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Abstract  

Background 

Dual urate-lowering therapy (ULT) with lesinurad in combination with either allopurinol or 

febuxostat is an option for gout patients unsuccessfully treated on either monotherapy. 

Treatment failure is often a result of poor medication adherence. Imperfect adherence in 

clinical trials may lead to biased estimates of treatment effect and confound the results of cost 

effectiveness analyses.  

Objectives 

This study aims to estimate the impact of varying medication adherence on the cost 

effectiveness of lesinurad dual therapy; and estimate the value-based price of lesinurad at 

which the incremental cost effectiveness ratio (ICER) is equal to £20,000 per quality-adjusted 

life-year (QALY). 

Methods 

Treatment effect was simulated using published pharmacokinetic-pharmacodynamic (PKPD) 

models and scenarios representing adherence in clinical trials, routine practice and perfect 

use. The subsequent cost and health impacts, over the lifetime of a patient cohort, were 

estimated using a bespoke pharmacoeconomic model. 

Results 

The base case ICERs comparing lesinurad dual-ULT with monotherapy ranged from £39,184 

to £78,350 per QALY gained using allopurinol and £31,901 to £124,212 per QALY using 

febuxostat, depending on the assumed medication adherence. Results assuming perfect 

medication adherence imply a per-quarter value-based price of lesinurad of £45.14 when used 
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in dual-ULT compared with allopurinol alone and £57.75 compared with febuxostat alone, 

falling to £25.41 and £3.49 respectively in simulations of worsening medication adherence. 

Conclusions 

The estimated value-based prices of lesinurad only exceeded that which has been proposed in 

the United Kingdom when assuming both perfect drug adherence and the eradication of gout 

flares in sustained treatment responders. 

Highlights 

 Imperfect adherence in clinical trials may lead to biased estimates of treatment effect 

and confound the results of cost effectiveness analyses  

 Use of pharmacokinetic-pharmacodynamic based economic analysis allows for the 

assessment of the relationship between adherence and cost-effectiveness 

 Reduced adherence to urate-lowering therapies for the treatment of gout results in 

large variations in resulting economic outcomes 

 Only by combining perfect drug adherence with an assumed resolution of gout flares 

in sustained treatment responders did the predicted value-based price exceed that 

which has been proposed for the UK market 
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Introduction 

Gout is a painful and disabling condition and one that is relatively common in developed 

countries [1]. When the concentration of uric acid in serum exceeds the saturation point 

(hyperuricemia) it may crystallise in peripheral joints and surrounding tissues which can lead 

to gout symptoms. Treatment guidelines recommend that serum uric acid (sUA) be reduced 

to below a target of either 5 or 6 mg/dL [2], to allow for the dissolution of monosodium urate 

crystals from affected joints [3]. As well as preventing the progression to more severe disease 

(e.g. tophaceous gout) and, albeit controversially, reducing the potential of cardiovascular 

and renal comorbidities, long term treatment reduces and may eventually eliminate the 

painful flares that characterise gout [4]. 

The mainstay of therapy is the xanthine oxidase inhibitor (XOi) allopurinol; however, a large 

proportion of patients are not treated successfully [5]. Treatment failure has been postulated 

to result from suboptimal dosing or non-adherence, or a combination of both over the long 

(often symptom-free) treatment period [6]. Medication adherence is known to be especially 

poor for urate-lowering therapies (ULTs) [7, 8] and, if not recognised and managed 

appropriately, can result in unnecessary switching to more expensive ULTs such as 

febuxostat or combined XOi therapy with a uricosuric, such as lesinurad. 

Medication adherence can be decomposed into three distinct phases; 1) the initiation of 

treatment, 2) the degree to which a patient’s dose taking matches the prescribed regimen 

while nominally adhering (implementation) and 3) the discontinuation of treatment 

(persistence) [9]. Persistence can often be accounted for in the analysis of clinical trials and, 

while implementation can be recorded using electronic pill dispensers [10], this is seldom 

done in clinical trials. Imperfect implementation may lead to biased estimates of treatment 

effect [11] and confound the results of cost effectiveness analyses. 
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Key influences on the decisions not to recommend lesinurad, or febuxostat as first-line 

treatment in the United Kingdom (UK) were the uncertainties in their effects on acute flares 

and their lack of cost effectiveness as estimated using economic modelling [12–14]. 

