A field experiment was designed to test for the individual and cumulative effects of the 132 

presence of an invasive species and nutrient enrichment on rock pool assemblage structure 133 

and functioning. Based on an orthogonal experimental design, the experiment allowed 134 

mensurative (i.e. natural presence vs. natural absence of invader) and manipulated 135 

comparisons (i.e. natural presence vs. manipulated removal of invader, Hurlbert 1984). The 136 

factorial experiment had two fixed factors: presence of an invader (three levels: present, 137 

absent and removed) and nutrient enrichment (three levels: ambient, intermediate, high), and 138 
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tested for all interactions among treatments. All nine treatments were replicated five times, 139 

each in separate rock pools with a minimum distance of two metres apart, yielding 45 140 

experimental units. Fifteen rock pools without Sargassum muticum and thirty rock pools with 141 

S. muticum present were selected randomly on the mid shore. Sargassum muticum was 142 

removed carefully (using a flat chisel to ensure the whole of the holdfast was removed, 143 

preventing plant regrowth) from half of the rock pools with S. muticum present (15 pools). 144 

This removal treatment was important to test for and assess any potentially confounding 145 

variables that may have co-varied with the presence of S. muticum (O’Connor et al. 2006, 146 

Underwood 2009) and to identify nutrient enrichment effects on recovering communities 147 

after invader removal. All rock pools were similar in size (mean ± S.E.: length = 118.6 ± 4.5 148 

cm; width = 66.4 ± 3.1 cm; and depth = 14.4 ± 0.8 cm), within the same shore height and 149 

exposure. The initial percentage cover of S. muticum in all invaded pools was 7.3 ± 1.7 % 150 

(mean ± S.E.), increasing to 18.9 ± 6.4 % cover by the end of the experiment (peak growth 151 

period). 152 

Rock pools were assigned randomly to treatments (n = 5). To manipulate nutrient 153 

concentrations in nutrient enriched pools, Everris Osmocote® Exact (Geldermalsen, 154 

Netherlands) slow release fertiliser pellets (11N: 11P: 18K) were used (Worm et al. 2000, 155 

Atalah & Crowe 2010, O’Connor et al. 2015). Fertiliser was contained within mesh cases 156 

attached to the base of each pool. Ambient treatments contained an empty mesh bag to 157 

control for potential artefact effects of the presence of the bag. Intermediate and high nutrient 158 

enrichment treatments contained 1 g l-1 and 3 g l-1 of fertiliser pellets respectively. At the end 159 

of the experimental period, water samples were taken immediately after the emersion of the 160 

pools at low tide and were analysed using an autoanalyzer for dissolved inorganic nitrogen 161 

(DIN) and phosphate to confirm the efficacy of the nutrient enrichment treatments. Ambient 162 

treatments contained 1.00 ± 0.12 µm l-1 DIN and 0.17 ± 0.01 µm l-1 phosphate. Intermediate 163 
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nutrient enrichment treatments contained 19.22 ± 3.67 µm l-1 DIN and 3.11 ± 0.62 µm l-1 164 

phosphate, and high nutrient enrichment treatments contained 29.99 ± 5.64 µm l-1 DIN and 165 

4.25 ± 1.01 µm l-1 phosphate (DIN: MS = 38.12, F 2, 40 = 20.15, P < 0.05, SNK post-hoc: A < 166 

N+ < N++; phosphate: MS = 6.64, F 2, 40 = 7.60, P < 0.05, SNK post-hoc: A < N+ < N++). As 167 

the nutrient treatment represented a pulse of nutrient enrichment similar to that of land based 168 

run-off into the intertidal zone (Sharp 1983, O’Connor et al. 2015), a further subset of 169 

samples were taken 5 hours after initial emersion to identify how much nutrient flux occurred 170 

in the pools during the emersion period. In intermediate nutrient enrichment treatments, DIN 171 

