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Summary 

The focus of this thesis is on the design and selection of systolic architectures 
for ASIC implementation of the real-time digital signal processing task of Modi- 

fied Covariance spectral estimation. When used with pulsed Doppler ultrasound 
blood flow detectors, the Modified Covariance spectral estimator offers increased 

sensitivity in the detection of arterial disease over conventional Fourier transform 

based methods. 

The systolic model of computation is considered because through pipelining and 

parallel processing high levels of concurrency can be achieved to attain the nec- 

essary throughput for real-time operation. Systolic arrays of simple processing 

units are also well suited for implementation on VLSI. The versatility of the de- 

sign of systolic arrays using the rigorous data dependence graph methodology is 

demonstrated throughout the thesis by application to all sections of the spectral 

estimator design at both word and bit levels. 

Systolic array design for the model order 4 Modified Covariance spectral estima- 

tor, known to offer accurate estimation of blood flow mean velocity and d1stur- 

bance at an acceptable computational burden, is initially discussed. A variety 

of problem size dependent systolic arrays for real-time implementation of the 

fixed model order spectral estimator are designed using data dependence graph 

mapping methods. Optimal designs are chosen by comparison of hardware, com- 

munication and control costs, as well as efficiency, timing, data flow and accuracy 

considerations. A cost/benefit analysis, based on results from structural simula- 

tion of the arrays, allows the most suitable word-lengths to be chosen. 

Problem size independent systolic arrays are then discussed as means of coping 

with the huge increases in computational burden for a Modified Covariance spec- 

tral estimator which is programmable up to high model orders. This type of array 

can be used to reduce the number of PEs and increase efficiency when compared 

to the problem size dependent arrays and the research culminates in the proposal 

of a novel spiral systolic array for Cholesky decomposition. 
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Chapter I 

Introduction 

1.1 Overview 

This thesis investigates the feasibility of hardware implementation of a spectral 

estimator for use with instruments which utilise ultrasound and the Doppler effect 
for the assessment of blood flow. 

Pulsed Doppler ultrasound detectors [1] are in wide use as non-invasive instru- 

ments for the diagnosis of arterial disease [2], providing quantitative monitoring 

of arterial blood-flow within a specific resolution cell. Backscattered ultrasound, 

from red blood cells moving within the resolution cell, contains Doppler shift 

frequencies which are detected and encoded into the envelope of a Doppler time 

signal by the pulsed Doppler instrumentation. The Doppler signal is random 

with a periodically time-varying power spectrum in the audio frequency range. 

The power spectrum gives an indication of the range of Doppler frequencies and 

is related to the profile of velocities within the resolution cell of the Doppler in- 

strument [2]. The Doppler signal is non-stationary as the blood velocities are 

constantly changing due to the rhythmic pumping by the heart and it is also 

cyclo- stationary since arterial blood flow is pulsatile over the cardiac cycle, pro- 

viding the cardiac period remains steady. However, the signal may be considered 



Chapter 1- Introduction 

as wi de- sense- stationary over short periods of time, usually 2-20ms, where its 

power spectrum remains approximately constant 

The power spectral density of the Doppler signal contains useful diagnostic infor- 

mation as, over the periods when wi de- sense- st ationarity is assumed, the spectral 

mean frequency and bandwidth are respectively proportional to the spatial blood 

flow mean velocity and the range of velocities of the red blood cells in the resolu- 

tion cell. In the region of a stenosis, mean flow velocity can increase and flow is 

disturbed, causing the range of flow velocities to widen. Therefore, correspondent 

increases in Doppler power spectrum mean frequency and the degree of spectral 

broadening allow the severity of arterial disease to be detected from the Doppler 

signal output of a pulsed ultrasonic blow flow instrument [3]. 

The process of obtaining the power spectral density (PSD) from the Doppler sig- 

nal is termed spectral estimation. The conventional method of spectral estimation 

is to apply the short term fast Fourier transform (STFFT) [4] on sequential or 

overlapping windows of data producing a series of individual power spectra over 

time. Display of the spectra is usually in the form of a real-time spectrogram an 

example of which is shown in figure 1.1. Over the three cardiac cycles shown in 

the figure, narrow vertical sections represent individual spectra where the signal 

is assumed to be wide- sense- stationary over short time durations. The darkness 

of the grey scale is used to show the power of the Doppler frequency components. 

3 

(D :3 cr 21 

0 

Figure 1-1: Spectrogram of the Doppler signals from a PDU instrument used on 
the common carotid artery. 
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A shortcoming of the of the STFFT method is that signal properties outside the 

data window are not taken into account leading to poor spectral estimates. The 

signal is assumed to be zero outside the window of interest, the sudden cut-off 
leading to spectral leakage [5] which is displayed as spurious peaks in the power 

spectrum. In attempts to suppress this effect the data can be multiplied by 

weighted window functions to gradually increase and decrease the sample ampli- 

tudes at the beginning and end of the window to smooth out the spurious peaks 

but this has the disadvantage of reducing resolution [4][5][6]. The frequency res- 

olution of the STFFT is approximately the reciprocal of the data window length 

[7] and so longer windows can be used to improve the resolution. However, as 

the length of the data window is increased the assumption that data is stationary 

over the window duration is more likely to become invalid [8]. 