However, an important limitation of conventional economic models is their limited capacity 

to account for the impact of poor implementation (i.e. missed or delayed doses) on health 

outcomes and costs. Pharmacokinetic-pharmacodynamic (PKPD) models together describe 

the relationship between doses taken and the observed drug effects, via the time course of 

drug concentration. By specifying variable dose implementation as an input function, this 

offers a method for predicting the influence of non-adherence on the clinical effectiveness 

and cost effectiveness of drug treatments [15]. 

This study aims to estimate the impact of varying dose implementation and persistence on the 

cost effectiveness of the uricosuric lesinurad as an add-on treatment in patients non-

responsive on either allopurinol or febuxostat alone.  

Methods 

A published PKPD model of lesinurad and febuxostat [16] was extended to include 

allopurinol and used to simulate the time course of sUA concentration among patients with 

differing adherence to the dosing regimen. A bespoke pharmacoeconomic (PE) model was 

developed, with reference to previous economic evaluations of ULTs [17, 18], and linked to 

the PKPD model to estimate the costs and quality-adjusted life-years (QALYs) accrued over 

patients’ lifetimes for different treatment and adherence scenarios. All PKPD simulations 

were performed using NONMEM 7.3 [19]. 

ULT Pharmacokinetic-Pharmacodynamic Model 

The lesinurad and febuxostat PKPD model [16] was used without modification. A separate 

study presenting PKPD modelling of allopurinol [20] was used to obtain the PK relationships 
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and associated parameter estimates which were also used without modification. However, 

since a direct-effect sigmoid Emax PD model had been used to relate sUA concentrations to 

oxipurinol (allopurinol’s active metabolite) plasma concentrations, a semi-mechanistic 

indirect-response model [21] was derived from the estimated parameters. This allows for the 

expected delay between the PK and PD of XOis [16] and is better suited to modelling 

patterns of imperfect adherence. Details of the necessary steps are described in the 

Supplementary Material, where tables of all PKPD model parameters are also provided. 

Patient Population  

A cohort of 500 gout patients was created for simulations based on the population 

characteristics of the recently completed CLEAR 1 clinical trial of lesinurad [22]. Individual 

age and weight, which account for some of the variability in PKPD model parameters, were 

sampled at random from log-normal distributions using CLEAR 1 mean body weight of 110 

kg (SD = 23) and age of 52 (SD = 11). Creatinine clearance (CrCl), a covariate in the PK 

models, was estimated using the Cockcroft-Gault equation [23]. The resulting distribution 

was reduced by 15 mL/min and estimates below 30 mL/min were excluded (as per protocol 

criteria) in order to adjust for the underlying degree of renal impairment and obtain an 

approximation of the broad CrCl categories available for the CLEAR 1 trial population [24]. 

In accordance with gout epidemiology, patients were also assigned to have gout resulting 

from either an overproduction or under-excretion of uric acid in the ratio of 1:9 [25, 26].  

PKPD Simulation Modelling 

The PKPD model was used to generate twelve sUA concentration distributions from the 

patient cohort using four ULT options and three models of medication adherence. These 

twelve distributions then provide the treatment effectiveness inputs in subsequent 

pharmacoeconomic modelling. We have considered two scenarios for first-line ULT; these 

http://nephron.com/cgi-bin/CGSI.cgi
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being gout patients eligible for ULT being either prescribed once daily allopurinol 300 mg or 

once daily febuxostat 80 mg. This is the recommended dose of febuxostat [12], and 300 mg is 

the most commonly used dose of allopurinol [27]. If a patient did not achieve a reduction to 

the 6 mg/dL target on a monotherapy, then dual therapy was used as second-line with 

lesinurad 200 mg once daily.  