(40.09 ± 12.76 µm l-1) approximately doubled and phosphate concentrations (35.58 ± 11.23 172 

µm l-1) increased by a magnitude of ten over five hours. In high nutrient enrichment 173 

treatments DIN (111.66 ± 57.74 µm l-1) approximately quadrupled and phosphate 174 

concentrations (78.24 ± 28.27 µm l-1) increased by a magnitude of twenty. These 175 

concentrations are unlikely to limit macroalgal growth (Gordillo et al. 2002) and are similar 176 

to levels achieved in previous nutrient enrichment studies in intertidal systems (Atalah & 177 

Crowe 2010, O’Connor et al. 2015).  178 

The experiment ran between April and June 2014 to focus on the peak growth period of the 179 

invasive species, S. muticum (Baer & Stengel 2010), which tends to die back in the winter 180 

months. This duration also reflects the length of similar multiple stressor experiments in 181 

artificial systems to allow for broad comparisons of findings (Boyer et al. 2009, Vye et al. 182 

2015).  183 

Response variables 184 

Benthic assemblage structure (percentage cover of macroalgae and abundance of slow 185 

moving or sessile invertebrates >1cm) was quantified using a 25 cm x 25 cm  quadrat with 64 186 

intersections prior to the application of nutrient enrichment treatments and before S. muticum 187 
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was removed from the removal treatments, to test for any initial differences between invaded 188 

and non-invaded communities. One quadrat for each pool may have reduced statistical power, 189 

however, we have based our analyses on means of each pool (replicate) for each treatment.  190 

This size was chosen as it allowed a standard random sample to be taken in all pool shapes 191 

including the narrowest pools in the range. Quantification of benthic assemblage structure 192 

was repeated at the end of the experiment, similarly using a randomly placed 25 cm x 25 cm 193 

quadrat with 64 intersections in each rock pool. All species present in the quadrat, but not 194 

beneath an intersection, were recorded as 0.5 % cover. Algal taxa were identified to the 195 

lowest practicable taxonomic level using taxonomic keys (e.g. Dixon & Irwine 1977, Hiscock 196 

1986) and epiphytes, which are common in this system, were not distinguished from other 197 

epilithic algae for analyses. Abundance of slow moving and sessile invertebrates (>1cm) was 198 

also estimated at the same time. There were no initial differences in benthic assemblage 199 

structure between pools assigned to each treatment, including invaded and non-invaded 200 

communities (PERMANOVA: MS = 0.1869, pseudo-F 2, 36 = 1.383, P > 0.05) based on an 201 

extensive survey prior to treatment allocation at the start of the experiment and before the 202 

anticipated S. muticum seasonal growth period. 203 

At the conclusion of the experiment, species richness (N), Shannon-Wiener diversity (HꞋ) and 204 

Pielou’s evenness (J) indices were also estimated for each pool based on percentage cover 205 

and abundance data. Furthermore, all benthic taxa were classified into functional groups and 206 

analysed to test for more general trends based on potential functional traits (Jänes et al. 2017, 207 

Table S1 in Supplementary Material). Algal taxa were assigned to functional groups based on 208 

their expected response to treatments and functional role in the rock pool community (Arenas 209 

et al. 2006). These included turf-forming algae (taxa typically < 5 cm vertical height) and 210 

sub-canopy space-holding algae, which were hypothesised to be affected by shading by S. 211 

muticum (Britton-Simmons 2004, Olabarria et al. 2009). Canopy algae were hypothesised to 212 
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be affected by competition for resources, such as space, by S. muticum (Viejo 1997). Green 213 

ephemerals and coralline algae were also classified into different functional groups (distinct 214 

from turf-forming taxa) because these groups have been shown to have different responses to 215 

nutrient enrichment (Hawkins et al. 1994, Delgado & Lapointe 1994, Karez et al. 2004, 216 

