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Abstract 

Mass occurrences of large sponges, or ‘sponge grounds’, are found globally in a range of 

oceanographic settings. Interest in these grounds is growing because of their ecological importance 

as hotspots of biodiversity, their role in biogeochemical cycling and bentho-pelagic coupling, the 

biotechnological potential of their constituent sponges, and their perceived vulnerability to physical 

disturbance and environmental change. Little is known about the environmental conditions required 

for sponges to persist and for grounds to form, and very few studies have explicitly characterised 

and interpreted the importance of oceanographic conditions. Here, results are presented of the first 

observational oceanographic campaign at a known sponge ground on the Schultz Massif Seamount 

(SMS; Arctic Mid-Ocean Ridge, Greenland / Norwegian Seas). The campaign consisted of water 

column profiling and short-term deployment of a benthic lander. It was supported by multibeam 

echosounder bathymetry and remotely operated vehicle video surveys. The seamount summit 

hosted several environmental factors potentially beneficial to sponges. It occurred within relatively 

nutrient-rich waters and was regularly flushed from above with slightly warmer, oxygen-enriched 

Norwegian Arctic Intermediate Water. It was exposed to elevated suspended particulate matter 

levels and oscillating currents (with diurnal tidal frequency) likely to enhance food supply and 

prevent smothering of the sponges by sedimentation. Elevated chlorophyll a concentration was 

observed in lenses above the summit, which may indicate particle retention by seamount-scale 

circulation patterns. High sponge density and diversity observed on the summit is likely explained by 

the combination of several beneficial factors, the coincidence of which at the summit arises from 

interaction between seamount geomorphology, hydrodynamic regime, and water column structure. 

Neighbouring seamounts along the mid-ocean ridge are likely to present similarly complex 
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oceanographic settings and, as with the SMS, associated sponge ground ecosystems may therefore 

be sensitive to changes over a particularly broad range of abiotic factors. 

 

Keywords: Sponges, seamounts, mid-ocean ridge, deep sea, Hexactinellida, Astrophorida  
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1. Introduction 

 

Mass occurrences of large sponges, or ‘sponge grounds’, are found globally, including in fjords, on 

continental shelves and slopes, and in the deep sea at mid-ocean ridges and seamounts (Barthel, 

1992; Whitney et al., 2005; Hogg et al., 2010; Murillo et al., 2012; Bo et al., 2012; Cathalot et al., 

2015; Maldonado et al., 2015). At sponge grounds, sponges dominate the benthic macrofauna in 

terms of body size and abundance (Hogg et al., 2010), and often account for the majority of 

invertebrate biomass (Klitgaard and Tendal, 2004; Murillo et al., 2012; Maldonado et al., 2015). 

Beyond this, considerable variability exists between prevailing ‘types’ of sponge ground (in terms of 

distribution, community composition, and species richness), and current understanding of these 

ecosystems is limited such that even a simple, quantitative framework of sponge ground definitions 

does not yet exist. Sponge grounds occurring in the deep sea have received relatively little scientific 

attention, in contrast to cold-water coral reefs, for example, which have been studied extensively in 

recent decades (see Freiwald and Roberts (2005)). 

 

Interest in deep-sea sponge grounds has been growing, driven by three main factors. Firstly, sponges 

possess significant biotechnological and biomedical potential. Their anatomical structures have 

inspired biomimetic lines of research and their secondary metabolites are a valuable source of 

potentially useful bioactive compounds (e.g., Belarbi et al., 2003; Sundar et al., 2003; Ehrlich et al., 

2010; Leal et al., 2012; Dudik et al., 2018). Secondly, sponge grounds are ecologically important. 

They are increasingly recognised as hotspots of biodiversity and biomass in the deep sea (Klitgaard, 

1995; Beazley et al., 2013). They form complex biogenic habitats (sponge structures + ‘spicule mat’ 

substrate (Bett and Rice, 1992)), where there is a general paucity of such structural habitat (Buhl-

Mortensen et al., 2010). These provide refuge, foraging, spawning, and nursery grounds for fish 

(Kenchington et al., 2013; Kutti et al., 2015), and create an abundance of microhabitats for sponge-

associated invertebrates (Barthel, 1992; Bett and Rice, 1992; Herrnkind et al., 1997; Freese and 

Wing, 2003, and references therein; Henkel and Pawlik, 2005; Amsler et al. 2009; Maldonado et al., 

2015). Sponge grounds also play important roles in biogeochemical cycling and bentho-pelagic 

coupling (Gatti, 2002; Pile and Young, 2006; Bell, 2008; Hoffmann et al., 2009; De Goeij et al., 2013; 

Kutti et al., 2013). Thirdly, deep-sea sponges are thought to be vulnerable to physical disturbance 

and environmental change (Hogg et al., 2010). This is in need of assessment to ensure adequate 

protection, mitigation, and sustainable exploitation measures are in place. Sponges may take 

millennia to form grounds (Murillo et al., 2016a), be very slow-growing (Pusceddu et al., 2014), and 

reproduce infrequently (Klitgaard and Tendal, 2004). Deep-sea sponge grounds have recently been 
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classified as a ‘habitat under immediate threat and / or decline’ by the OSPAR Commission (OSPAR, 

2008), and a ‘vulnerable marine ecosystem (VME)’ by the Food and Agriculture Organisation of the 

United Nations (FAO, 2009). 

 

Despite a growing body of research highlighting the functional significance of deep-sea sponge 

grounds, little is known about the environmental conditions required for sponges to persist, and for 

sponge grounds to form at specific locations. This is fundamentally important information for the 

assessment of their vulnerability and response to disturbance and climate change. Several authors 

have commented on the importance of various hydrographic variables. A number have emphasised 

the need for stable bottom conditions in terms of temperature and salinity (Klitgaard and Tendal, 

2004; Murillo et al., 2016a), or relate the presence of sponges to that of a particular water mass or 

current system in the study region (Barthel et al., 1996, Klitgaard and Tendal, 2004; Murillo et al., 

2012; Beazley et al., 2015; van Haren et al., 2017).  Murillo et al. (2012) report the temperature and 

salinity ranges (3.38 – 3.84 °C; 34.85 – 34.90 ‰) experienced by sponge grounds dominated by large 

astrophorid demosponges off Newfoundland, Canada. They note that these conditions, provided by 

the Labrador Current, may be suitable for the sponges’ persistence, but other factors must influence 

the finer-scale patterns of distribution in this region (Murillo et al. 2012). Modelling studies have 

implicated silicate concentration, and near-bed temperature and salinity (amongst other factors) as 

important drivers of broad-scale sponge ground distribution in the North Atlantic (Knudby et al., 

2013; Howell et al., 2016). The availability of a suitable substrate for settlement, growth, and 

development seems likely to influence local-scale sponge distribution, though there is apparent 

variability in substrate requirements for different sponge species (Klitgaard and Tendal, 2004; c.f. 

Murillo et al., 2016a, 2016b). Water column turbidity has also been proposed as a factor limiting the 

distribution of sponge grounds (Klitgaard and Tendal, 2004). Excessive suspended particulate matter 

(particularly inorganic) loads are believed to clog the filtration systems of some sponges and 

therefore render some locations unviable for colonisation (Klitgaard and Tendal, 2004).   

 

Hydrodynamical phenomena are frequently invoked as mechanisms explaining the presence of a 

sponge ground. Rice et al. (1990) considered the theoretical possibility that near-bed tidal currents 

are locally enhanced by interaction between the flow and the bed slope. A resonance-type 

intensification of the local currents is believed to occur at locations where internal tides (internal 

waves of tidal frequency) would typically be generated (Sandstrom, 1975; New, 1988; Huthnance, 

1989), and it was hypothesised that these enhanced near-bed currents would resuspend (or 

maintain in near-bed suspension) flocculent phytodetrital material and improve food supply to a 
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downslope population of sponges (Rice et al., 1990). Different authors also place emphasis on the 

importance of internal tides, focussing instead on current enhancement by incident / reflecting 

internal tides propagating along water mass boundaries that impinge upon seabed features (e.g., 

slopes and seamounts), and the acceleration of local currents, the generation of turbulence, and the 

induction of various flow patterns by interactions between prevailing current regimes and irregular 

seabed topography have been proposed to be important at various spatial scales (Genin et al., 1986; 

Klitgaard and Tendal, 2004; McIntyre et al., 2016; van Haren et al., 2017). The importance of 

enhanced currents to sponge grounds is typically outlined in terms of improved food / larval supply 

and the prevention of smothering by settling suspended sediments. The idea that such currents are 

useful in inducing a passive flow through sponges that reduces the metabolic cost of pumping (Leys 

et al., 2011) has been thus far overlooked. Although sponge grounds are frequently found on sloped 

or irregular topography, leading to speculation about the predominance of hydrodynamic influence, 

McIntyre et al. (2016) note that they are also reported from relatively flat areas (e.g., Tromsøflaket 

in the Western Barents Sea (Klitgaard and Tendal, 2004; and personal observation) and Hatton Basin 

in the Northeast Atlantic (Durán Muñoz et al., 2011)). 