The first method of modelling adherence (Adherence model 1) represents the hypothetical 

best-case scenario in which all patients persist with treatment and implement perfectly. The 

second and third adherence models are broadly intended to represent a phase 3 clinical trials 

setting and routine practice, respectively. With the second adherence model (Adherence 

model 2), treatment persistence was based on discontinuation observed in lesinurad pivotal 

trials [18], and patients implemented doses randomly according to a probability that was 

sampled from a beta(2.4,0.6) distribution, such that the population average was 80% of doses 

with standard deviation of 20%. The third adherence model (Adherence model 3) also used 

treatment persistence from lesinurad pivotal trials [18] and dose implementation sampled 

from a beta(2.6,2.6) distribution, such that the population average was 50% of doses with 

standard deviation of 20%. 

For each ULT option and adherence model, treatment in each patient was simulated for 120 

days, with the initial 30 days used only to achieve steady-state on first-line monotherapy. On 

day 30, those patients in the dual-ULT simulation scenarios whose sUA concentration was 

above 6 mg/dL had lesinurad as second-line added to their daily dosing schedule. Days 30 - 

60 were then used to establish those patients newly switched to dual therapy at steady state. 

The final days from 60 – 120, for all four ULT options, provided the treatment effects that 

drive the pharmacoeconomic model, including the distribution across sUA concentration 

categories on day 120 as well as the proportion of days each patient was below 6 mg/dL. The 

sUA concentrations were collapsed onto four categories: <6, 6 to <8, 8 to <10 and ≥10 mg/dL 
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which provide the distribution across sUA sub-states in the pharmacoeconomic model and are 

static throughout pharmacoeconomic model simulations (Fig. 1). 

Pharmacoeconomic Model 

Overview 

Consistent with previous economic evaluations of gout treatments [18, 28], we used a 

Markov state-transition model to estimate lifetime costs and QALYs in a cohort of patients 

eligible for ULT. Whilst treatment was simulated for individual patients in the PKPD model, 

the economic model used a cohort approach. The model adopts the perspective of the 

National Health Service in the UK, has a cycle length of 3 months, and a lifetime (50 year) 

time horizon. Costs and QALYs were both discounted at a rate of 3.5% per annum [29]. The 

economic model was implemented in R version 3.4.3 [30]. 

Treatments and Transitions 

The Markov model consisted of 6 main health states which included 4 possible ULT options, 

no treatment and an absorbing dead state. Within each of the 5 treatment options, patients 

were distributed between the four sUA concentration sub-states, such that there was a total of 

21 model states. The distribution across the sUA concentration sub-states for each treatment 

depended on the level of dose implementation and was generated using the PKPD model 

(Fig. 1). 

In each pharmacoeconomic simulation, all patients are initially allocated to a single ULT 

option, where they remain unless they discontinue (non-persistence). A proportion of patients 

on monotherapy could, therefore, transition to the no-ULT health state and a proportion of 

those on a dual therapy could transition to either the no-ULT state or to the XOi monotherapy 

health state if only discontinuing the uricosuric component. It was assumed that no patients 

will discontinue a XOi while continuing to take lesinurad as it is not licensed as a 
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monotherapy [31]. The patients transitioning to either no-ULT or a monotherapy (Fig. 1) 

were redistributed according to the sUA concentration distribution of this new treatment. Per-

cycle treatment discontinuation probabilities were calculated using the results of clinical trials 

of febuxostat [32] and lesinurad [33]. After every cycle, a proportion of patients transitioned 

to the death state according to all-cause mortality probabilities derived from life tables for 

England and Wales in 2015 [34]. 

Gout Flares 

Gout sufferers experience acute episodes of intense pain and inflammation known as flares 

whose frequency is directly proportional to sUA concentration [35]. Clinical trials of newer 

ULTs have not demonstrated a reduction in the frequency of gout flares when compared with 

allopurinol; economic evaluations have instead relied on observational data to estimate the 

reduction in flares resulting from reduced sUA concentrations.  