O’Connor 2013, Vieira et al. 2017). Invertebrate functional groups included grazing 217 

gastropods (e.g. winkles, Littorina littorea), suspension feeders (e.g. beadlet anemone, Actina 218 

equina) and mobile predators (e.g. dog whelk, Nucella lapillus; Little et al. 2009). 219 

At the end of the experiment, destructive samples of algae were taken to quantify the effects 220 

of the presence of S. muticum and nutrient enrichment on total algal biomass and the biomass 221 

of each algal functional group (canopy, sub-canopy, turf, coralline, and green ephemerals, 222 

Table S1 in Supplementary Material). Algae were collected from within each quadrat, sorted 223 

into taxa, except for encrusting coralline algae (e.g. Lithothamnium sp.) and dried to a 224 

constant mass (at 60°C). Up to 80% of coralline algae consists of calcium carbonate and thus 225 

dry biomass of coralline algae was adjusted by a conversion factor of 0.2 (Griffin et al. 2010, 226 

Mrowicki & O’Connor 2015). Microalgal biomass was also estimated in situ by 227 

quantification of chlorophyll a concentration of biofilm in the rock pools (Murphy et al. 228 

2005, Carpentier et al. 2013, Kahlert & McKie 2014, Mrowicki et al. 2014). Three 229 

measurements (1 cm2 each) were taken randomly from the base of the pools using a benthic 230 

fluorometer (BenthoTorch, bbe Moldaenke©). The mean of these measurements was used in 231 

analyses to incorporate potential effects of small-scale variability (Sandulli & Pinckney 1999, 232 

Murphy et al. 2005). Three pools that had S. muticum removed and one pool from the 233 

treatment where it was thought S. mutium was absent were excluded from the analysis 234 

because the presence of the invader was noted (>0.5 % cover) at the end of the experiment, 235 

suggesting the experimental treatment was not effective in these pools. 236 
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Permutational multivariate analysis of variance (PERMANOVA; Anderson 2001, McArdle & 237 

Anderson 2001) was used to test hypotheses relating to benthic assemblage structure 238 

(percentage cover of macroalgae and abundance of slow moving or sessile invertebrates 239 

>1cm) at the end of the study, with a similar factorial experimental design (two fixed factors: 240 

the presence of S. muticum [three levels]; and nutrient concentration [three levels]). Non-241 

metric multi-dimensional scaling (nMDS) was used to visualise differences among 242 

assemblages based on dissimilarities of their assemblage structure. Similarities of percentages 243 

(SIMPER) analyses were used to identify which taxa contributed most to differences in 244 

assemblage structure among treatments (Clarke & Warwick 2001). All multivariate analyses 245 

were conducted on Bray-Curtis dissimilarity matrices with 9,999 permutations of residuals 246 

under the reduced model and tested for all possible interactions among treatments. Data were 247 

square-root transformed to reduce the influence of the highly abundant canopy species 248 

(Clarke & Warwick 2001). The percentage cover estimates of S. muticum were not included 249 

in analyses of assemblage structures to prevent confounding independent (manipulated) and 250 

dependent (response) variables (Huston 1997) and to identify the impact of S. muticum on the 251 

rest of the assemblage (Thomsen et al. 2016). Post-hoc pairwise t-tests were used to identify 252 

differences between levels of significant terms. Post-hoc PERMDISP routines were 253 

conducted on significant terms, after inspection of the nMDS plots, to detect differences in 254 

the assemblages caused by treatment effects on the variation in assemblage structure rather 255 

than shifts in assemblage structure. Percentage cover and abundance of taxa were classified 256 

into functional groups and reanalysed to test for effects of the presence of S. muticum and 257 

nutrient enrichment on functional diversity (Table S1 in Supplementary Material).  258 

Analysis of variance (ANOVA) was used to test hypotheses relating to species richness, 259 