 

Very few studies have explicitly set out to characterise and interpret the importance of 

oceanographic conditions at deep-sea sponge grounds. Genin et al. (1986) measured the current 

regime at the Jasper Seamount in the Eastern Pacific, which hosts an abundant and diverse fauna 

dominated by suspension feeders such as sponges and corals. They noted that abundance peaked at 

sites of flow acceleration (i.e., at topographic peaks), and they attributed this to flow conditions that 

are favourable either through a ‘settlement pathway’ (i.e., an enhanced supply of larval recruits per 

unit time) or a ‘feeding pathway’ (i.e., an enhanced supply of potential food per unit time) (Genin et 

al., 1986). White (2003) measured currents in the Porcupine Seabight (west of Ireland) at both 

locations of sponge presence and absence. Their measurements supported the hypothesis of Rice et 

al. (1990) that the sponges (the hexactinellid Pheronema carpenteri) favour locations adjacent to 

regions of enhanced near-bed tidal currents (where they benefit from the advection of resuspended 

material in the bottom boundary layer), but probably cannot tolerate the highest currents found 

locally (White, 2003). Whitney et al. (2005) examined the oceanographic conditions at hexactinellid 

sponge reefs occurring at the heads of shelf canyons off Canada’s west coast. These authors 

identified up-canyon transport of water rich in nutrients (particularly silicates) and suspended 

matter as important in explaining sponge reef presence, and noted that conditions may be 

favourable in several other respects also (e.g., appropriate ranges of dissolved oxygen, temperature, 

and salinity, and the prevalence of moderate, tidally-modulated near-bed currents that increase 
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food supply to, and food residency times near, the sponges and prevent smothering by 

sedimentation) (Whitney et al., 2005). Beazley et al. (2015) investigated the hydrographic conditions 

associated with dense sponge grounds on the Sackville Spur in the Northwest Atlantic and concluded 

that their presence could potentially be attributed to a warm, salty remnant of the Irminger Current 

residing over the slope in that area.  

 

No comprehensive oceanographic survey studies of deep-sea sponge ground localities currently exist 

for the Northeast Atlantic - Arctic region, despite there being numerous, widely distributed sponge 

grounds in the area (Klitgaard and Tendal, 2004). Such studies, though descriptive, offer valuable 

insight into the physical setting and environmental requirements of marine ecosystems. Studies of 

this type relating to cold-water coral reefs, for example, have identified food supply mechanisms 

(Davies et al., 2009; 2010) and improved understanding of the ideal conditions for their growth and 

development (Mienis et al., 2007). The purpose of the current paper is to present the results of the 

first short-duration, high temporal resolution, observational oceanographic campaign at a cold-

water sponge ground (sensu Klitgaard and Tendal (2004)) on the Schultz Massif Seamount (SMS) of 

the Arctic Mid-Ocean Ridge. The campaign consisted of a water column profiling survey and a c. 3 

day deployment of a benthic lander, and was supported by multibeam echosounder bathymetry and 

remotely operated vehicle (ROV) video data collection. The oceanographic setting and short-

timescale environmental variability experienced by the sponges is described. A peak in sponge 

density and diversity was observed towards the seamount summit, and explanations for this 

observation are considered in light of the oceanographic data collected.  
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2. Materials and methods 

 

2.1. Study site 

The Schultz Massif (73° 50’ N, 7° 34’ E) is a seamount located at the Arctic Mid-Ocean Ridge (AMOR), 

a 4000 km long, ultraslow-spreading ridge extending northwards from north of Iceland into the Polar 

Basin (Bruvoll et al., 2009). It is situated at a bend in the ridge at which the Mohn Ridge transitions 

into the Knipovich Ridge (Fig. 1(a)). It has a broadly elliptical shape in plan view, with its major axis 

oriented northeast-southwest (Fig. 1(b)), and rises from abyssal depths of more than 2500 m in 

adjacent basins to depths of 560-600 m at the summit. A trough of approximately 100 m depth and 

500 m width bisects the summit and is aligned with the major axis described above. The lower slope 

of the seamount is dominated by soft sediments (mainly calcareous foraminifera) with some rocky 

outcrops and areas covered by pillow lavas. At intermediary parts of the slope soft sediments are 

still dominant, but rocky outcrops and walls are common. Approaching the summit there are still 

some rocky outcrops; sediments have a high content of sponge spicules. In the upper 100 m of the 

seamount a spicule mat is present that is up to 20 cm thick. 

 

Estimating the seamount’s dimensions is complicated by it belonging to a ridge system. Based on 

bathymetry data collected (Fig. 1(b)), a major axis of 10 km and a minor axis of 4 km appear 

appropriate. The deepest contours relating to this footprint are 1400 -1500 m deep. We use these 

values in later calculations. However, they represent lower bound estimates and larger values could 

also be considered appropriate (e.g., 15 km x 6 km, >2000 m depth at the base), based on coarser 

resolution bathymetry datasets and depending on the criteria applied to define the seamount’s 

extent. The effects of using larger estimates in calculations have been considered (see Discussion).  

 

The SMS lies at the nominal boundary between the Greenland and Norwegian Seas, two of the three 

Nordic Seas (the Iceland Sea being the third). These seas host two-way advective exchange between 

the Polar Sea and the North Atlantic Ocean, and they act as primary sites of water mass formation 

and transformation, producing waters that feed into the deep North Atlantic Ocean as dense 

overflows across the Greenland-Scotland Ridge (Dickson and Brown, 1994; Mauritzen, 1996; Hansen 

and Østerhus, 2000). The physical oceanography of the Nordic Seas is described in Hopkins (1991), 

and the surface circulation is fairly well known. Polar Water, of low temperature and salinity, enters 

the region primarily as a surface water mass (Greenland Polar Water) in a southward flowing current 

(the East Greenland Current) that travels through the western side of the Fram Strait and along the 

eastern Greenland Shelf (Hopkins, 1991). North Atlantic Water, which is warmer and of higher 
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salinity, enters from the south, also as a surface water mass (Norwegian Atlantic Water, NwAtW), in 

the northwards flowing and variously branched Norwegian Atlantic Current (Orvik and Niiler, 2002). 

Nordic Sea water masses can thus be considered mixtures of Polar Water, North Atlantic Water, and 

locally-formed / -modified deep water(s) (Carmack and Aagaard, 1973). Key water masses in the 

vicinity of the SMS are likely to include Norwegian Deep Water (NwDW), Upper Norwegian Deep 

Water (uNwDW), Norwegian Arctic Intermediate Water (NwArIW), and NwAtW (defined above), 

though the influence of Greenland Basin water masses cannot be ruled out (Hopkins, 1991). 

Understanding of the circulation of intermediate and deep water masses is being continually revised, 

as more and better physical data become available. There is some evidence that Norwegian 

intermediate and deep water masses have an advective origin (i.e., as opposed to significant local 

production), in contrast to those in the Greenland and Iceland Seas (Hopkins, 1991; Jeansson et al., 

2017). 

  

The AMOR is a significant bathymetric feature in the Nordic Seas. It influences circulation patterns 

and water exchange between adjacent basins / seas (Mauritzen, 1996). Orvik and Niiler (2002) 

demonstrated that the western-most branch of the Norwegian Atlantic Current consists of a jet 

steered by topography such as the Mohn and Knipovich Ridges (Orvik and Niiler, 2002). The SMS is a 

prominent feature in the ridge system, and is likely to be subject to (and contribute towards the 

creation of) a complex oceanographic setting. It may be influenced by such topographically-steered 

deep currents. Hydrodynamical modelling efforts have predicted that semi-diurnal tidal constituents 

dominate diurnal constituents in terms of tidal elevation in the vicinity of the SMS (Lyard, 1997). In 

terms of tidal current velocity the reverse situation can occur, with diurnal tidal currents dominating 

(Kowalik and Proshutinsky, 1993, and references therein). Several of these authors note strong local 

responses to diurnal tidal forcing in the velocity field of the Northeast Atlantic - Arctic region. 