The disadvantages associated with the conventional method led to the investiga- 

tion of parametric methods which makes use of a priori knowledge of the signal 

characteristics outside the region of interest [9]. There are three main branches of 

parametric spectral estimation, autoregressive (AR), moving average (MA) and 

autoregressive moving average (ARMA). All these methods entail the derivation 

of a set of filter parameters, such that a model of the Doppler signal is produced 

when the filter is driven by a white noise source. The PSD of the Doppler signal 

is given by the response of the filter, obtained from the Fourier transform of the 

filter parameters. 

Many different models exist within each branch of parametric spectral estimation 

and various criteria can be used for selection of the best method [9] [10] [11] [12] [13]. 

Selection is further complicated as an appropriate model order must be chosen 

for the estimator. The cost/benefit selection procedure proposed by Ruano and 

Fish [10], where benefit is inversely proportional to estimation error and cost is 

computational complexity, led to the selection of the model order 4 AR Modified 

Covariance method of spectral estimation when estimating mean frequency and 
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bandwidth, which involves the zeroth, first and second spectral moments. 

The price paid for improved estimation accuracy when using parametric methods 

is the increased computational complexity of such a scheme, the computational 

burden increasing with model order. However, the cost/benefit selection criterion 

[10] deems that the improvement in estimation accuracy of the relatively low 

model order 4 Modified Covariance estimator is justifiable over the use of the less 

expensive STFFT used with both Boxcar and Hanning windows. 

Parallel processing techniques can be employed to attain the throughput neces- 

sary for the required real-time results display [14]. With the use of these parallel 

partitioning schemes the spectral estimator can be implemented in a transputer 

based system [15]. This thesis takes the implementation a step further considering 

the feasibility of an application specific integrated circuit (ASIC) approach. 

Systolic arrays [16] are identified as suitable architectures for the development 

of a hardware solution of the Modified Covariance spectral estimator. They are 

used in many real-time digital signal processing applications where high com- 

putational throughput is a major requirement [17][18][19][20][21][22] and have a 

rigorous design methodology [23]. Systolic arrays consist of highly parallel arrays 

of pipelined processing elements which are regularly interconnected and whose 

function is usually a simple arithmetic operation such as multiply and accumu- 

late. They exploit localised communication where, upon a global clock cycle, data 

is transferred to a neighbouring processor. The way in which data is transmit- 

ted through these arrays can be compared to the pumping of blood which pulses 

through the body caused by the systole, which is the rhythmic beating of the 

heart - hence the name systolic arrays [17]. In very large scale integration (VLSI) 

devices it is desirable to restrict communication as much as possible as this takes 

up large area, increases power supply load and slows down operation [16]. The 

localised communication and regularity of systolic arrays therefore makes them 

very amenable to VLSI implementation [16][24]. 
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1.2 Goals 
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e Application of the systolic model of computation to the real-time, model 

order 4, AR Modified Covariance method. 

* Selection of the most efficient architectures with a view to ASIC imple- 

mentation on a VLSI platform, thereby increasing the portability of such a 

system and minimising its power requirements. 

9 To derive a methodology for the design and selection of optimally parti- 

tioned programmable systolic arrays for the Modified Covariance estimator 

for model order 4, used for measurement of mean frequency and bandwidth, 

and also for higher model orders up to 30 which are more suitable for anal- 

ysis of other blood flow properties. 

1.3 Outline of Thesis 

The background of the project is initially presented, describing the use of pulsed 

Doppler ultrasound instrumentation for non-invasive detection of blood flow, the 

formation of the Doppler signal and the affects of arterial stenosis on the PSD 

of this signal [2]. Conventional and modern spectral estimation methods are 

then introduced [25] and the research which led to the selection of the Modi- 

fied Covariance spectral estimator with model order 4 for estimation of spectral 

mean frequency and bandwidth, is reviewed [10]. To gain maximum speedup 

and increase portability, use of the systolic model of computation with a VLSI 

implementation platform [16], over MIMD models, previously used in the paral- 

lelisation of the spectral estimator onto a transputer platform [26] 
7 is proposed. 

The data dependence graph (DDG) method [16], used for the design of systolic 

architectures, is introduced with regard to the simple white noise variance cal- 

culation which is involved with the Modified Covariance method and previously 

proposed systolic arrays pertinent to this overall application are discussed. 
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Expanding on the DDG design methodology, the mapping of the fixed model order 

4 Modified Covariance spectral estimator onto problem size dependent systolic 

architectures is explored. Two main sections of the estimator are considered. The 

first involves a convolution type calculation for the derivation of covariance matrix 

elements and four systolic arrays formed from different DDCs are compared with 

regard their cost, communication, control and efficiency in finding an optimal 

solution. The second section considers decomposition techniques [27] which are 

used in the calculation of the Modified Covariance filter parameters. Two optimal 

systolic arrays, one of which requires the undesirable square-root operation, are 

selected from a range, this time produced by considering different projections of 

the DDGs from several algorithms rather than a variety of different DDGs for a 

single algorithm as in the covariance matrix element calculation. A cost/benefit 

analysis is developed to select the best method and its word-length. 