Shannon-Wiener diversity and Pielou’s evenness using a similar design with two fixed 260 

factors: S. muticum (three levels) and nutrient concentration (three levels). Sargassum 261 
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muticum was not included in this analysis in order to identify effects on native diversity. In 262 

addition to the multivariate tests on functional group abundance data, a univariate approach 263 

was also undertaken to identify the biomass response of individual algal functional groups to 264 

S. muticum and nutrient concentration. This approach was considered prudent because algal 265 

biomass may be more indicative of different algal functional group contributions to energy 266 

flow and productivity than percent cover estimates (Masterson et al. 2008, Atalah & Crowe 267 

2010, Crowe et al. 2011, White & Shurin 2011). To further disentangle the effect of the 268 

invader, biomass results for total macroalgae and canopy algae were analysed with and 269 

without S. muticum biomass (Thomsen et al. 2016). Data were first tested for normality and 270 

homogeneity of variances using Shapiro-Wilk and Levene’s tests and were transformed 271 

where assumptions were not met. Shannon-Wiener diversity, green ephemeral, turf, coralline 272 

and canopy algal biomass were square-root transformed, microalgal biomass data were 273 

natural-log transformed and Pielou’s evenness data were arcsine transformed. Student-274 

Newman-Keuls post-hoc procedures were used to make comparisons among levels of 275 

significant terms. Post-hoc test results presented are with S. muticum biomass included. All 276 

analyses were undertaken in R 3.1.0 (R Development Core Team 2011) and PRIMER v6 277 

(Clarke & Gorley 2006, Anderson et al. 2008). 278 

Results 279 

At the end of the experiment, there was an effect of the presence of S. muticum on benthic 280 

assemblage structure (MS = 4056.5, pseudo-F 2, 32 = 2.397, P = 0.006), however, there was no 281 

effect of nutrient enrichment (MS = 771.9, pseudo-F 2, 32 = 0.456, P > 0.05). Post-hoc tests 282 

showed that assemblage structure in rock pools without S. muticum differed from those where 283 

it was present (Absent ≠ Present, t = 1.793, P = 0.008, Fig. 1) and from pools where it was 284 

removed experimentally (Absent ≠ Removed, t = 1.731, P = 0.004, Fig. 1). When all taxa 285 

were classified into functional groups, there remained an effect of the presence of S. muticum 286 
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on benthic assemblage structure (MS = 1748.4, pseudo-F 2, 32 = 2.320, P = 0.042) and no 287 

effect of nutrient enrichment (MS = 275.61, pseudo-F 2, 32 = 0.366, P > 0.05). Post-hoc tests 288 

again identified differences in assemblages without S. muticum compared to rock pools where 289 

S. muticum was present (Absent ≠ Present, t = 1.689, P = 0.046) or had been removed 290 

(Absent ≠ Removed, t = 2.240, P = 0.007). SIMPER analyses showed that these differences 291 

in benthic assemblage structure were driven primarily by algal taxa, which were dominant in 292 

both richness and abundance, rather than faunal taxa, and therefore, algal taxa were focused 293 

on for the rest of the analysis. There was a greater proportion of the canopy alga, Fucus 294 

serratus, the turf and sub-canopy algae (Ceramium spp. and Chondrus crispus), and all 295 

ephemeral green algae (Chaetomorpha sp., Ulva spp. and Cladophora rupestris) in 296 

treatments without S. muticum compared to treatments where it was present or had been 297 

removed (Table S2 in Supplementary Material). In addition, there was an effect of the 298 

presence of S. muticum on variation in benthic assemblage structure (PERMDISP: F 2, 38 = 299 

4.886, P = 0.016, Fig. 1), however, post-hoc tests could not identify conclusively where 300 

differences among treatments lay because pools with and without S. muticum had similar 301 

variation in assemblage structure to rock pools where S. muticum had been removed 302 

experimentally. There was also an effect of the presence of S. muticum on species richness 303 