Harmonic constants and tidal predictions (elevations and currents) determined for the SMS from 

regional barotropic inverse tidal solutions using the Oregon State University Tidal Inversion Software 

(OTIS; Egbert and Erofeeva, 2002) corroborate the importance of diurnal tides to the velocity field 

(see Results and Supplementary material). 

 

The sponge ground at the SMS has been the subject of several research cruises by the University of 

Bergen (UiB) since 2008. Biological sampling by means of ROV, epibenthic sledges, bottom trawls, 

and cores, supported by high-definition video imagery, has revealed seemingly rich and undisturbed 

benthic communities dominated mostly by sponges, anthozoans, and ascidians (see Torkildsen 
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(2013), as well as Cárdenas et al. (2013), Hestetun et al. (2017), and Plotkin et al. (2017) for 

dominating sponge taxa). 

 

Figure 1 – The Schultz Massif Seamount (SMS) study site. (a) shows the location of the SMS in the Nordic Seas 

region (polar stereographic map projection; 30 arc-second bathymetry from General Bathymetric Chart of the 

Oceans 2014 (Weatherall et al., 2015); coastline data from NOAA’s Global Self-consistent, Hierarchical, High-

resolution Shoreline Database (Wessel and Smith, 1996)). (b) shows bathymetry at the SMS from multibeam 

echosounder data (EM 302; spatial resolution = 10 m). Conductivity, temperature, and depth (CTD) profile 

stations are indicated by solid black circles, and transects by dashed lines. Water sampling (rosette sampler) is 

indicated with additional red outer circles. The Bottom Boundary Benthic Lander (BOBO) is denoted by a red 
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cross. The bright green line shows the ROV video transect analysed; darker green dots indicate the positions of 

still images extracted for the analysis.  
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2.2. Fieldwork campaign 

A multi-disciplinary research cruise to the SMS was conducted using the RV G.O. Sars (Norwegian 

Institute of Marine Research and UiB) from 18th to 26th June 2016. The present study focusses on 

physical and biogeochemical data collected during this cruise, particularly those from the 

deployment of a benthic lander and from water column profiling and sampling. Acoustic maps of the 

seamount bathymetry and high-definition video imagery of its benthic environments and fauna 

(captured using an ROV) have been used primarily to supplement existing knowledge on the site.   

 

2.2.1. Acoustic mapping 

The bathymetry of the SMS was mapped using an EM 302 multibeam echosounder system 

(Kongsberg Maritime AS, Kongsberg, Norway). The EM 302 has a nominal sonar frequency of 30 kHz 

and uses 288 beams (per swath) over a maximum angular coverage of 150° (beam spacing was 

equidistant). This system is well suited to mapping bathymetry in deep water, down to depths of 

7000 m. Mapping of the seamount summit and flanks was achieved in four parallel survey lines 

(aligned approximately northeast to southwest), and the resulting bathymetric data (gridded to 10 m 

spatial resolution) were used to select a site for the benthic lander deployment and to plan the 

water column profiling survey strategy. 

 

2.2.2. ROV video imagery and water sampling    

ROV Ægir 6000 (Kystdesign AS, Haugesund, Norway) is a 95 kW remotely operated vehicle 

(dimensions: 2.75 x 1.70 x 1.65 m) rated to 6000 m water depth, owned by UiB. It has considerable 

scientific payload capacity (400 kg) and can be deployed with various suites of modular sensors and 

sampling equipment. High-definition video footage of benthic communities on the SMS was 

recorded during base-to-summit transects from several directions and during targeted biological 

sampling for taxonomic and other studies.  

 

For the present work, imagery from video transect ROV-4 (see Fig. 1) was analysed. The transect ran 

approximately south-east to north-west, spanned a depth range of 1313 m to 658 m (i.e., 

approaching the summit), and took 8 h to complete. Still images were extracted from the footage at 

5 min intervals and analysed to obtain estimates of species richness and abundance for the major 

taxonomic groups present amongst the large epifauna observed. ROV altitude (or ‘flying height’) 

varied over the transect. For consistency, images captured when ROV altitude was outside the range 

1 - 3 m were not included in the analysis. 16 images were disregarded for this reason, out of 72 

‘under-way’ images available. It was not possible to reliably provide quantities per unit area, but 
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values ‘per image’ are sufficient to demonstrate relative changes / trends over depth, as is required 

for this study (particularly for sponges (phylum Porifera) as a group). More in-depth analysis of the 

video transect data will be presented in a forthcoming publication.          

 

The ROV was fitted with small Niskin bottles (3 L sample volumes), which were used to 

opportunistically sample water near the seamount summit. Sub-samples were taken for dissolved 

inorganic carbon and nutrient concentration analysis, and were handled according to the procedures 

outlined in section 2.4. below.     

  

2.2.3. Near-bed observations 

A free-falling, autonomous ‘Bottom Boundary’ Benthic Lander (BOBO; van Weering et al., 2000) was 

deployed near the seamount summit (73° 48.960’ N, 7° 31.408’ E, at 669 m water depth) on the 20th 

June 2016 for a period slightly longer than 3 days. It was equipped with instruments set to log time 

series observations of several key oceanographic parameters, including water temperature, salinity, 

dissolved oxygen concentration, and current velocity. In the present study, a short-leg lander 

configuration (i.e., relative to the original design) was employed. 

 

The scientific payload of the BOBO Lander included the following instruments: (1) an SBE 16 Seacat 

conductivity and temperature (CT) Sensor (Sea-Bird Electronics Inc., Washington, USA), mounted at 

2 metres above the seabed (mab) upon deployment; (2) a Rinko I fast response optical dissolved 

oxygen sensor (JFE Advantech Co. Ltd., Hyogo, Japan), mounted at 2 mab; (3) an upward-looking 300 

kHz acoustic Doppler current profiler (ADCP) (Teledyne RDI Inc., California, USA), mounted at 2.2 

mab; and (4) a high-definition video camera (Sony Corp., Tokyo, Japan) with LED illumination, 

directed at the seabed just outside the footprint of the lander and mounted at 0.7 mab. Sensors 

were programmed with a 5 min sampling interval, with the exception of the video camera, which 

was programmed to record 30 s of footage every 15 min.  

 

The lander also hosted a programmable, autonomous particulate sampler (Phytoplankton Sampler 

(PPS), McLane Research Laboratories Inc., Massachusetts, USA). This was programmed to pump 24 

individual in situ water samples, in time series, through pre-combusted, pre-weighed glass 

microfibre filters (47 mm diameter Whatman GF/F, nominal pore size 0.7 μm, GE Healthcare UK Ltd., 

UK) for the determination of suspended particulate matter (SPM) concentration by gravimetric 

analysis (after Strickland and Parsons, 1972). The programme was scheduled to begin shortly after 

lander deployment, with a sample volume of 7.5 L being filtered every 2 h at a flow rate of 125 mL 
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min-1. Owing to battery failure and filter paper damage, only 10 reliable samples were obtained over 

the first 22 h and the resulting values were averaged to obtain a near-bed SPM estimate for 

comparison with water column concentrations. 

 

2.2.4. Water column profiling 

Water column profiling at the SMS was conducted along two transects: across the seamount’s ridge-

like summit, and along the summit ridge (Fig. 1(b)). Each transect consisted of 5 CTD stations. The 

across-ridge CTD transect commenced at 04:02 h UTC on the 22nd June 2016 at the south-eastern 

end of the transect (CTD-2 in Fig. 1(b)), and was completed by 09:06 h UTC. The along-ridge transect 

commenced at 07:18 h UTC on the 23rd June 2016 at the north-eastern end of the transect (CTD-7 in 

Fig. 1(b)), and was completed by 11:41 h UTC. Profiling was carried out using a conductivity, 

temperature, depth (CTD) system (SBE-9, manufactured by Sea-Bird Electronics Inc., Washington, 

USA) with additional sensors including a dissolved oxygen sensor (SBE-43, also by Sea-Bird), a 

turbidity sensor (Seapoint Sensors Inc., New Hampshire, USA), and a fluorometer (AquaTracka III, 

manufactured by Chelsea Technologies Group Ltd., UK). At all stations, the CTD unit was lowered to 

approximately 10 – 20 mab and raised before moving on to the next station. The CTD system was 

installed on a rosette water sampler (consisting of twelve 10 L Niskin water bottles). Water samples 

were collected at selected stations (those indicated by solid black circles with red outer rings in Fig. 