The design of problem size independent systolic arrays [28] for mapping higher 

model order Modified Covariance spectral estimators, which may be required for 

monitoring different properties of blood flow requiring an estimation of higher 

spectral- moments, is considered in the latter part of the thesis. The array se- 

lected for the model order 4 covariance matrix calculation is developed for use 

as a programmable model order device and a range of solutions result from vary- 

ing partition size. DDG partitioning and reindexing techniques [22] are again 

employed to produce a series of spiral systolic arrays for the LU decomposition 

problem, demonstrating the superiority of this mapping method for design op- 

timisation by comparison with another systolic array solution designed using an 

alternative scheme [28]. This design procedure is modified to produce a novel 

array for Cholesky decomposition. For each of the three types of programmable 

array guidelines are provided for selection of the best partitions for the desired 

range of programmability when the processor performance is known. 

The thesis concludes by considering the feasibility of systolic array implementa- 

tion and suggestions for further research possibilities are made. 
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1.4 Contribution of Research 
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The MIMD approach for transputer implementation of the Modinied Covariance 

spectral estimator fails to satisfy the computational demands required for real- 
time operation under certain conditions. This thesis demonstrates that the sys- 
tolic model of computation implemented on a VLSI platform, can be used to de- 

sign hardware which does provide the necessary real-time computational through- 

put. The following contributions are resultant from the research. 

* Design of a number of efficient systolic architectures, which can be imple- 

mented very easily on a VLSI platform, for the calculation of the covariance 

matrix elements - the most computationally demanding aspect of the model 

order p-4 spectral estimator [29]. A comparison results in the selection of 

a systolic array which partitions the multiplications from the accumulations. 

eA comparison of a range of systolic arrays, for use in the calculation of the 

fixed model order p=4 Modified Covariance filter parameters, formed by 

projecting DDG's for square-root-Cholesky, LU and LDL T decomposition 

[27] in different directions. This results in some new systolic arrays and the 

other projections produce architectures which are topologically equivalent 

to previously proposed designs. Modifications to existing systolic arrays for 

Cholesky and LU decomposition, leading to reduced hardware cost and to 

facilitate on-the-fly data retrieval, are proposed. 

*A cost/benefit analysis is used to make an in depth comparison of the square 

root [1,1,11 Cholesky and non-square-root [1,0,0) LU decomposition ar- 

rays, weighing the cost of ASIC implementation to the results accuracy for 

a range of word-lengths in the model order p=4 Modified Covariance spec- 

tral estimator [30]. The cost function considers both hardware and com- 

munication for systolic array implementation strategies based upon fixed 

point arithmetic schemes, which utillse scale factors to gain an increased 

dynamic range. Benefit is treated as the inverse of the estimation error 
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which is caused by finite word-length rounding and averaged over a large 

set of typical signals. The results of the cost/benefit analysis demonstrate 

that the Cholesky decomposition systolic array with a word-length of 12 

bits is optimal when estimating spectral mean frequency and bandwidth in 

the Modified Covariance model order p=4 spectral estimator. 

* Development of the partitioned multiply accumulate systolic array, previ- 

ously selected for the fixed model order p=4 matrix element calculation, 
for use in a programmable model order Modified Covariance spectral esti- 

mator. The number of PEs in this problem size independent systolic array 
design can be varied according to the problem specification, that is the range 

of model orders required and input data sampling frequencies, in order to 

utilise the full performance potential of the PEs. A method for optimisa- 

tion of systolic array size for model orders up to p= 30, given the timing 

constraints imposed by system and PE specification, is presented. 

*A spiral systolic array for arbitrary dimension LU decomposition is designed 

with the use of DDG methodology which clearly shows partitioning of the 

standard DDG, subproblem reindexing and chaining, thereby allowing the 

precise scheduling and allocation of all tasks. The DDG design demon- 

strates superiority over the non-graphical matrix transformation methods 

described by Navarro et al. [28] in which the subproblem interconnectivity 

is only given a vague treatment. The advantages of the DDG design are 

evident when comparing the array produced, which uses shift registers to 

reschedule data between subproblems, with that proposed by Navarro et al. 

where only the spiral data re-circulation within subproblems is considered. 

Data dependence requirements motivate a modified reindexing scheme for 

Cholesky decomposition which results in proposal of a novel spiral systolic 

array, which, when compared to the LU spiral systolic array, approximately 

halves the number of clock cycles required. Selection of optimal array sizes, 

based on the range of programmable model order, is also presented. 



Chapter 2 

Background 

2.1 Introduction 

This chapter further expands on the background information introduced in the 

first chapter, presenting a review of previous research material to provide firstly a 

clear understanding of the motivation behind the project and secondly an insight 

into digital signal processing architectures which could be used to implement 

real-time spectral estimation hardware. 

Initially, pulsed Doppler ultrasound detectors and their role in the non-invasive 

measurement of blood flow is discussed. The formation of the Doppler signal, its 

power spectrum and the effects of arterial stenosis are described. 