(MS = 34.15, F 2, 32 = 3.4165, P = 0.045, Fig. 2), however, post-hoc tests could not identify 304 

where differences lay because although species richness differed, i.e. was lower when S. 305 

muticum was present than when it was absent, both these treatments were similar to the rock 306 

pools where S. muticum was removed experimentally (Fig. 2). Nutrient enrichment did not 307 

affect species richness (MS = 8.45, F 2, 32 = 0.848, P > 0.05). Also, there was no effect of the 308 

presence of S. muticum (MS = 0.052, F 2, 32 = 2.267, P > 0.05), nor nutrient enrichment (MS 309 

= 0.006, F 2, 32 = 0.264, P > 0.05) on Shannon-Wiener diversity, nor were there any effects of 310 
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the presence of S. muticum (MS = 0.001, F 2, 32 = 0.447, P > 0.05) or nutrient enrichment (MS 311 

= 0.001, F 2, 32 = 0.341, P > 0.05) on Pielou’s evenness. 312 

There was an effect of the presence of S. muticum on total macroalgal biomass (Table 1a, Fig. 313 

3A), however post-hoc tests were not fully conclusive because, although algal biomass was 314 

greater in the pools where S. muticum was present compared to pools where it was absent, 315 

both these treatments were similar to the treatment from which S. muticum was removed 316 

experimentally. There was no effect of nutrient enrichment on total macroalgal biomass 317 

(Table 1a, Fig. 3A). In terms of responses of individual functional groups of algae, pools 318 

where S. muticum was absent had a greater biomass of canopy algae than pools with S. 319 

muticum and pools where S. muticum had been removed, but there was no effect of nutrient 320 

enrichment (Table 1b, Fig. 3B). Furthermore, the impacts of S. muticum on total and canopy 321 

algal biomass did not differ depending on whether S. muticum biomass was included in the 322 

analysis or not (Table 1a & b, Fig. 3A & B). The effect of the presence of S. muticum on the 323 

biomass of sub-canopy algal species differed with nutrient enrichment (as indicated by the 324 

significant interaction between presence of S. muticum and nutrient enrichment, Table 1c), 325 

however, post-hoc tests were unable to identify where differences among treatments lay (Fig. 326 

3C). The effects of the presence of S. muticum on the biomass of green ephemeral algae also 327 

differed with nutrient enrichment, however, post-hoc tests could not determine where 328 

precisely differences among treatments lay (Table 1f, Fig. 3F). There was no effect of the 329 

presence of S. muticum or nutrient enrichment on coralline or turf algal biomass (Table 1d & 330 

e, Fig. 3D & E). Microalgal biomass was lower in rock pools where S. muticum was present 331 

or removed compared to pools without S. muticum (Table 1g, Fig. 3G) and there was no 332 

effect of nutrient enrichment on microalgal chlorophyll a concentration (Table 1g, Fig. 3G).  333 

Discussion 334 
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This study found that pools where Sargassum muticum was present had different benthic 335 

assemblage structure from those without S. muticum, where the former tended to have a lower 336 

abundance of canopy algae and reduced benthic species richness. Surprisingly, none of the 337 

effects on assemblage structure were modulated by nutrient enrichment. Our findings did 338 

show, however, that nutrient enrichment had variable interactive cumulative effects with the 339 

presence of S. muticum on the biomass of some algal functional groups. There was no clear 340 

effect of intensity of nutrient enrichment, which suggests that, contrary to our hypotheses, the 341 

intensity of this stressor was not important in determining the cumulative effects in this rock 342 

pool system. 343 

The invasion-driven shift in benthic assemblage structure coincided with the peak algal 344 

growth period. Unlike many native algal species, S. muticum undergoes senescence during 345 

the winter months, where it loses a large proportion of biomass and percentage cover, re-346 

growing during spring and reaching peak biomass during summer months (Wernberg et al. 347 