1(b)) and depths (typically near-bed, mid-water column, and chlorophyll a maximum / surface) for a 

suite of analyses, including the determination of inorganic nutrient (PO4
3-, NO3

- + NO2
-, Si), dissolved 

inorganic carbon (DIC), and suspended particulate matter (SPM) concentrations (see section 2.4.). 

CTD-1 was an off-seamount reference station, approximately 20 km to the southeast of the SMS (73° 

38.896’ N, 7° 52.734’ E, 2462 m water depth), which was sampled (profiles and water samples) on 

the 20th June 2016 at 07:55 h UTC. All reported CTD depth values were estimated from measured 

pressures using equations from Fofonoff and Millard (1983). 

     

2.3. Particle motion analysis of video footage 

Owing to component failure within the ADCP, video footage from the lander was analysed instead to 

infer the nature of the current regime from recorded particle motion. 326 videos were captured 

sequentially over the course of the lander deployment. Each video was converted into ‘stacks’ of 

individual image frames (1920 x 1080 pixels), such that 300 frames were produced per video (i.e., 10 

frames per second of footage). A smaller region (180 x 500 pixels) was extracted from the top right 

corner of each frame for further analysis, as this area consistently contained clearly identifiable 

particles.  
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Coordinates (in pixels from the image origin) and frame numbers were obtained for the start and 

end of the trajectories of up to 10 particles per video using the image processing software ImageJ 

(Schneider et al., 2012). Assuming linear paths and constant speeds, particle speeds and directions 

were calculated using Pythagoras’ Theorem (for distance travelled, in pixels), frames elapsed (as a 

proxy for travel time), and trigonometric relations (to determine direction). Average particle speed 

was determined for each video by calculating the arithmetic mean of the individual particle speeds 

(i.e., scalar averaging), whilst average particle direction was determined as a unit vector average (see 

Gilhousen, 1987).  

 

Average particle speeds were converted from units of ‘pixels per frame’ to relative units by 

normalising all values by the maximum observed over the deployment period. More meaningful 

physical units could not be obtained because the camera set-up lacked a means of determining 

spatial scale accurately (e.g., parallel lasers of known separation). Direction determined in the way 

described refers to particle motion occurring in the plane of the images only (i.e., no particle motion 

towards or away from the camera was quantified). We used the convention that 0° relates to 

vertical motion upwards, 180° relates to downwards motion, 90° relates to lateral motion towards 

the right of the image, and 270° relates to motion towards the left. It was not possible to relate 

these directions to a geographic coordinate system (e.g., to estimate flow direction).  

 

Some qualitative criteria were applied to the selection of particles to analyse. Brighter, clearer 

particles were preferentially selected, as these could be more easily ‘tracked’. Particles that 

exhibited an obvious change in diameter over their trajectories were deemed likely to possess a 

component of motion in the axis perpendicular to the plane of the image (i.e., towards or away from 

the camera) and were thus ignored (motion in this axis could not be resolved precisely). Any 

particles with curved or spiralling trajectories were ignored, since straight-line travel was assumed in 

calculations. Approximately 12% of the videos failed to provide 10 particle trajectories for analysis 

(the minimum number of trajectories analysed for any one video was 3).  

 

2.4. Water sample analyses 

In situ water samples were collected at several stations, as described in section 2.2.4. For every 

sampled depth, two times 5 L of seawater were immediately filtered over pre-combusted (450°C; 4 

h), pre-weighed (balance precision = ±0.01 mg) GF/F filters (47 mm diameter; 0.7 μm nominal pore 

size) under an applied vacuum for the determination of SPM concentration by gravimetric analysis. 
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After filtration, filters were flushed with 100 mL of purified water to dissolve salt crystals, and were 

then stored at -20°C until further analysis at NIOZ. In the laboratory, filters were freeze-dried (   12 h  

Vaco 5 (Zirbus Technology GmbH, Germany)) and re-weighed in order to calculate the total mass of 

suspended matter in each water sample. 

 

Additional samples were taken from the Niskin bottles for the determination of dissolved inorganic 

carbon (DIC) and nutrient concentrations (i.e., phosphate (PO4
3-), ammonium (NH4

+ - not presented), 

nitrate (NO3
-), nitrite (NO2

-), and silicate (Si)). These were collected in 50 mL Nalgene bottles, which 

had been rinsed three times with water from the relevant Niskin bottles before filling. After sampling 

on deck, samples were filtered through 0.2 µm polycarbonate membrane filters (Whatman 

Nuclepore). Those samples intended for nutrient analysis were immediately sub-sampled into two 

vials, one of which was used for PO4
3-, NH4

+, NO3
-, and NO2

- determination (stored at -20°C) and the 

other for Si determination (stored at 4°C). Nutrient concentrations were determined by colorimetric 

analyses in the NIOZ laboratory using a QuAAtro Continuous Segmented Flow Analyser (Seal 

Analytical Ltd., UK). Measurements were made simultaneously on four channels: PO4
3-, NH4

+, NO2
-, 

and NO3
- and NO2

- combined. Si concentrations were analysed in separate runs of the QuAAtro 

system. All measurements were calibrated against standards diluted to known nutrient 

concentrations with low nutrient seawater (LNSW). The LNSW was in the salinity range of the 

stations at the SMS (approximately 35 psu) to ensure calibration standards were of equivalent ionic 

strength to samples and hence negate salt effects. Each run of the system produced a calibration 

curve with a correlation coefficient of at least 0.9999 for 10 calibration points, but typically 1.0000 

for linear chemistry. A freshly-diluted, mixed nutrient standard, containing silicate, phosphate, and 

nitrate (a so-called ‘nutrient cocktail’), was measured in every run, as a guide to monitor the 

performance of the standards. 

 

Filtered seawater samples intended for DIC determination were transferred into glass vials already 

containing 15 µL HgCl2 (mercury chloride). The vials were filled with a convex meniscus before being 

capped and stored upside down in a refrigerator. Samples were analysed on a Traacs 800 Auto-

Analyser (Seal Analytical Ltd., formerly Technicon) following the methodology described in Stoll et al. 

(2001).  
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3. Results 

 

3.1.  Sponge ground characteristics from biological sampling 

Variation was observed in the composition and distribution of sponge-dominated communities along 

a depth gradient (i.e., summit, slope, and base) on the seamount. The summit and shallower areas 

(560 - 700 m water depth) were inhabited mainly by dense aggregations of hexactinellid sponges 

(Schaudinnia rosea, Trichasterina borealis, Scyphidium septentrionale, and Asconema foliata) (see 

also Torkildsen, 2013) along with tetractinellids (Geodia parva, G. hentscheli, and Stelletta 

rhaphidiophora) (Cárdenas et al., 2013) growing on a mixed substrate dominated by spicule mats 

(Fig. 2(a)). The slope was largely dominated by G. hentscheli, polymastiids, and various encrusting 

sponges growing on hard substrates (Fig. 2(b)). Deeper areas (>2000 m depth) were dominated by 

the demosponges Spinularia sarsi, Tentorium semisuberites, and Thenea abyssorum (Barthel and 

Tendal, 1993; Plotkin et al., 2017) on soft sediments, along with the hexactinellid sponges 

Caulophacus arcticus and Asconema megaatrialia and dense aggregations of unidentified Axinellidae 

on hard substrates (mainly pillow lava) (Torkildsen, 2013; this study, Fig. 2(c)). The dominating 

sponge fauna found on the SMS represent a core group of ground-forming species shared by a 

number of seamounts along this ridge system.  