In the base case analysis, we modelled the frequency of gout flares within sUA concentration 

sub-states using the results of a cross-sectional survey in which 172 out of 620 participants 

provided both a most recent sUA measurement and a number of flares in the previous 12 

months [36]. This was used to derive quarterly flare frequency distributions across five 

categories (1-2, 3, 4-5 and ≥6 flares per annum) for each sUA concertation sub-state 

assuming a constant rate of occurrence. This survey data, however, reporting a single sUA 

measurement, may not be representative of patients who maintain low sUA concentrations. In 

order to assess the potential quality of life and cost implications of a trial being able to 

demonstrate clear benefits in sustained responders and therefore not relying solely of survey 

data, we developed a second, alternative, model of flare reduction. This assumed that gout 

patients who sustain a sUA concentration of <6 mg/dL on >80% of days will become flare-

free after 2 years, while the survey data flare rate distributions are applied to all other 
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patients. This is broadly in line with a study that found 86% of patients whose average sUA 

concentration was below 6 mg/dL had no recurrent gouty attacks during the 2-year follow-up 

[37, 38]. 

The initiation of ULT is known to initially result in an increase in the risk of experiencing 

gout flares [37] that is proportional to the extent of sUA reduction [28, 39]. This was 

modelled by fitting a linear model to data on the mean number of flares during the first 3 

months of treatment and treatment response rate, for four different ULTs [28]. The predicted 

number of flares for a zero response rate and for a response rate following treatment was used 

to calculate a multiplier that is used to increase the baseline number of quarterly flares. This 

multiplier was applied to every flare frequency category in the first model cycle only; further 

details are provided in the Supplementary Material. 

Costs 

The daily cost of lesinurad 200mg was assumed to be £0.93 [13], allopurinol 300mg £0.03, 

and febuxostat 80mg £0.87 [40]. We assumed that for all patients, gout flare prophylaxis was 

provided by 0.5 mg daily colchicine for the full 6 months as recommended [2]. This would 

require 200 tablets at a cost of £28.56 and it was assumed that unused doses would be 

discarded. 

The average cost of treating a flare was assumed to be £43.78 (2016 prices) and the 

proportion of flares requiring treatment to be 26.7% [18]. The National Institute for Health 

and Care Excellence (NICE) recommends quarterly monitoring of sUA concentration and 

renal function during the first year of ULT and annually thereafter. The estimated average 

cost of a treatment monitoring visit for lesinurad (£153.07) was assumed for all treatments. 

Although monitoring may vary between treatments, e.g. liver function tests with febuxostat 
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and urinary uric acid tests with lesinurad [41], in the absence of data on the frequency of such 

testing no difference in overall cost was assumed. 

Health State Utilities 

A literature review and a range of trial derived health state utility values are presented in 

recent reports submitted to NICE as part of the reappraisal of lesinurad in the UK [42]. As in 

these published reports, we adopt a base case that uses the mean SF-6D scores in CLEAR 1 

and CLEAR 2 clinical trials [43, 44] stratified by flare frequency. These annual health state 

utilities, stratified according to flare frequency, were used to calculate an average decrement 

of 0.043 utilities per flare. This was used to reduce the utility of those experiencing flares 

from the reference health state utility of 0.768 for gout patients experiencing no flares over 12 

months. We did not model any impact of sUA concentration on mortality, on the basis of a 

lack of substantiated evidence of such an association [45].  

Sensitivity analyses 

A total of 500 iterations of the PKPD model were conducted, each simulating 120 days of 

treatment in 500 patients. Each iteration produced a sUA concentration distribution that 

provided inputs to 10 pharmacoeconomic model simulations, resulting in a total of 5,000 

simulations. The mean incremental costs and QALYs are presented in later sections and the 

distribution of these results in the cost effectiveness plane are given in the PSA section of the 

Supplementary Material. 

Results 

PKPD Model Results 

The results of PKPD simulations (Table 1) suggest that febuxostat 80 mg could be nearly 

100% effective in patients who adhere perfectly to their dosing regimen, and only a small 
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minority of patients would be eligible for dual-ULT with lesinurad. For allopurinol 300 mg, 

even with perfect adherence, only 57% of patients were estimated to achieve the sUA 

concentration target of <6 mg/dL, but this is increased to 83% with the addition of lesinurad. 

As expected, the proportion of patients achieving target concentrations fell with worsening 

adherence across all treatments, while the proportion eligible for dual-ULT rose. The rank of 

treatments by response rate remained constant across the three adherence scenarios. Sub-

optimal adherence has a larger impact on sustained response (<6 mg/dL on >80% of days) 

than the single time point response (day 120). 