The second section, reviews conventional and modern methods of spectral es- 

timation, in particular the research which led to the selection of the Modified 

Covariance method and its MIMD transputer implementations. 

The last section introduces systolic arrays as a viable approach to hardware imple- 

mentation of the Modified Covariance method. An overview of design approaches 

and previously proposed systolic array designs which are applicable to this area 

of real-time digital signal processing is provided. 
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2.2 Doppler Ultrasound 

2.2.1 The Doppler Effect 

The Austrian physicist Johann Christian Doppler (1803-1853) postulated that if 

an observer is moving relative to a wave source, then the frequency detected by 

the observer is different to that emitted from the source. When moving closer 

to the source the observed frequency is higher than that of the source while a 
lower frequency is detected when moving away. The early research which leads 

to the discovery of this Doppler effect is reviewed by White [31] and Jonkman 

[32]. Formally the Doppler shift frequency fd is given by: 

fd = fr - ft (2.1) 

which is the difference between the received frequency f, and transmitted fre- 

quency ft. If the relative speed between the receiver and the source is Vd (note 

that either the source or the receiver could be moving for the Doppler effect to 

be observed) then for Vd < Cu: 
Vd 

fd 
. ft (2.2) 

CU 

where c,, is the speed of ultrasound. 

2.2.2 Clinical Use of the Doppler Effect in Ultrasound 

Use of the Doppler effect with ultrasound is made in clinical applications for the 

measurement of moving structures, most notably blood cells. Use of Doppler 

ultrasound is now common and widespread in flowmetry and imaging systems 

which can be used to detect disease in arteries such as the carotid plus those of the 

lower limb and renal regions, with applications in other fields including cardiology, 

obstetrics and tumour diagnosis [2][33][34][351. Measurement of changes in blood 

flow velocity waveform properties caused by abnormalities which occur in the 

common carotid artery is of particular interest in this study. 
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The popularity of the use of Doppler ultrasound in clinical analysis stems from 

the safety of the method, provided that power recommendation standards are 

adhered to [361, in comparison with that of X-rays for example where the risk of 

exposing the patient during the scan must be weighed against the possible diag- 

nostic benefit. Also, the Doppler ultrasound methods are non-invasive, meaning 
that there is no need to introduce any foreign substances or objects into the body 

thus eliminating any surgical puncturing, simplifying the scanning procedures to 

reduce consultation time and avoiding any further distress to the patient. 

2.2.3 Doppler Ultrasound Reflection 

The Doppler theory can be used to estimate the speed of blood cells within arterial 

flow by considering the shift frequencies in ultrasound reflected off these moving 

targets. A targeted blood cell initially acts as a moving receiver, but also upon 

reflection of the ultrasound beam back to a stationary detecting transducer, the 

blood cell also acts as travelling transmitter doubling the Doppler effect. If the 

ultrasound is reflected straight back along its transmission propagation path then 

the Doppler difference frequency fd (2.1) detected back at the receiver is: 

Vd-COSO 
fd2. 

. 
ft 

CU 
(2.3) 

where vd. cosO is the component the blood cell velocity in the direction of the 

ultrasound beam. The validity of expression (2.3) for the Doppler shift frequency 

holds only under ideal conditions where a monochromatic, infinitely wide ultra- 

sound beam is uniformly transmitted to and reflected from a plane surface moving 

at a constant velocity. However, it is not realistic to assume that a blood cell pro- 

duces a single shift frequency and in practice spectral broadening is observed due 

to the finite beam width causing amplitude fluctuations in the reflected echo, the 

variation in target cell velocity and the band of ultrasound frequencies transmit- 

ted [37]. Nevertheless, there is a strong relationship between the shift frequency 

and the target blood cell velocity, justifying the use of Doppler methods. 
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2.2.4 Ultrasonic Doppler Instrumentation 

Continuous wave ultrasonic Doppler blood flow instruments, first demonstrated 

for detection of blood flow [38] in 1961, are limited as the range at which move- 

ment occurs cannot be distinguished making it difficult to separate signals from 

arteries and veins. 

For analysis of blood flow in a blood vessel it is desirable to target a specific volume 

in the vicinity of the suspected occlusion and the introduction of the pulsed 

ultrasonic blood flow detector [1], the general block layout of which is shown 

in figure 2.1, makes this possible. In these systems a periodically transmitted 

ultrasound pulse is reflected from targets at various depths within the tissue and 

to select a particular region of the blood flow the received signal is gated at a 

specific time delay after initial transmission. The depth of the target volume 

can be controlled by the time delay assuming that the speed of the ultrasound 

through the tissue between the transducer and the target is known. The gated 

return echo signal is then demodulated by comparing its phase with that of a 

PRF 
generator 

transmitting transmission master 
amplifier gate oscillator 

receiving range demodulator 
amplifier gate 

Wultrasonic 
selected 

depth IWF transducer 
delay gate sample and 

er, 

L-E; 

generator hold 

blood 
velocity 

streamlines 

&ýMple 
Doppler 

volume output 
signal 

blood 
vessel 

Figure 2.1: Functional block diagram of a PDU blood flowmeter. 
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signal from the master oscillator from which the transmission pulses are initially 
derived. Stationary objects at the selected depth return echoes whose phase 
difference remains constant with successive pulses producing a constant output. 
Moving targets give rise to echoes whose phase changes with time and after this 

coherent demodulation process the sample and hold circuitry produces a time 

series of pulses varying in amplitude at the Doppler shift frequencies. The output 

signal is referred to as the Doppler signal. 