 

ROV video transect analysis (ROV-4) revealed trends of increasing species richness and total 

abundance with decreasing water depth (i.e., increasing elevation up the seamount) for the phylum 

Porifera (plots in Fig. 2), which clearly dominated the large epifauna. Similar trends were observed in 

ROV transects from different directions, and more in-depth analysis of these data will be presented 

in a forthcoming article. The summit sponge aggregations were particularly dense and diverse, and 

the seabed there is largely covered by surficial spicule mats of several centimetres thickness (   10 - 

20 cm thick - data not presented in this article).  
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Figure 2 – Sponge-dominated communities found along a depth gradient on the Schultz Massif Seamount. (a) 

shows the typical sponge community in the summit area (560 - 700 m depth), dominated by Schaudinnia rosea 

(coarse branching sponge) and Asconema foliata (delicate branching sponge) growing on a dense layer of 

spicule mat and living tetractinellid sponges (Geodia parva, G. hentscheli, and Stelletta rhaphidiophora). (b) 

shows the seamount flank (at    1000 - 1400 m depth), dominated by Geodia hentscheli (brownish, massive) and 

the polymastid Spinularia njordi (disc-shaped). (c) shows an unidentified Axinellidae (left) and Caulophacus 

arcticus (right), two common representatives of the sponges found on hard substrates in deeper areas around 

the base of the seamount. All scale bars represent 0.3 m. Plots beneath the images show depth profiles of total 

abundance and species richness of sponges (phylum Porifera), as determined from ROV video transect 

analysis.  
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3.2. Oceanographic setting from water column profiling 

Representative water depth profiles of key oceanographic parameters are shown in Fig. 3. Profiles 

were similar across all seamount stations (i.e., CTD-2 to -11). A permanent thermocline and halocline 

are clearly discernible in panels (a) and (b), respectively, between approximately 200 and 400 m. 

There is also evidence of seasonal stratification occurring near the surface.  

 

Dissolved oxygen concentration (Fig. 3(d)) exhibited a sub-surface maximum in the upper water 

column (   25 m depth). This was coupled with maxima in both fluorescence and turbidity (panels (e) 

and (f)), suggesting a productive surface layer most likely benefitting from oxygenated water and, at 

least in its upper range, light availability. A broad zone of reduced oxygen concentration was 

present, centred on the base of the surface layer (   200 m). Below this zone, a layer of elevated 

oxygen concentration was observed between 300 and 650 m. Within the oxygen-enriched layer, a 

peak in oxygen concentration was consistently observed to coincide approximately with the level of 

the adjacent seamount summit. Spatio-temporal variability in the position of this peak over the 

survey is illustrated in Fig. 3(d) by the inclusion of oxygen profiles from a number of other CTD 

stations. 

 

In several profiles (particularly CTDs 3, 4, and 7-11), secondary peaks in fluorescence were apparent 

at the upper boundary of the oxygen-enriched layer (   300 m; Fig. 3(e)). Close inspection reveals 

associated peaks in turbidity (Fig. 3(f)), likely indicating the presence of a lens (or lenses) of water 

with elevated suspended matter content or a thin intermediate nepheloid layer (INL). No similar 

features were observed at the off-seamount reference station (CTD-1). Note that the turbidity 

profile in Fig. 3(f) has been smoothed to remove spikes caused by large individual particles and/or 

instrument noise. Profiles of chlorophyll a concentration and turbidity are shown together for all 

CTD stations in supplementary Figs. S1 and S2. High surface values have been omitted (i.e., 200 - 

1000 m depth plotted) to allow the use of an appropriate horizontal axis scale for inspecting the 

smaller, secondary peaks. The square of the Brunt-Vӓisӓlӓ buoyancy frequency, N2 (a measure of 

stratification stability), is also shown. The chlorophyll and turbidity peaks at    300 m coincide with 

peaks in N2. The lenses of suspended matter appear to have occurred at a local increase in vertical 

density gradient (also seen in Fig. 3(c)) associated with the transition to the oxygen-enriched layer / 

intermediate water mass. 
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Figure 3 - Vertical profiles of (a) water temperature, (b) salinity, (c) potential density anomaly (σθ), (d) 

dissolved oxygen concentration, (e) chlorophyll a concentration, and (f) turbidity from CTD Station 3. Dissolved 

oxygen profiles from several other CTD stations are also plotted in panel (d) (coloured lines) to illustrate the 

variability observed in the position of the local maximum near the level of the seamount summit.  
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The permanent thermocline and halocline were also observed at approximately 200 – 400 m depth 

in the across-ridge CTD transect (Fig. 4(a) and (b)). The oxygen-enriched layer, apparent in Fig. 3, 

spans the entire transect and has a near-constant thickness of approximately 300 m (Fig. 4(c)). The 

lower boundary of this layer was just above the level of the bed (at the ridge crest), though the 

transect did not cross the absolute summit of the seamount, which was almost 100 m shallower. 

Lenses of water with elevated fluorescence levels are evident above the ridge crest (Fig. 4(d)) at the 

upper boundary of the oxygen-enriched layer. Cross-sections from the along-ridge CTD transect 

exhibit similar features and are shown in Fig. 5. Notably this transect bisected the seamount summit, 

crossing topography of greater elevation, and so convergence of the oxygen-enriched layer upon the 

summit is apparent. In both cross-sections there is evidence of the vertical displacement of 

isotherms in the mid-water column (   300 – 600 m) from station to station. Such displacements 

indicate either a modification of the water column structure by the seamount or baroclinic tidal 

perturbations captured over the course of each CTD transect. In the along-ridge salinity and 

dissolved oxygen cross-sections (Fig. 5(b) and (c)) horizontal gradients present in surface waters (< 

200 m) may indicate a frontal scenario. 
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Figure 4 – Cross-sectional distribution of (a) water temperature, (b) salinity, (c) dissolved oxygen 

concentration, and (d) chlorophyll a concentration from the across-ridge water column profiling transect 

(south-east to north-west).  
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Figure 5 – Cross-sectional distribution of (a) water temperature, (b) salinity, (c) dissolved oxygen 

concentration, and (d) chlorophyll a concentration from the along-ridge water column profiling transect 

(north-east to south-west).  



23 
 

A potential temperature-salinity (θ-S) diagram was produced (Fig. 6) using all CTD profiles collected 

in the vicinity of the seamount (i.e., CTD-2 – 11). For each profile, the top 100 m of data were 

removed because temperature and salinity are influenced by surface processes at these depths 

(rather than simply the mixing and advection of water masses) and cannot be considered to behave 

conservatively. The θ-S diagram shows the influence of 3 principal water masses: (1) Norwegian 

Atlantic Water (NwAtW – θ > 2°C, S > 35 psu)  (2) Norwegian Arctic Intermediate Water (NwArIW – θ 

≈ 0.5°C, S ≈ 34.88 psu)  and (3) Upper Norwegian Deep Water (uNwDW – θ ≈ -0.5°C, S ≈ 34.92 psu) 

(Hopkins, 1991; Blindheim and Østerhus, 2005). Since NwAtW has its origins in the North Atlantic, 

North Atlantic Water (NAtW) with θ > 8°C and S > 35.3 psu is its warmest, highest salinity end 

member (not shown). The coldest end member influencing water mass structure in this region is 

likely to be Norwegian Deep Water (NwDW -  θ ≈ -1.05°C, S ≈ 34.91 psu) (Hopkins, 1991; Blindheim 

and Østerhus, 2005). The influence of NwArIW occurred at depths corresponding to the oxygen-

enriched layer (i.e., between 300 and 600 m). 

 

 

Figure 6 - Potential temperature-salinity (θ-S) diagram showing the water mass structure in the vicinity of the 

Schultz Massif Seamount (June 2016). Dissolved oxygen concentrations are overlaid. Norwegian Atlantic Water 

(NwAtW), Norwegian Arctic Intermediate Water (NwArIW), Upper Norwegian Deep Water (uNwDW), and 

Norwegian Deep Water (NwDW) characteristics are shown using a thick grey line and grey crosses, respectively 

(values from Hopkins (1991) and Blindheim and Østerhus (2005)). Dashed grey curves are isopycnals (labelled 

with potential density anomaly, σθ, values).  
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Depth profiles of inorganic nutrient concentrations (PO4
3-, NO3

- + NO2
-, Si) and dissolved inorganic 

carbon (DIC) at SMS are shown in Fig. 7. They combine values from water samples taken during the 

CTD survey and during ROV dives near the summit. Nutrient concentrations in the surface layer were 

low, indicating depletion by phytoplankton. They increased, whilst dissolved oxygen decreased, with 

depth in the surface layer. This likely reflects the combined effects of decreasing phytoplankton 

photosynthesis, growth, and nutrient uptake with depth and of oxygen depletion and nutrient 

enhancement by microbial respiration and remineralisation processes near the base of the surface 

layer. The zone of reduced oxygen concentration at this level (discussed above) is likewise accounted 

for. Nutrient concentrations and DIC continued to increase with increasing water depth: they were 

high (relative to surface waters) in the NwArIW (400 – 600 m), and slightly higher still in the uNwDW 

(> 600 m). 