Fig. 2 provides a comparison between the results of pivotal clinical trials and the simulated 

response rates. Treatment response is defined as sUA <5 mg/dL, as <6 mg/dL was 

unavailable for all treatments, and the simulated results have been adjusted to account for 

treatment discontinuation at 6 months in the corresponding trial arm to provide a more 

appropriate comparison. While our simulated results are broadly in line with the results from 

pivotal trials, the differences are may be difficult to interpret owing to the many factors 

relating to trial conduct that have not been accounted for in the PKPD modelling. 

Economic Model Results 

Table 2 presents the simulated total costs and QALYs accrued over the lifetime of the patient 

cohort, with allopurinol 300 mg as first-line and lesinurad add-on as second-line ULT. Under 

the base case method of calculating flare frequency and with perfect medication adherence 

(adherence model 1), the incremental cost effectiveness ratio (ICER) of allopurinol with 

optional lesinurad dual-ULT compared with allopurinol alone was £39,184 per QALY 

gained. This is considerably higher than the £20,000 per QALY threshold of cost 

effectiveness used in the UK. The ICER increased to £47,848 and £78,350 per QALY gained 

in adherence models 2 and 3, in which patients discontinue treatment over time and have 
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implementation rates of 80% and 50%, respectively. The ICERs were lowered using the 

alternative flare frequency methodology to £19,019, £31,803 and £77,903 per QALY gained 

across the three adherence models 1 to 3, respectively. 

Patients not eligible for first line treatment with allopurinol may be prescribed febuxostat and, 

if not adequately controlled, may subsequently be offered dual-ULT with lesinurad. In both 

perfect adherence scenarios (Table 3), the ICER of febuxostat with optional lesinurad dual-

ULT compared with febuxostat alone was £31,901 and £15,376 per QALY gained in the base 

case and alternative flare frequency models, respectively. The simulations suggest it would be 

more cost effective to provide lesinurad to non-responders on febuxostat than on allopurinol 

monotherapy, assuming perfect adherence. However, under adherence models 2 and 3, it 

appears lesinurad is more cost effective with allopurinol than febuxostat, suggesting 

febuxostat is less forgiving to missed doses than allopurinol [46]. 

Value-Based Price 

For each probabilistic economic simulation we calculated the price of lesinurad at which the 

ICER comparing dual-ULT to allopurinol or febuxostat monotherapy is equal to the £20,000 

per QALY threshold (value-based price). The resulting distributions of prices are plotted in 

Fig. 3 along with a line indicating the price of lesinurad originally proposed for the UK 

market [18]. Using the base case methodology for flare frequency, very few value-based 

prices of lesinurad are more than, or equal to, the price originally proposed for the UK 

market, regardless of the adherence model which was assumed. The simulations resulting in 

the highest proportion of value-based prices greater than, or equal, to the proposed price used 

the alternative flare frequency methodology and required adherence models 1 (53% versus 

allopurinol and 61% versus febuxostat). In scenarios of imperfect adherence the value-based 

prices of lesinurad often fall below zero. This is primarily due to dual-ULT being associated 



16 
 

with lower rates of treatment discontinuation in clinical trials and, therefore, accruing higher 

costs from the XOi component of dual-therapy. 

 

Discussion 

This was a study of the effectiveness and cost effectiveness of lesinurad as a second-line ULT 

following first-line treatment with either allopurinol 300mg or febuxostat 80mg, adopting an 

approach to cost effectiveness that is consistent with a UK NICE appraisal [47]. A population 

PKPD model used to simulate mono and dual-ULTs showed that while treatment could be 

highly effective at reducing sUA concentrations to below target, response rates rapidly fell as 

adherence was reduced by allowing treatment discontinuation and reducing dose 

implementation from an average of 100% down to 50%. Using the price of lesinurad 

originally proposed for the UK market, there was only one scenario in which the ICER of 

dual therapy with lesinurad compared with allopurinol or febuxostat monotherapies was 

below the higher end of the cost effectiveness threshold of £30,000 per QALY. This was 

using treatment effectiveness simulated using perfect drug adherence and a 

pharmacoeconomic model which used the alternative flare frequency methodology in which 

sustained responders become flare-free. By calculating the value-based price at a threshold of 

£20,000 per QALY, we have shown the extent to which the pricing of a uricosuric for 

second-line ULT depends on drug adherence.  