Since the amplitude of the return echoes decreases with target depth, there comes 

a point when the return echoes become masked by the electronic noise of the Sys- 

tem. The depth of penetration is the maximum depth at which the return echo 

is just distinguishable above the noise threshold [39]. The time between succes- 

sive transmission pulses must be greater than the transit time of the transmitted 

pulse to the maximum depth of penetration and back to the transducer, to avoid 

confusion as to which echo relates to which transmission pulse [39] The maxi- 

mum pulse repetition frequency (PRF) is therefore constrained and, due to the 

Nyquist sampling criterion [40], the maximum Doppler shift frequency that can 

be detected is limited to half of the PRF. 

The ultrasonic frequencies used for most clinical applications lie in the range 

from 2 to 1OMHz and by a fortunate coincidence the Doppler frequencies arising 

from blood flow measurement lie in the audio frequency range. A physician with 

a trained ear listening to the Doppler signal may be able to draw some simple 

qualitative indications of a patients condition. 
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2.2.5 The Power Spectrum of the Doppler Signal 

Listening to changes in the Doppler audio signal is adequate for initial assessment 

of whether or not a problem exists but even the most experienced practitioner 

would find it difficult to relay accurate information about the degree of a stenosis. 
A more reliable, quantitative method of Doppler signal analysis is necessary and 

the spectrum of the Doppler signal, which bears a direct relationship with the 

velocity profile (2.3), contains useful diagnostic information [41]. 

The process of obtaining the power spectral density of the Doppler signal is termed 

spectral estimation. Spectral estimation is not a straightforward procedure since 

the range of blood flow velocities in the sample volume varies over the cardiac 

cycle due to the systole action which is rhythmic pumping of blood through the 

body by the heart. The blood flow is therefore a non-stationary process and 

consequently the shape of the Doppler power spectrum is constantly changing. 

The Doppler signal can however be considered to be stationary with the blood 

velocity remaining approximately constant over short periods of time, usually 

from around 2 to 20ms depending on the phase of the cardiac cycle, and is 

accordingly classed as wi de-sense- short- term- stationary. 

The conventional method of estimating the spectrum is to use the short term 

fast Fourier transform (STFFT) [5] on these short windows of quantised quasi- 

stationary data and the results are commonly displayed in the form of a sonogram, 

an example of which is shown in figure 1.1. The sonogram can be split into 

columns, each the width of the data window, to show a series of Doppler spectra 

in real-time. The power of each frequency component is then indicated by the 

grey scale intensity, in this case white showing that a frequency component has 

no strength and black representing the components with maximum amplitude. 
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2.2.6 Disease Detection in the Common Carotid Artery 

15 

Atherosclerotic disease in the common carotid artery can be brought on by hyper- 

tension, smoking and diabetes. Plaque can build up on the wall of the artery and 
the pulsatile flow causes particles of the plaque to be shed off. These particles 

embolise, blocking finer blood vessels downstream of flow and strokes can occur as 

a result of this. The aim of this work is to reduce the cost and increase portability 

of a system which offers high sensitivity for detection of arterial disease. 

An arterial stenosis blocks and narrows the channel of the blood flow causing a 

change in its velocity profile which is reflected in the Doppler power spectrum 

of the Doppler signal detected by a PDU instrument [3). The compressibility 

of the blood is negligible and the volume flow rate, defined as the product of 

cross-sectional area and the mean velocity of the blood cells [42] passing through 

that area, in a normal section of the carotid artery must be maintained through 

the diseased section. A stenosis causes a narrowing of the blood vessel and to 

maintain the volume flow through the diseased region the velocity of blood passing 

the stenosis must increase. If A, and A, are the arterial cross sectional areas in 

normal and stenosed regions and v,,,, and v, are the mean velocities of the blood 

cells through these areas (figure 2.2) then if the volume flow rates are equal: 

A,. v,,,, = (2.4) 

which can be rearranged to: 
v., An 

vm,., As 
(2.5) 

vessel wall 

s enosis 

Figure 2.2: Flow velocity and cross-sectional area in normal and stenosed regions 

of the common carotid artery. 
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Since the mean Doppler frequency is proportional to the mean velocity of the 

blood flow (2.3): 
frn,, An 
frnn As 

enabling the severity of stenosis to be determined from the ratio of the mean 
Doppler shift frequencies in the proximity of and prior to a stenosed region. 

Post-stenotic blood flow tends to be disturbed [43], the strength of turbulence 

depending on the degree of stenosis. The velocity range of blood cells within the 

disturbed region is widened and may even be reversed, translating to an increase 

in the bandwidth of the Doppler power spectrum [42][44]. 