 

Figure 7 – Vertical profiles of inorganic nutrient concentrations (PO4
3-

, NO3
-
 + NO2

-
, Si) and dissolved inorganic 

carbon (DIC) at the Schultz Massif Seamount. Near-seamount values have been combined (black symbols) and 

are presented with those from opportunistic water sampling during ROV dives to the summit (red points). 

Values from the deeper, off-seamount reference station (CTD-1) are also included (bright green points). A 

chlorophyll a profile (CTD-2; green line) and several dissolved oxygen profiles (CTD-2, -4, and -10; red, blue, 

and grey lines, respectively) are plotted to provide context.  
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Fig. 8 shows depth profiles of SPM at the SMS. All profiles show elevated SPM in the surface layer 

(   1.5 - 2 mg L-1), likely the result of surface productivity. SPM values were generally smaller at 300 – 

400 m water depth (   1 mg  -1), and similar values were observed in deeper waters (at the bottom of 

profiling casts). An average value for near-bed (0.6 mab) SPM concentration was determined to be 

3.2 mg L-1 (range: 2.4 – 4.2 mg L-1) using data from the McLane particulate sampler installed on the 

benthic lander (value shown in Fig. 8 for comparison). Near-bed SPM appeared considerably 

elevated when compared with values at equivalent depths in adjacent water column profiles. This is 

indicative of local / near-field particulate resuspension by near-bed currents. Elevated levels of SPM 

in bottom waters are not clearly detectable in the depth profiles, as the CTD-Rosette unit was rarely 

permitted to approach the bed to within 10 m. 

 

Figure 8 – Vertical profiles of suspended particulate matter (SPM) concentration at the Schultz Massif 

Seamount. An average near-bed value (i.e., 0.6 mab), determined using data from the benthic lander, is also 

shown for comparison. Error bars represent the data range for mean-averaged points, and are thus not shown 

for those depths at which single samples (rather than duplicates) were obtained.  
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3.3.  Near-bed time series data from the benthic lander 

Time series data recorded by the BOBO lander are shown in Fig. 9. Regular, in-phase fluctuations 

were observed in water temperature and dissolved oxygen concentration (Fig. 9 (a) and (b)). Each 

consisted of (1) a ‘jump-relax’ event (shaded grey in Fig. 9) characterised by an initial step-increase 

and a gradual decline (exhibiting a secondary, less pronounced local maximum) and (2) a short 

period of lower temperature and dissolved oxygen (typically exhibiting reduced temporal variability 

in both parameters). For the two entire cycles captured in the record, the period was 25.7 and 26.7 h 

(measured from step-increase to step-increase). Further (partial) cycles can be discerned at the start 

and end of the record.  

 

The temperature and dissolved oxygen signals had a fixed-phase relationship with periodic variations 

in near-bed suspended particle speeds and particularly directions (Fig. 9 (c) and (d)), as determined 

from video analysis. Change of particle direction coincided with the step-increases in temperature 

and dissolved oxygen, and the particles continued in that direction (left to right, laterally in the 

benthic boundary layer) during the gradual relaxation of these parameters. Particle direction 

reversed (right to left) for the duration of the short ‘reduced-variability’ stages, with the result that 

the periodic variations in particle direction were somewhat asymmetric (particles travelled for 

longer in one direction than in the reverse). Particle speeds were generally elevated during the 

longer ‘jump-relax’ stage, exhibiting two peaks during these periods. They were typically lower 

during the shorter ‘reduced-variability’ stage. The data derived from lander video analysis in this 

paper are subject to several limitations (see Materials and methods) but offer qualitative insight. 

Taking particle speed and direction as proxies for current speed and direction, the fixed-phase 

relationship with temperature and dissolved oxygen suggests a hydrodynamical phenomenon is 

responsible for the temporal behaviour of these parameters. Diurnal tidal forcing is likely important, 

given the periods between successive ‘jumps’ and the periodicity of the particle direction behaviour, 

but this does not preclude the influence of higher frequency signals. For example, the secondary 

local maxima in temperature and dissolved oxygen (i.e., those peaks that are not ‘jump’-like), and 

associated peaks in particle speed, occurring throughout the record could indicate the influence of 

shorter period tidal constituents or inertial motions.   

 

To support near-bed flow information inferred from video analysis, data were extracted from a 

regional barotropic inverse tidal solution using the Oregon State University Tidal Inversion Software 

(OTIS – ‘Iceland’ domain  Egbert and Erofeeva, 2002). Harmonic constants for key tidal constituents 

at the SMS are shown in Table S1, and tidal current amplitudes indicate that diurnal constituents are 
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indeed likely to dominate the local velocity field. In fact, the importance of the luni-solar diurnal tidal 

constituent (K1) relative to the principal lunar semi-diurnal constituent (M2) appears to increase in 

the vicinity of the SMS (Fig. S3). Tidal current predictions from OTIS for the SMS at the time of the 

lander observations show encouragingly similar patterns to those in the dataset inferred from 

analysis of the lander video (see Fig. S4(b-d)), including strong asymmetry in the current direction 

signal (Fig. S4(d)). Predicted current speeds from OTIS appear too low, however, being almost 3 cm s-

1 at peak flow. The limitations of the particle motion analysis (section 2.3) have prevented 

presentation of flow information in such regular units in this article. However, based on features 

visible in the video footage, estimated peak flow speeds are of the order of 25 cm s-1 for this window 

of observation, and are indicative of enhanced flows at the SMS summit.   

 

The temperatures immediately before and after the largest ‘jump’ in the lander record were 

extracted (-0.21°C and -0.05°C, respectively) and compared to adjacent CTD profiles, in order to 

determine the depths at which waters of these temperatures typically occur and their vertical 

separation. These two values were separated by 131 ± 50 m water depth (mean ± SD), averaged 

across 4 CTD profiles from the nearest stations adjacent to the lander’s position (i.e., CTD-3, -5, -10, -

11). The cast at CTD-4, nearest the lander site, was not deep enough to capture the full range of 

temperatures experienced by the lander, and so could not be used for this purpose. This analysis 

suggests that vertical displacements of water / isotherms by 130 m or more can occur at this 

location, interacting with the seamount summit with a periodicity of slightly longer than 1 d. The 

warmest water incident upon the lander site (669 m water depth) was more typically found 72 m 

higher in the water column (at 597 ± 40 m depth (mean ± SD)), at the base of the layer of NwArIW. 

The change in water temperature at the time of a ‘jump’ is fairly rapid, occurring in 15 min or less. 

 

Note that a decreasing trend was apparent in the dissolved oxygen record but, owing to the short 

duration of the time series, it is unclear whether this can be attributed to longer timescale variability 

or to gradual acclimatisation of the instrument to a deep-sea environment. The salinity record has 

been omitted from Fig. 9 because fluctuations in salinity were small to negligible and no clear 

temporal pattern could be discerned above noise (i.e., short periods of spikey salinity data at step-

changes in temperature, most likely the result of thermal-lag induced instrumental error – see Garau 

et al. (2011)). De-spiking and interpolation of the salinity record could not be achieved with 

sufficient scientific rigour, but visual inspection confirmed an estimated mean salinity value of 34.91 

psu is appropriate. This is consistent with values at the same water depth from the CTD survey. 
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Figure 9 - Time series data from the Bottom Boundary (BOBO) Benthic Lander deployed near the seamount 

summit for c. 3 days in June 2016. Panels show (a) water temperature, (b) dissolved oxygen concentration, (c) 

suspended particle speed, and (d) suspended particle direction (0°=up (in the video footage); 180°=down; 

90°=towards the right; 270°=towards the left; see Materials and methods). Grey-shaded areas highlight ‘jump-

relax’ events in temperature and dissolved oxygen and associated features in particle speed and direction (see 

text).  
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4. Discussion 

 

The purpose of this study was to characterise the oceanographic setting and short-timescale 

environmental variability at the SMS in order to identify environmental conditions that sustain and 

influence a dense sponge ground on its summit. The summit coincided approximately with the lower 

boundary of an intermediate water mass, believed to be Norwegian Arctic Intermediate Water 

(NwArIW) (Blindheim, 1990; Hopkins, 1991; Blindheim and Rey, 2000; Jeansson et al., 2017). This 

had a slightly higher temperature and dissolved oxygen concentration than the deep water mass 

below (Upper Norwegian Deep Water – uNwDW), to which the seamount flanks were exposed. Time 

series records from a site just below the seamount summit revealed a series of regular fluctuations 

in water temperature and dissolved oxygen concentration. These events corresponded with patterns 

in reversing near-bed currents, which had a periodicity approximately equal to that of the diurnal 

tide. Comparison of maximum and minimum temperatures from the time series with temperature 

profiles from the CTD survey suggests that the fluctuations represent periodic impingement of 

waters upon the summit that are typically separated by around 130 m depth in the adjacent water 

column. The warmest water incident upon the lander was typically found 72 m higher in the water 

column, at the base of the layer of NwArIW. It appears that the summit of the SMS hosts a dynamic 

environment that is predominantly tidally-forced, a feature common to several sponge-dominated 

communities described in the scientific literature (see section 4.2. – Biological response). 