Our results broadly agree with the results of previous economic evaluations of lesinurad. 

Based on the manufacturer’s evidence and independent review, a NICE appraisal committee 

considered the most plausible ICER for lesinurad plus allopurinol compared with allopurinol 

alone to be at least £62,298 per QALY gained [14]. Our base-case estimates range from 

£39,184 to £78,350 depending on the level of medication adherence assumed.  
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Linked PKPD and pharmacoeconomic modelling provide a means of studying the 

implications of drug pharmacology and adherence on the economic potential of new 

medicines [48]. These methods can reveal the best-case economic value of new treatments in 

the case of perfect drug adherence and estimate the rate at which this changes with worsening 

persistence or dose implementation. The linkage of these two disciplines is increasingly being 

implemented in order to study a variety of issues in drug development [48–53]. However, we 

are not aware of any studies that have estimated the impact of changing levels of drug 

adherence on modelled economic outcomes. Since treatment discontinuation and imperfect 

dose implementation are both a feature of latter stage clinical trials and routine practice use of 

medicines, understanding how this may affect cost effectiveness could be of use to both 

manufacturers and health care providers.  

While PKPD simulation allows rapid analysis of previously untested treatment scenarios, it 

may not always provide a substitute for clinical trials. The mixture of data sources informing 

the models, possible model misspecification, simplifying assumptions and differences in time 

or in the patient population can all result in predictions that differ from what would be 

observed in a trial setting [54]. Furthermore, we have assumed that within the data from 

which the PKPD models were constructed patients adhered to their dosing regimen. This may 

not be the case and could result in biased model results [55]. The adherence patterns we 

assumed were not based on real-world evidence of adherence to ULTs due to an absence of 

studies that disentangle persistence from implementation. The possible treatment strategies 

for gout are more nuanced than was considered in this study. Guidelines recommend that 

allopurinol is used as first line but that it should be initiated at a low dose (e.g. 100 mg) 

before being titrated up to 900 mg per day or until response is achieved. Similarly, febuxostat 

could also be initiated at 40mg and titrated up to a possible 120 mg. The economic evaluation 

did not consider the potential adverse drug reactions; allopurinol is known to cause rare 
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hypersensitivity reactions, there are possible cardiovascular complications associated with 

febuxostat, and lesinurad is associated with renal complications that may be exacerbated by 

poor medication adherence [16].  

Gout remains a condition that is typically poorly managed, even in a clinical trials setting 

with newer ULTs. For health care payers our results provide an indication of the extent to 

which poor adherence to ULTs erodes the cost effectiveness of these medicines when 

translating from clinical trials to routine practice. Development of ULTs with greater drug 

forgiveness [46] would to some extent mitigate the effects of poor implementation and result 

in greater effectiveness relative to existing treatments. Pharmaceutical companies conducting 

future clinical trials of novel ULTs should be mindful that achieving sUA endpoints alone, 

without also showing reductions in gout flares, is not likely to provide an attractive value-

based price. This is due, in part, to uncertainty in the rate and scale of reductions in gout 

flares following a reduction in sUA and the weak evidence base linking sUA to other 

potential health outcomes, such as cardiovascular diseases. Designing clinical trials to 

demonstrate the eradication of gout in sustained responders, which is expected in most 

patients [3], is likely to increase the potential value-based price of new ULTs. An alternative 

approach could be a sub-study designed to bridge the evidence gap between sUA 

concentration and flares. For example, Jutkowitz et al. [56] have estimated the potential value 

of conducting various 1-year studies. 