2000, Baer & Stengel 2010). When taxa were classified into functional groups and re-348 

analysed, the overall assemblage structure still differed where S. muticum was present, which 349 

shows that the effect of S. muticum was apparent on whole functional groups of algae not 350 

based on individual species responses. The increase in percentage cover of S. muticum during 351 

the experiment may have reduced light penetration to the understory species (Britton-352 

Simmons 2004), and reduced space available for other canopy species, such as F. serratus 353 

(Viejo 1997, White & Shurin 2011). Furthermore, increased light intensity, daylight duration 354 

and temperature during the summer stimulates the growth of many native sub-canopy algal 355 

species, such as Chondrus crispus and Furcellaria lumbricalis (Bird et al. 1979), which may 356 

increase competition for primary resources with S. muticum (Britton-Simmons 2004). Thus, 357 

seasonal macroalgal growth, in combination with increases in percentage cover of S. 358 
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muticum, may have led to seasonal differences in benthic assemblages between the invaded 359 

and non-invaded communities (Thomsen et al. 2005).  360 

The differences among benthic assemblages were characterised by a tendency towards 361 

increased variability of assemblage structure and towards decreased species richness in the 362 

presence of S. muticum. High spatial variability has been suggested to be a symptom of 363 

stressed communities when exposed to anthropogenic disturbances (Warwick & Clarke 1993, 364 

Cottingham et al. 2001, Ives & Carpenter 2007, Donohue et al. 2013). Although the findings 365 

of this study are contrary to others that identified an invasive species-driven homogenisation 366 

of communities (Olden & Rooney 2006, Baiser et al. 2012), increased variability may be 367 

expected owing to the non-linearity and context-dependency of invasion impacts (Parker et 368 

al. 1999, Thomsen et al. 2011, Vaz-Pinto et al. 2014). Our invaded assemblages also tended 369 

to be less species rich, which may contribute to increased variability within invaded rock 370 

pools (Loreau et al. 2001, Campbell et al. 2011). Increases in community variability driven 371 

by invasion could decrease the predictability of the response of communities to biological 372 

invasions. This could lead to ‘ecological surprises’ becoming more common and 373 

complicating management decisions (Paine et al. 1998). 374 

Benthic assemblage structure was less variable and tended towards greater species richness 375 

and total algal biomass in assemblages where S. muticum had been removed, compared to 376 

assemblages where S. muticum remained present. Although some of these responses were not 377 

conclusive, this does indicate some potential for recovery. This finding provides some initial 378 

evidence that the removal or management of S. muticum could allow intertidal communities 379 

to begin to recover within a relatively short time period. However, there was no evidence of 380 

the recovery of canopy algal biomass, which may be owing to the slow growth rates 381 

associated with the primary native canopy species, Fucus serratus (Knight & Parke 1950). 382 

The temporal duration of this study, designed to look at impacts during the main growth 383 
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season of S. muticum, may not have been long enough for these slow growing species to 384 

show detectable signs of recovery. Other invasive macroalgal removal studies have found a 385 

lag of five or more months before some species or functional groups of algae recover from 386 

the impacts of an invasive macroalgae, which can depend on other perturbations in the 387 

system as well as the original biomass of the invader (Piazzi & Ceccherelli 2006, Gribben et 388 

al. 2013). Although this study occurred over the main period of S. muticum growth, and 389 

therefore the main period of expected impact, further work should follow the trajectory of 390 

macroalgal communities over a longer duration to assess the full potential for community 391 

recovery after S. muticum removal.   392 

Previous studies have identified antagonistic cumulative effects of the presence of S. muticum 393 

and nutrient enrichment on total algal biomass in artificial assemblages (Vye et al. 2015). The 394 

current study however, showed that the effects of S. muticum on total macroalgal and 395 

microalgal biomass were not determined by nutrient enrichment. Here, the presence of S. 396 

muticum was characterised by less total algal biomass regardless of whether S. muticum was 397 

included in the analysis, indicating that the presence of S. muticum drove decreases in the 398 

biomass of native species, such as the native canopy alga, F. serratus. Furthermore, there was 399 

also less total microalgal biomass in treatments where S. muticum had been removed 400 

suggesting that effects on total microalgal biomass were persistent even after removal of the 401 

invasive species. This could be due to a number of mechanisms, for example, the increase in 402 

algal biomass could indicate increased competition for resources with microalgae, such as 403 

light and space, inhibiting recovery (Williams et al. 2000). Natural communities, such as the 404 

rock pools in this study, are more complex and provide greater potential for species 405 

interactions than the artificially assembled communities used in mesocosm experiments 406 