(2-6) 

The effects of change in mean frequency and bandwidth first become noticeable 

in the decelerative phase of systole and so spectra estimated from data segments 

around this region are used for analysis. Typical shapes of spectrograms and 

their PSDs on the decelerative phase are s hown in figure 2.3. 
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data is assumed stationary 
for duration of time slot 
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frequency 
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U) - 

fbi 

frequency 
(C) 

Figure 2.3: Spectrograms and peak systole PSD plots for (a) normal, (b) stenotic 

and (c) post-stenotic blood flow regions of the common carotid artery. Mean 

frequency is increased in the vicinity of the stenosis while half peak 

power bandwidth A= Au - fbi (--) is widened in the post-stenotic region. 



Chapter 2- Background 17 

2.3 Spectral Estimation 

This section discusses conventional and modern methods of spectral estimation 
[91 which may be used to extract the power spectral density from the Doppler 

time signal. The primary aim of this thesis is to design hardware for a real-time 

spectral estimator which offers high sensitivity to atherosclerotic disease detection 

at an acceptable cost, hence, research leading to selection of an optimal method 
for estimation of mean frequency and bandwidth [45] is reviewed here. 

2.3.1 Modelling the Doppler Ultrasound Blood Flow 

A model is needed to characterise the random blood flow signal resulting from 

measurement on a pulsed Doppler ultrasonic instrument in order to estimate its 

spectral characteristics [46]. Rather than considering the Doppler shift of a single 
blood cell as in (2.3) which assumes ideal conditions, the contributions from all 

the red blood cells within the resolution sample volume of the PDU instrument 

should be taken into account. Brody and Meindl [47], Mo and Cobbold [48] define 

models for Doppler ultrasound backscatter from a single blood cell movement 

and assume the total signal returned to be the sum of the contributions of each 

of the individual scatters. Shung et al. [49] however postulate that red blood 

cells, whose volume concentration in blood is approximately 45%, do not act 

as independent scatterers as they are likely to interact with one another due to 

their close packing. Angelsen [50] considers the blood cell interactions by treating 

the blood flow within the sample volume in a different manner, considering the 

blood cells to act as a continuum with scattering arising from fluctuations in the 

density and compressibility of the blood, caused by variations in red blood cell 

concentration. Instrumentation can also effect the characteristics of the Doppler 

signal [37] as for example the geometry of a narrow beam-width results in a 

broadening of the Doppler power spectrum [51][521. The joint conclusion drawn 
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from the research is that the Doppler signal is a zero-mean random variable with a 
Gaussian probability density function and a periodically time-varying spectrum. 

The digitised. Doppler signal sampled at frequency f, is a random variable char- 

acterised. by the stochastic process ýx[n]j [531: 

fx[n]l = ...... x[-I], x[O], x[l], x[2] . ..... 
(2.7) 

Over the cardiac cycle the velocity profile of the blood flow changes and thus the 

spectrum of Doppler shift frequencies, encoded into the envelope of the Doppler 

time signal [1], varies in sympathy. This non-stationarity in the frequency spec- 

trum makes characterisation difficult as the parameters to be estimated are con- 

tinuously changing. However, by considering short periods of time, the velocity 

profile and consequently the Doppler frequency spectrum remain approximately 

constant, implying that Doppler signal is quasi- stationary and its autocorrelation 

function [53] (54]: 

rxx[l] = Efx[n]. x[n - I]j = Ef x[n + 1]. x[n]l (2.8) 

is dependent only on the time lag I for all discrete times n and lags I (note E 

denotes the expectation operator). 

Since fx[njl is stationary in the first two moments and has finite varianceU2 X) 

which is equal to rcx[O], the Doppler signal is classed as wide-sense stationary 

[46], a characteristic which simplifies the estimation process [53]. 

This wide-sense stationary stochastic process ýx[n]} contains infinite energy and 

hence its Fourier transform does not exist due to collapse of Dirichlet's condi- 

tions [55][56]. This leads to consideration of the Doppler signals power spectral 

density (PSD) function which is a plot of time averaged energy distribution with 

frequency. The PSD may be obtained using the Wiener- Kintchine theorem [57] 
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by computing the Fourier transform of the autocorrelation sequence: 

00 

P(f) =Er,, [I]. e -2-irlf If. 

1=-oo 
(2.9) 

which is a real valued positive semidefinite function [27]. The PSD shows the dis- 

tribution of Doppler shifts and is therefore used to estimate the velocity profiles. 

The random time series jx[n] I represents the ensemble of all the possible Doppler 

time series realizations from which the ensemble statistics are drawn. In practice 

the statistical ensemble averages need to be replaced by averages derived from 

the N sample short data segments of observed Doppler signal realisations {x[n]j 

(figure 2.4), which is only possible if the process is ergodic [58][591. In addi- 

tion to being wide-sense stationary over these short periods, the Doppler time 

signal can is also cyclo- stationary [81 over the cardiac cycle since the rhythmic 

pumping by the heart periodically produces similar blood flow velocity profiles 

(figure 1.1). Averaging reduces the variance of spectra estimated from similar 

points on consecutive cardiac cycles, allowing the Doppler signal to be classed as 

approximately ergodic and the ensemble averages to be estimated with sufficient 

accuracy providing the averages are taken over enough cycles [4][60]. 