This study has found that medication adherence has a significant influence on the potential 

cost effectiveness of second-line dual-ULT with lesinurad compared with either allopurinol 

or febuxostat alone. However, although treatment effect is enhanced under perfect medication 

adherence, dual-ULT is not expected to be cost effective relative to either monotherapies at a 

threshold of £20,000 per QALY. The estimated value-based prices of lesinurad only 
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exceeded that which has been proposed in the UK when assuming both perfect drug 

adherence and the eradication of gout flares in sustained treatment responders 
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Table 1 Distribution of patients across sUA concentration categories following ULT with varying levels of dose implementation using 

500 PKPD simulations 

Urate lowering therapy option* 
  

Percentage of subjects in sUA 

category (mg/dl) at day 120 
 

% < 6 mg/dl 

on ≥80% of 

days 

 % Receiving 

lesinurad 

 
<6 6 to <8 8 to <10 ≥10   

 
100% dose implementation 

     
 

   Allopurinol 300mg (ALL) 

 

57 40 3 0  56.6 
 

NA 

ALL + optional lesinurad 200mg 

 

83 17 0 0  83.0 
 

43.7 

Febuxostat 80mg (FBX) 

 

97 3 0 0  97.3 
 

NA 

FBX + optional lesinurad 200mg 

 

99 1 0 0  99.3 
 

2.6 

80% dose implementation 

 
    

 
   

Allopurinol 300mg (ALL) 

 

41 49 10 0  35.7 
 

NA 

ALL + optional lesinurad 200mg 

 

63 33 5 0  52.5 
 

59.6 

Febuxostat 80mg (FBX) 

 

81 15 4 0  71.3 
 

NA 

FBX + optional lesinurad 200mg 

 

84 14 3 0  74.6 
 

18.4 

50% dose implementation 

 
    

 
   

Allopurinol 300mg (ALL) 

 

19 53 24 3  12.7 
 

NA 

ALL + optional lesinurad 200mg 

 

36 46 16 2  21.0 
 

80.1 

Febuxostat 80mg (FBX) 

 

49 36 14 1  25.1 
 

NA 

FBX + optional lesinurad 200mg   53 34 12 1  30.2 
 

49.5 

No Treatment  0 21 57 22  0  NA 

*  Allopurinol 300 mg once daily; febuxostat 80 mg once daily; lesinurad 200 mg once daily
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Table 2 Economic model results in patients with allopurinol 300 mg monotherapy as first 

line treatment and add-on lesinurad 200 mg in non-responders as second line treatment. The 

ICER was calculated as the difference in lifetime costs divided by the difference in lifetime 

QALYs. Costs and effects were discounted at 3.5%; ICER: incremental cost effectiveness 

ratio; QALYs: quality-adjusted life-years; adherence model 1: perfect adherence to dosing 

regimen; adherence model 2: treatment discontinuation and 80% average implementation; 

adherence model 3: treatment discontinuation and 50% average implementation 

 

  

ULT Treatment Option 
Lifetime 

Cost 

Lifetim

e 

QALYs 

Δ Cost vs 

ALL 

Δ QALYs 

vs ALL 

ICER 

vs  

ALL 

        Base case flare frequency methodology 
     

 

Adherence model 1 
     

  

Allopurinol 300mg (ALL) £3,757 13.36 - - - 

  

ALL + optional lesinurad 200mg 
£6,352 13.42 £2,594 0.066 

£39,18

4 

 

Adherence Model 2 
     

  

Allopurinol 300mg (ALL) £2,246 13.22 - - - 

  

ALL + optional lesinurad 200mg 
£4,068 13.26 £1,822 0.038 

£47,84

8 

 

Adherence Model 3 
     

  

Allopurinol 300mg (ALL) £2,277 13.19 - - - 

  

ALL + optional lesinurad 200mg 
£4,796 13.22 £2,519 0.032 

£78,35

0 

   
 

 
 

 
  

Alternative flare frequency 

methodology  

 

  
  

 

Adherence model 1 

    

  

  

Allopurinol 300mg (ALL) £3,614 13.49 - - - 

  

ALL + optional lesinurad 200mg 
£6,139 13.63 £2,525 0.133 

£19,01

9 

 

Adherence Model 2 
     

  

Allopurinol 300mg (ALL) £2,221 13.24 - - - 

  

ALL + optional lesinurad 200mg 
£4,024 13.30 £1,804 0.057 

£31,80

3 

 

Adherence Model 3 
     

  