 

Other potentially important factors were observed, and are summarised here. Near-bed SPM levels 

were elevated compared to those in the adjacent water column. Particulate matter was transported 

laterally in the benthic boundary layer. Its direction of travel underwent frequent reversal, and 

transport was asymmetric (discussed below). Lenses of water with enhanced chlorophyll a 

concentration were apparent above the seamount summit (at the base of the permanent 

thermocline / top of the layer of NwArIW). Levels of inorganic nutrients and DIC in uNwDW were 

slightly elevated compared to NwArIW. Horizontal gradients of salinity and dissolved oxygen 

concentration were observed at shallow depths during the along-ridge CTD transect (Fig. 5(b) and 

(c)), possibly indicating the proximity of a front between surface water masses. 

   

Two main questions arise, which are addressed below. What is the dynamical phenomenon 

responsible for the observed temporal variability in near-bed parameters? How is the observed 

environmental setting likely to influence sponges on the summit? 

 



30 
 

4.1. Hydrodynamics 

It has not been possible to fully describe the prevailing hydrodynamics at the SMS summit on the 

basis of a short-term current record, from a single site, containing derived (rather than directly 

measured) information (see section 2.3.). However, diurnal tidal forcing appears important. The 

amplification of diurnal tidal currents at seamount summits and other isolated topographic features 

is regularly reported in the scientific literature (e.g., Eriksen, 1991; Haidvogel et al., 1993 (and 

references therein); Brink, 1995; Codiga and Eriksen, 1997). Exactly how seamounts intensify such 

currents is yet to be clearly established (Kunze and Toole, 1997).  

 

Reflection of incident internal waves has been proposed as one explanatory mechanism (Kunze and 

Sanford, 1986). The SMS site (latitude: 73° 47’N) is above the critical ‘diurnal turning’ latitude (   30°N 

and S) at which the diurnal tidal frequency equals the inertial frequency. Below this critical latitude, 

diurnal period internal waves are superinertial and can propagate freely (Kunze and Sanford, 1986; 

Kulikov et al., 2010). Above it, they are subinertial and cannot do so (Kunze and Sanford, 1986; 

Kulikov et al., 2010). It is therefore unlikely that diurnal period internal waves from remote sources 

could be incident upon (and reflected from) the seamount, intensifying near-bed currents. The SMS 

is <1° of latitude below a critical ‘semi-diurnal turning’ latitude (   74.5°N and S for the principal lunar 

semi-diurnal tidal constituent (M2)). Semi-diurnal period internal waves are superinertial at the 

latitude of the SMS and can propagate freely. Thus, incoming semi-diurnal internal waves may 

potentially contribute to bottom current amplification at the SMS. Although a diurnal signal clearly 

dominates the timeseries record from the benthic lander, there is some evidence to suggest 

fluctuations of a higher (possibly semi-diurnal/inertial) frequency. Contribution from the semi-

diurnal tide is not unexpected at the latitude of the SMS through mechanisms other than reflection 

of internal waves. Indeed, several authors have found internal tidal currents to be significantly 

amplified at near-critical latitudes (such as we have here for the M2 tide) (Munk and Phillips, 1968; 

Furevik and Foldvik, 1996; Kulikov et al., 2010).   

 

Baroclinic wave motions that are trapped to seamount topography (‘seamount-trapped’ topographic 

waves) are often cited as a mechanism by which oscillating bottom currents may be amplified 

(Chapman, 1989; Eriksen, 1991; Haidvogel et al., 1993; Brink, 1995; Codiga and Eriksen, 1997). These 

are believed to be resonantly generated and excited to substantial amplitudes by relatively weak 

oscillatory flows (e.g., the diurnal tide in many parts of the deep open ocean) (Chapman, 1989; Brink, 

1990; Eriksen, 1991; Haidvogel et al., 1993). Internal wave motion generated locally may also persist 

as ‘vortex-trapped’ waves (i.e., trapped in circulation patterns existing around the seamount 
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summit) (Kunze and Toole, 1997; White et al., 2007). In both cases, diurnal tidal motions are likely to 

feature more prominently because the site is above the critical ‘diurnal turning’ latitude, rendering 

such motions unable to propagate away freely. Vortex-trapped diurnal internal waves are subject to 

constraints of scale above about 40°N and S (see Kunze and Toole, 1997), and so seamount-trapped 

topographic waves of diurnal periodicity may be more likely at the SMS.  

 

The current record obtained in this work suggests asymmetry in tidal transport (i.e., the current 

flows faster and for longer duration in one direction than in the reverse). Tidal rectification, resulting 

from non-linear interaction between enhanced tidal currents and steep bathymetry, is a potential 

explanatory mechanism and one that has been reported for seamounts (Eriksen, 1991; Brink, 1995; 

White et al., 2007). Asymmetry is also present in the OTIS (barotropic) tidal current predictions for 

the SMS during the observation period (Fig. S4). The temperature and dissolved oxygen fluctuations 

in the time series data may be caused either directly by vertical motions associated with seamount-

trapped topographic waves (Kunze and Toole, 1997) or as a local consequence of an enhanced tide. 

In the latter case, topographic acceleration of tidal currents passing over, for example, the strong 

ridges either side of the lander site may hydraulically generate transient downwelling ‘events’ 

downstream of the topographic feature (Davies et al., 2009). This has been shown to influence food 

supply to other communities of suspension feeders (Davies et al., 2009).  

 

Lenses of water with elevated chlorophyll a concentration and turbidity occurring directly above the 

summit of a seamount, as observed in this study, have been associated with the retention of passive 

particles by anti-cyclonic (in the Northern Hemisphere) horizontal circulation around the summit and 

associated secondary circulation in the vertical-radial plane (Goldner and Chapman, 1997; Beckmann 

and Mohn, 2002). Whilst the existence of such circulation cells at the SMS cannot be confirmed on 

the basis of this study, tidal rectification (discussed above) has also been implicated in driving 

horizontal circulation at other seamounts (Eriksen, 1991; Brink, 1995; Kunze and Toole, 1997).  

 

Classically, mean circulation patterns over seamounts have been attributed to steady impinging 

flows (rather than rectified tidal currents), and are explained in terms of Taylor-Proudman dynamics 

(based on vorticity arguments) (Proudman, 1916; Taylor, 1917). Jet currents, topographically-steered 

by the AMOR, are thought to exist at depth in the region (Orvik and Niiler, 2002), and could provide 

the flow required to generate a so-called ‘Taylor cap’ above the SMS. A Taylor cap is an isolated anti-

cyclonic (in the Northern Hemisphere) flow pattern about a seamount. 
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The ability of the SMS to host a Taylor cap can be explored by calculating three non-dimensional 

parameters that characterise the flow, stratification, and seamount height: the Rossby number, Ro = 

U/fL (representing the ratio of advective to rotational effects); the Burger number, S = NH/fL (a 

measure of the importance of the stratification relative to rotational effects); and the fractional 

seamount height, δ = hm/H. In these equations, U is a steady inflow velocity, f the Coriolis frequency, 

L the seamount horizontal length scale, N the Brunt-Vӓisӓlӓ buoyancy frequency, H the water depth 

(in the absence of the seamount), and hm the height of the seamount above the bottom. Given the 

situation of the SMS on a mid-ocean ridge system, estimating its horizontal extent is difficult. We 

employ L = 7 km, based on the bathymetry shown in Fig. 1(b) and determined as the average of the 

major and minor axes of the elliptical seamount footprint (10 km and 4 km, respectively). This 

represents the lower bound of possible estimates. At the latitude of the SMS, f = 1.4 x 10-4 rad s-1, 

and the product fL is conveniently close to unity, giving Rossby numbers of 0.05 - 0.3 for flows (U) of 

5 – 30 cm s-1. The fractional height, δ, of the SMS is sensitive to the values selected for H and hm, but 

a range of approaches returns values between 0.6 and 0.8. Selecting an appropriate value for H is 

also difficult for a seamount rising from a ridge system already elevated relative to adjacent basins. 