> 
0 

C 

:3 
0 

Figure 2.4: Example of the random output signal from a PDU detector. The 

signal, sampled at a frequency f, =12.8kHz) consists of 2048 samples in the first 

80ms of the cardiac cycle and is quantised into 10 bit words (1024 levels). 

0 10 20 30 40 50 60 70 80 
b me (MS) 
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2.3.2 Overview of Spectral Estimation Methods 
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Figure 2.5 shows a tree structure of different spectral estimation methods which 

may be used to measure the blood flow from the Doppler time signal produced 
by pulsed ultrasonic Doppler detectors. Time/frequency resolution limitations 

associated with the Fourier transform based conventional methods led to con- 

sideration of the modern methods in which these problems were addressed [25]. 

The parametric (model based) modern methods are divided into three categories 

namely autoregressive (AR), moving average (MA) and autoregressive moving 

average (ARMA) from which a variety of estimators can be derived by using dif- 

ferent mathematical interpretations [9]. Finally, the minimum variance modern 

method is based around measuring the power output of a bank of narrow-band 

filters [61]. 

direct approach : 500 L Periodogram method 

>[ iar,. ct Blackman-Tukey method 

spectral 

estimation 

methods 
L 

direct Pridogram method 

>[ id,,. Ct Bl,,,: k,, -Tukey method 

Yule-Waker method 

Burg method 

Moddied Covarianos 

method 
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Least Square Modified 

Yule-Walker Equations 

rnethod 
------------- --. d 

->( Mayne-Firoozan method 
) 

Yule-Waker method I 

M imimurn Variance/ Capon 

method 

Figure 2.5: Overview of spectral estimation branches and methods. 
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2.3.3 Conventional Methods of Spectral Estimation 

Conventional estimation of the PSD of the discretely sampled Doppler signal 

x[n] is based on the use of the fast Fourier transform (FFT) using either direct 

or indirect methods described as follows. 

Direct Methods 

The direct method of spectral estimation based on the periodogram, involves 

taking squared magnitude of the Fourier transform of the N data samples [62]: 

ii N-1 
j21rmn/N 

2 

PPER[7-nl : --:: -E xfnl. e- (2.10) N n=O 

where m represents the PSD frequency index such that f [m] = m. f,, /N Hz is 

limited to half of the sampling frequency f, (0 <m<N- 1) and ^ indicates an 

estimate. 

/r) I 
(. Ljj Indirect Methods 

The indirect methods due to Blackman and Tukey [63] compute the PSD by 

taking the FFT of a time averaged autocorrelation sequence: 

-2jirl. f I fs PBT(f) (2.11) 

where the magnitude of f is also defined for the same frequency interval as in 

the direct method and the autocorrelation lag estimates r^x:,: [I] are forced to zero 

outside the range of -L to L (L <N- 1). Several different autocorrelation 

estimates can be used [13][58] with Jenkins and Watts [64] for example arguing 

the use of the biased estimate: 

1 lv-l-l 
ýxx ]-E x[n + 1]. x[n] N n=O 

(2.12) 
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for I=0,1, 
.., M and given that the data is wide-sense stationary: 

A 

rxx[-I] = rXX [1] 

The estimate displays low mean-square error and is positive definite [25]. 

Evaluation of Conventional Methods 

High density, fast speed VLSI hardware coupled with the computationally effi- 

ciency of the FFT algorithm [65] make conventional methods economically feasi- 

ble for real-time estimation (66] and with continuing technological advances such 
devices are becoming more commonly used due to their increasing affordability. 
In general, the PSD estimates PPER and PBT differ, but can be used to provide 

matching results if the number of autocorrelation lags in (2.12) is maximised for 

the number of data samples (L = N- 1) [25]. Comparing the complexity of direct 

and indirect methods then for production of identical PSD estimation results the 

direct method is the preferred approach since it does not require the calculation 

of an autocorrelation sequence estimate prior to the FFT. 

However, accurate estimation is compromised in the conventional methods due 

to the finite length of the data sequence [12]. Similar spectral resolutions and dis- 

torting effects are produced by the zeroing of data outside the observation window 

in the periodograrn approach and by truncation of the autocorrelation sequence 

in the indirect method [251. Concentrating on the periodogram approach, the use 

of a finite length data sequence can be considered to be the result of windowing an 

infinite length data sequence with a boxcar function [5]. In the frequency domain 

this windowing translates to a convolution of the desired transform with the sinc 

function which results in distorted estimate. The main lobe width of the sinc 

function causes spectral broadening and its side lobes produce spectral leakage 

(Gibbs Phenomenon [55)) which can mask the weaker frequency components of 

the true PSD. 
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A longer data sequence reduces the PSD distortion as the signal becomes a closer 

representation to the infinite data sequence and also improves spectral resolution 

which is proportional to fIN [25]. However, the window time length must be 

kept short for the wide-sense stationary assumption, upon which conventional 

estimation is based, to be valid, thereby putting a limitation on the resolution 
that can be achieved for a given sampling frequency f,,. 