Allopurinol 300mg (ALL) £2,277 13.19 - - - 

    ALL + optional lesinurad 200mg 
£4,784 13.23 £2,507 0.032 

£77,90

3 
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Table 3 Economic model results in patients with febuxostat 80 mg monotherapy as first line 

treatment and add-on lesinurad 200 mg in non-responders as second line treatment. The ICER 

was calculated as the difference in lifetime costs divided by the difference in lifetime 

QALYs. Costs and effects were discounted at 3.5%; ICER: incremental cost effectiveness 

ratio; QALYs: quality-adjusted life-years; adherence model 1: perfect adherence to dosing 

regimen; adherence model 2: treatment discontinuation and 80% average implementation; 

adherence model 3: treatment discontinuation and 50% average implementation 

 

  
ULT Treatment Option 

Lifetime 

Cost 

Lifetime 

QALYs 

Δ Cost vs 

FBX 

Δ QALYs 

vs FBX 

ICER vs  

FBX 

        Base case flare frequency methodology 
     

 

Adherence model 1 
     

  

Febuxostat 80mg (FBX) £9,157 13.46 - - - 

  

FBX + optional lesinurad 200mg £9,311 13.46 £154 0.005 £31,901 

 

Adherence Model 2 
     

  

Febuxostat 80mg (FBX) £5,094 13.28 - - - 

  

FBX + optional lesinurad 200mg £5,803 13.29 £709 0.010 £74,136 

 

Adherence Model 3 
     

  

Febuxostat 80mg (FBX) £5,122 13.23 - - - 

  

FBX + optional lesinurad 200mg £7,015 13.25 £1,893 0.015 £124,212 

   
 

 
 

 
  

Alternative flare frequency methodology 
 

 
  

  

 

Adherence model 1 

    

  

  

Febuxostat 80mg (FBX) £8,884 13.70 - - - 

  

FBX + optional lesinurad 200mg £9,034 13.71 £149 0.010 £15,376 

 

Adherence Model 2 
     

  

Febuxostat 80mg (FBX) £5,024 13.34 - - - 

  

FBX + optional lesinurad 200mg £5,724 13.36 £700 0.017 £40,078 

 

Adherence Model 3 
     

  

Febuxostat 80mg (FBX) £5,151 13.23 - - - 

    FBX + optional lesinurad 200mg £7,031 13.25 £1,880 0.022 £86,870 
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Figures 

 

Fig. 1 Illustration of the structure of the pharmacoeconomic model showing patient subgroup 

transitions and the sUA distributions set by PKPD simulations. In this example, the model 

estimates the lifetime costs and QALY gains resulting from all patients being initially 

allocated to allopurinol with optional lesinurad dual-ULT. This process is repeated using 

three adherence models and four initial ULT allocations in order to compare treatments 

options. 
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Fig. 2 Simulated treatment response rates for three adherence models and the treatment 

response in the corresponding treatment arm in clinical trials. The threshold for treatment 

response has been defined as 5 mg/dl. Clinical trials results are at 6 months and assume non-

responder imputation for patients who discontinued. Discontinuation rates were also applied 

to simulated results assuming equal probability of discontinuation amongst responders and 

non-responders. Confidence intervals on PKPD simulations account for patient heterogeneity 

and parameter random effects, but not uncertainty in parameters estimates or within 

individual residual variability. 

* Allopurinol 300mg and allopurinol 300mg + lesinurad 200mg response rate is 9.8% and 

28.4% respectively from CLEAR 1 and CLEAR 2 trials; Febuxostat 80mg and febuxostat 

80mg + lesinurad 200mg response rate is 46.8% and 56.6% respectively from the CRYSTAL 

trial. 
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Fig. 3 The value-based price of lesinurad as part of dual-ULT in combination with either 

febuxostat or allopurinol in patients not responding to either monotherapy alone. The value-

based price distributions are obtained using the results of 5,000 probabilistic economic model 

simulations. Value-based price is defined as the price of lesinurad at which the modelled 

incremental cost per QALY comparing dual-ULT to mono-ULT is equal to the £20,000 

threshold. The vertical line indicates the price of lesinurad quoted during its appraisal in the 

UK. 

 