(Bracken et al. 2008, Stachowicz et al. 2008, Crowe et al. 2012, Vye et al. 2015). Such 407 

species interactions may moderate the cumulative impacts of stressors and reduce the 408 
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sensitivity of communities to changes in stressor characteristics, such as intensity (Petersen & 409 

Hastings 2001). Furthermore, our previous mesocosm-based study, introduced both stressors 410 

simultaneously (Vye et al. 2015), whereas this field study introduced nutrient enrichment to 411 

pools where S. muticum was already established. The introduction of a second stressor to an 412 

already stressed or destabilised system may determine the interactive effect of the stressors 413 

(Mrowicki et al. 2016, Donohue et al. 2016). Our findings highlight the importance of testing 414 

multiple stressor hypotheses in different of environmental contexts, i.e. field as well as 415 

mesocosm experiments, in order to better understand the cumulative impacts of different 416 

communities and assemblages. This study has an obvious limitation in that it was only 417 

conducted on a single shore. Replicating multiple stressor studies at multiple sites would 418 

incorporate spatial variation in environment context which could then be tested explicitly 419 

(Bustamante & Branch 1996, Mrowicki et al. 2014).  420 

Functional diversity has been shown previously to be an important determinant of the 421 

invasibility of a community (Britton-Simmons 2006, Arenas et al. 2006). Our findings 422 

suggest that species that use primary resources, such as light and space, differently may also 423 

respond differently to the cumulative effects of invasion and nutrient enrichment. The 424 

cumulative effects identified in this study were not consistent across all algal functional 425 

groups present, because nutrient enrichment affected invasion effects on green and sub-426 

canopy algae, but not on canopy algae or turf algae. Mechanisms behind this interactive 427 

effect are unclear, however, it is possible that S. muticum may have limited light penetration 428 

to other algae (Britton-Simmons 2004), possibly offsetting nutrient enrichment effects on 429 

growth. Differences in the cumulative effects among functional groups may lead to further 430 

consequences for communities, including decreased resistance and resilience to other 431 

invasive species and anthropogenic stressors (Elmqvist et al. 2003, Folke et al. 2004). To 432 

conclude, this study shows complex cumulative effects of nutrient enrichment on 433 
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communities under different invasion scenarios, including the removal of the invader from 434 

the system. These findings highlight the importance of identifying the cumulative effects of 435 

multiple stressors on the responses of individual functional groups, alongside effects on 436 

overall assemblage structure, in order to fully understand the consequences for ecosystems. 437 
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Table 1. ANOVA of effects of the presence of S. muticum and nutrient enrichment treatments 662 

on the biomass of algae: a) total algal biomass (values in brackets represent algal biomass 663 

with Sargassum muticum included); b) canopy algal biomass (values in brackets represent 664 

algal biomass with Sargassum muticum included); c) sub-canopy algal biomass; d) turf algal 665 

biomass; e) coralline algal biomass; f) green ephemeral biomass g) microalgal biomass. 666 