In the discussion that follows, we use H = 1400 m and hm = 837 m (i.e., δ = 0.6) for consistency with 

our estimate of L taken from Fig. 1(b), but larger values could also be considered appropriate. By 

comparison with the work of Chapman and Haidvogel (1992) (see Fig. 20 in that work), our 

calculated Rossby numbers span a critical threshold delineating the occurrence (low Ro) and non-

occurrence (high Ro) of Taylor caps for seamounts in this height range. 

 

It would appear that the SMS could host a Taylor cap, or what Chapman and Haidvogel (1992) refer 

to as temporary trapping (a transient cap), under weak, steady flow conditions. A representative 

length scale, L, for the SMS may be larger than that estimated above. In such a case, smaller Ro 

values would be returned for the same range of inflow currents, further favouring the possible 

occurrence of a Taylor cap. The numerical model outputs of Chapman and Haidvogel (1992) were for 

steady, stratified impinging flows with Burger number S = 1, whereas here S is greater (   1.4; 

calculated using a representative N value from below the permanent pycnocline of 9.6 x 10-4 rad s-1). 

This will have implications for the critical Rossby number separating the occurrence and non-

occurrence of Taylor caps, but is unlikely to alter the broader interpretation that Taylor caps are 

theoretically possible at the SMS under weak flows. The models were run with the simplifying 

assumptions of an isolated, smooth, axisymmetric seamount topography and a non-periodic flow 

regime, which do not hold at the SMS with potential implications for Taylor cap development.   
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Evidence of the clear isopycnal doming that is expected in association with vortex caps (either Taylor 

caps or those generated by tidal rectification) over seamounts is not compelling at the SMS (Figs. 4 

and 5). Calculating the decay height (Hd) of a hypothetical Taylor cap at the SMS, using the equation 

fL/N of Brechner Owens and Hogg (1980), gives Hd = 1021 m for f, L, and N values as stated above. 

This suggests that, under steady flow, the SMS could cause local mesoscale variability up to at 

most    200 m above its summit (i.e., up to the base of the permanent pycnocline). The vertical extent 

of its influence is likely to be smaller still because it will be truncated further by the higher levels of 

stratification present above the seamount. This may explain the absence of clear isopycnal doming 

in the CTD transect data. A hydrographic survey designed to measure currents at various positions 

on the seamount, quantify the strength and nature of any mean circulation, and determine the 

relative importance of tidal and steady-flow dynamics would be revealing in this respect. 

 

4.2. Biological response 

Sponges living on the SMS summit are likely to benefit from several of the observed factors 

identified above. The seamount is deep (sensu Pitcher et al. (2007)) and situated within very cold 

waters (i.e., <0°C). The summit is periodically flushed with slightly warmer, oxygen-enriched water 

from the core of Norwegian Arctic Intermediate Water (NwArIW) above, which may boost metabolic 

processes. Its location at the boundary of two water masses may ensure that the summit sponge 

ground also benefits from the slightly elevated inorganic nutrient and DIC concentrations of the 

Upper Norwegian Deep Water (uNwDW) below, supplied through the turbulence and mixing 

generated by the hydrodynamical processes discussed. Near-bed SPM concentrations are elevated 

compared with the adjacent water column (probably through local / near-field resuspension by tidal 

currents), improving food supply to the sponges. Particulates are advected laterally in the benthic 

boundary layer by oscillating, temporally asymmetric tidal currents, which increase particle 

residency times near the sponges, whilst also supplying ‘fresh’ particles and acting to prevent 

smothering by sedimentation. Furthermore, any retention of passive organic material above the 

seamount (i.e., the lenses of elevated chl a and turbidity) has implications for food supply and 

recruitment. 

 

The summit of the SMS is assumed to have provided suitable substrate for the initial growth of 

sponges and, since then, a spicule mat (   10 - 20 cm thick - data not presented in this article) has 

developed at the sediment interface, supporting the existence of the sponge ground in the present 

day. Appropriate substrate availability is a key abiotic factor driving the spatial distribution of 

sponges (Barthel and Gutt, 1992; Barthel and Tendal, 1993). Investigations that aim to establish the 
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relative importance of different factors to sponge distribution are recommended. These could take 

the form of correlating changes in sponge density and diversity with depth against changes not only 

in the oceanographic factors identified in this work but also in other important factors, such as 

surficial geology and biotic interactions.       

 

Our findings and interpretations are consistent with those of several other authors. Whitney et al. 

(2005) attributed the persistence of hexactinellid sponge reefs at the heads of shelf canyons to 

several factors, including the presence of nutrient rich waters, the supply of SPM, and the local 

prevalence of tidally-modulated near-bed currents that increase particle residency times and 

prevent smothering of the sponges. Genin et al. (1986), Rice et al. (1990), and White (2003) all 

highlighted a potential link between enhanced near-bed currents, improved food supply (and/or 

larval recruit supply, in the case of Genin et al. (1986)), and the occurrence of sponge-dominated 

communities. Klitgaard and Tendal (2004) discussed the detrimental (smothering) effect of high 

suspended particulate loads that settle out, which by extension highlights the value to sponge 

grounds of a current regime that prevents this from occurring. Beazley et al. (2015) concluded that 

the presence of dense sponge grounds could potentially be attributed to a warmer water mass 

residing in their study area. Several other authors have related the presence of sponges to that of a 

specific water mass in the study region (Barthel et al., 1996; Klitgaard and Tendal, 2004; Murillo et 

al., 2012). Finally, White et al. (2007) noted that the retention of suspended organic material over 

seamounts could indicate enclosed circulation patterns, which sometimes include a downwelling 

component likely to be important to benthic organisms located there. 

 

The results presented here identify a subtle interplay between the hydrodynamics of the seamount 

summit and the water masses located above and below, which may be an important factor in 

explaining the success of the dense sponge ground occupying the summit. Time series 

measurements came from a benthic lander positioned 70 - 80 m below the true summit. Given that 

the most energetic water motions associated with seamounts are typically concentrated near the 

very top (Brink, 1989; Chapman, 1989), it is possible that several of the beneficial factors discussed 

above are further enhanced there.  

 

4.3. Conclusion 

Interaction between seamount geomorphology, hydrodynamic regime, and water column structure 

resulted in several environmental factors that may benefit sponges and help explain enhanced 

sponge density and diversity at the summit of the SMS. The sponge ground occurred within nutrient-
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rich waters (NwArIW / uNwDW boundary). It was regularly flushed with warmer, oxygen-enriched 

water from above (NwArIW). It was also exposed to elevated near-bed SPM levels, and experienced 

favourable (diurnal tidal) currents that potentially enhance food supply and prevent smothering by 

sedimentation. Elevated chlorophyll a concentration observed in the mid-water column above the 

summit may indicate passive particle retention by seamount-scale circulation patterns with further 

implications for food supply and recruitment. 

 

The primary limitation of the work was that the hydrodynamical setting could not be characterised 

fully on a summit-wide scale. Furthermore, the observed hydrodynamics may not persist throughout 

the year, represent the dominant phenomena over longer time scales, or reflect those most 

important to the sponges. Several longer-term moorings would be required to resolve these 

questions. Owing to the global diversity in seamount morphology and oceanographic setting, the 

results of this study cannot be generalised to all seamounts. However, it is likely that they may be 

generalisable to similar seamounts known to exist along the AMOR. The broad implication is that, if 

dense seamount sponge grounds (such as that at the SMS) and their associated ecosystems are 

sustained by the coincidence of multiple beneficial environmental factors acting in synergy at a given 

location / depth, they may be sensitive to changes across a particularly broad range of abiotic factors 

(e.g., under climate change, or anthropogenic activities in the deep sea). 
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Highlights – Oceanographic setting and short-timescale environmental variability at an Arctic 

seamount sponge ground (E.M. Roberts, F. Mienis, H.T. Rapp, U. Hanz, H.K. Meyer, A.J. Davies) 

 Coinciding beneficial factors enhance sponge density and diversity at the seamount summit. 

 The summit sponge ground occurred within nutrient-rich sub-surface water masses. 

 It was regularly flushed with warmer, oxygen-enriched water from above. 

 The suspended matter and current regime likely supplies food and prevents smothering. 

 Mid-column lenses of elevated chlorophyll a indicate particle retention over the seamount. 

 




