

First record of coralline fungal disease (CFD) in the Indian Ocean

Williams, Gareth; Roche, Ronan; Turner, John

Coral Reefs

DOI:

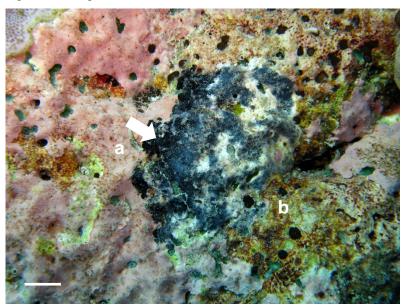
10.1007/s00338-018-1704-z

Published: 04/06/2018

Cyswllt i'r cyhoeddiad / Link to publication

Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA): Williams, G., Roche, R., & Turner, J. (2018). First record of coralline fungal disease (CFD) in the Indian Ocean. Coral Reefs, https://doi.org/10.1007/s00338-018-1704-z . https://doi.org/10.1007/s00338-018-1704-z

Hawliau Cyffredinol / General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.


- Users may download and print one copy of any publication from the public portal for the purpose of private
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal?

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

First record of coralline fungal disease (CFD) in the Indian Ocean

Crustose coralline algae (CCA) play a key role in calcification and consolidation of substrate on coral reefs, with some species also providing important settlement substrate for coral recruits. Like corals, CCA suffer diseases that threaten their survival and persistence (Vargas-Ángel 2010), including a fungal disease that results in rapid tissue necrosis, particularly during ocean warming events (Williams et al. 2014). Coralline fungal disease (CFD) was first reported at the island of Tutuila in American Samoa in 1998 (Littler & Littler 1998) and later at the islands of Swains and Rose in American Samoa (Vargas-Ángel 2010). Other reports of CFD are restricted to the remote central Pacific at Kingman Reef and Palmyra Atoll in the northern Line Islands (Vargas-Ángel 2010, Williams et al. 2014). Here we report on the first field sightings of CFD in the Indian Ocean at islands within the remote and highly protected Chagos Archipelago, British Indian Ocean Territory (Fig. 1). Of the 29 reefs surveyed during an expedition in April 2018 across ~200 km of latitude, CFD was documented at 8 of them. CFD sightings were

restricted to shallow (< 15 m depth) fore reef habitats and not observed on backreef or patch reef habitats. At two reefs, CFD was at outbreak levels, with > 5 cases m⁻² of CCA. These are among the highest densities of CFD ever reported and appeared to correlate with high host density at these locations (> 50% host CCA cover). The coral reefs of the Chagos Archipelago suffered from back-to-back ocean warming events in 2015, 2016 and 2017 that have reduced live hard coral cover. The high densities of CFD recorded here may represent a residual impact of these warming events, but whether CFD significantly alters key reef processes such as accretion, coral recruitment and substrate consolidation across the region requires further study.

Fig. 1. Field signs of CFD affecting crustose coralline algae (*Porolithon* sp.) at IIe de la Passe Island, Peros Banhos Atoll, Chagos Archipelago in April 2018 (forereef habitat, ~8 m depth). The active lesion (white arrow) appears as a black/grey mat that tends to radiate out across the surface of the CCA crust. The CCA tissue remains healthy on the leading edge of the lesion (a) but is quickly colonized by microalgae and turf algae following necrosis (b). These field signs are consistent with CFD descriptions from the Pacific Ocean (Vargas-Angel 2010) that have been confirmed as being caused by a fungal infection using histopathology (Williams et al. 2014). White scale bar = 1 cm.

Acknowledgements We thank the British Indian Ocean Territory (BIOT) for granting access to the Chagos Archipelago and the crew of the Grampian Frontier for logistical support. Funding was provided by the Bertarelli Foundation. On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

Littler MM, Littler DS (1998) An undescribed fungal pathogen of reef-forming crustose coralline algae discovered in American Samoa. *Coral Reefs* 17:144

Vargas-Ángel B (2010) Crustose coralline algal diseases in the U.S.-Affiliated Pacific Islands. *Coral Reefs* 29:943-956

Williams GJ, Price NN, Ushijima B, Aeby GS, Callahan S, Davy SK, Gove JM, Johnson MD, Knapp IS, Shore-Maggio A, Smith JE, Videau P, Work TM (2014) Ocean warming and acidification have complex interactive effects on the dynamics of a marine fungal disease. *Proc Roy Soc B* 281:20133069

GJ Williams*, RC Roche, JR Turner School of Ocean Sciences, Bangor University, Anglesey LL59 5AB *email: g.j.williams@bangor.ac.uk