Significant values are in bold (P < 0.05). 667 

   a) Total algal biomass 668 

Source  df MS   F   P 669 

Invasion (=Inv.)  2 2970 (2198) 4.491 (3.504)  0.019 (0.042) 670 

Nutrient (=Nut.)  2 50 (103)  0.075 (0.165)  0.928 (0.849) 671 

Inv. x Nut.  4 166 (154)  0.251 (0.246)  0.907 (0.910) 672 

Residual  32 661 (627)    673 

b) Canopy algal biomass   674 

Invasion (=Inv.)  2 44.505 (30.340) 5.151 (4.099)  0.012 (0.026) 675 

Nutrient (=Nut.)  2 5.780 (7.235) 0.669 (0.977)  0.519 (0.387) 676 

Inv. x Nut.  4 10.918 (11.560) 1.264 (1.562)  0.305 (0.208) 677 

Residual  32 8.639 (7.400)     678 

  c) Sub-canopy algal biomass 679 

Invasion (=Inv.)  2 2.350  0.094   0.911 680 

Nutrient (=Nut.)  2 1.160  0.046   0.955 681 

Inv. x Nut.  4 78.740  3.154   0.027 682 

Residual  32 24.960     683 

  d) Turf algal biomass 684 

Invasion (=Inv.)  2 0.164  0.465   0.632 685 

Nutrient (=Nut.)  2 0.065  0.185   0.832 686 

Inv. x Nut.  4 0.106  0.302   0.874 687 

Residual  32 0.351    688 

 e) Coralline algal biomass 689 

Invasion (=Inv.)  2 2.127  2.875   0.071 690 

Nutrient (=Nut.)  2 1.872  2.530   0.095 691 
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Inv. x Nut.  4 19.688  1.663  0.183 692 

Residual  32      0.740      693 

 f) Green ephemeral 694 

Invasion (=Inv.)  2 7.333  4.369  0.021 695 

Nutrient (=Nut.)  2 1.725  1.028  0.369 696 

Inv. x Nut.  4 4.526  2.696  0.048 697 

Residual  32 1.679     698 

 g) Microalgal biomass 699 

Invasion (=Inv.)  2 2.791  9.099  0.001 700 

Nutrient (=Nut.)  2 0.291  0.949  0.398 701 

Inv. x Nut.  4 0.303  0.988  0.428 702 

Residual  32 0.307   703 
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Figure titles 704 

 705 

Figure 1. Non-metric multidimensional scaling plot (nMDS) of rock pool assemblages 706 

(percentage cover of macroalgae and abundance of slow moving or sessile invertebrates 707 

>1cm) in experimental treatments at the end of the experiment based on a Bray-Curtis 708 

similarity matrix (data are square-root transformed).  = S. muticum removed;  = S. 709 

muticum absent;  = S. muticum present. Light grey symbols = ambient nutrient 710 

concentrations, mid grey symbols = intermediate nutrient concentrations and dark grey 711 

symbols = high nutrient concentrations. 712 

  713 
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 714 

Figure 2. Mean species richness (± S.E.) of rock pools in experimental treatments. Light grey 715 

bars = ambient nutrient enrichment, mid grey bars = intermediate nutrient enrichment and 716 

dark grey bars = high nutrient enrichment (n = 3: invader removed, intermediate nutrient 717 

enrichment; n = 4: invader removed, high nutrient enrichment and invader absent, high 718 

nutrient enrichment; n = 5: all other treatments). Lower case letters indicate significant 719 

differences among treatment levels or groups or groups of treatments (P < 0.05). 720 

  721 
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 722 

 723 

Figure 3. Mean biomass (± S.E.) of: A) total macroalgal biomass; B) canopy algal biomass; 724 

C) sub-canopy algal biomass; D) turf algal biomass; E) coralline algal biomass, F) ephemeral 725 

green algal biomass; and G) total microalgal chlorophyll a concentration (± S.E.), in rock 726 

pools where S. muticum was present, absent or removed. Light bars = ambient nutrient 727 

enrichment, mid grey bars = intermediate nutrient enrichment and dark grey bars = high 728 

nutrient enrichment, open section of bars = S. muticum biomass. Lower case letters indicate 729 

significant differences among treatment levels or groups or groups of treatments (P < 0.05).  730 