In attempts to improve the PSD estimation using conventional methods window 
functions other than the boxcar, Bartlett or Hanning for example, can be used to 

reduce side-lobe levels [5] but these lower the resolution of the spectral estimate 

by broadening the main-lobe of the window transform [25]. 

2.3.4 Modern Parametric Methods of Spectral Estimation 

Parametric or model based methods of spectral estimation can alternatively be 

used, offering potentially better frequency resolution than the conventional ap- 

proaches but with the cost of significantly greater computational burden [9]. In 

these methods the unrealistic assumption that data is zero outside the wide-sense 

stationary data segment is dropped by using knowledge of the underlying process 

or by making more reasonable assumptions about the unobserved data behaviour. 

There are three steps to the parametric estimation procedure [45]: 

The first is to select a suitable time series model with an appropriate model 

order making use of a priori knowledge of the underlying process. 

9 Secondly the parameters of the model need to be estimated from the ob- 

served data segment or the estimated autocorrelation sequence derived from 

this data. 

The Doppler signal spectral estimate is derived by substituting the model 

parameters estimated in the second step into a theoretical PSD expression 

for the model selected in the first step. 
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Background of ParametrIc Estimation 
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A brief introduction to the parametric modelling is detailed here, for detailed 

analysis of these methods [9][131 should be referred to. The derivation of a linear 

system model, whose transfer function is such that when driven by a white noise 

signal fu[t]j the output signal jx[t]j has characteristics resembling those of the 

Doppler signal, is proposed. In general a linear system can be modelled in terms 

of a filter linear difference equation: 
pq 

x[n] E a[k]. x[n - k] +E b[k]. u[n - k] (2.14) 
k=l k=O 

where a[k] are the model order p autoregressive parameters and b[k] are the 

model order q moving average parameters. The rational system transfer function, 

expressed in terms of the z transform [58] is: 

H(z) 
X(z) 

_ 
B(z) (2.15) 

U(Z) A(z) 

q 

b[k]Z-k 
H(z) 

k=O (2.16) 
p 

+ 1: a[k] Z-k 

k=l 

Equation (2.16) specifies the process as autoregressive moving average with p 

poles and q zeroes which can abbreviated to ARMA(p, q). Two other types of 

parametric model are also feasible. The autoregressive all pole model is formed 

by removing the zeroes (q=O): 

H(z) =p1 
1+E a[k]. z-' 

k=l 

assuming that b[O] =I and can be referred to as AR(p). In contrast, the all zero 

moving average model, MA(q), sets p=0 to eliminate the poles: 
q 

H(z) -- 1: b[k]z-' 
k=O 
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/D I 
(Bj AR, MA and ARMA Parametric Methods 

Within each of the three branches of parametric spectral estimation a number 

of methods can be derived be using different mathematical approaches. The 

Yule-Walker equations [9] relate the AR parameters to the autocorrelation func- 

tion of the Doppler signal and are solved to reveal the model parameters by the 

computationally efficient Levinson algorithm [67] as the autocorrelation matrix 
formed is Toeplitz. Burg's AR method [68][69] uses linear prediction theory to 

extrapolate the autocorrelation sequence, calculated from the N data samples, for 

unknown lags and is named as the Maximum Entropy spectral estimator because 

it maximises the randomness of the unknown time series to impose the fewest 

constraints [25]. The Modified Covariance AR method [9] is based on solution of 

a set of linear modified covariance equations whose solution determines a set of 

parameters which minimise forward and backward prediction error power. 

One of the key features of a MA(q) process is that for lags with magnitude greater 

than q the theoretical autocorrelation values are zero by model definition, instead 

of being forced to zero as in the Blackman Tukey method. Durbin's MA method 

[9] uses Wold's theorem [25] to treat the non-linear MA process as a high model 

order linear AR process (e. g. Yule-Walker), to simplify MA computation. 

The Least Square Modified Yule-Walker Equations method, a maximum likeli- 

hood ARMA(p, q) process [9], involves a least squares computation [27] for the 

calculation of AR parameters from a system of equations based around the es- 

timated autocorrelation sequence. Once the AR parameters are estimated they 

are used as coefficients of an all zero filter whose output approximates the MA(q) 

process. Use of the Durbin method then enables the MA parameters to be esti- 

mated. Another ARMA method known as the Mayne-Firoozan [91 or three-stage 

least square method exploits the association between the output data sequence 

x[n] and the unknown input u[n], avoiding the non-linear systems of equations 

encountered in ARMA maximum likelihood estimators. 



Chapter 2- Background 26 

Once the parameters of the process are estimated then they can be substituted 
in the following expression for the computation of the estimated ARMA PSD: 

q2 

2 b[k]. e -I 
27rkf If. 

p(f) = or2 U2 
k=O 

U A(z) 
Z=ej2wf If 

U. p 
j2-rkf If. 

2 (2.19) 
1: a[kj. e- 
k=O 

where au is the variance of the input white noise source. The PSDs of the AR 

and MA processes can also be calculated from (2.19) by setting either B(z) or 
A(z) to unity as appropriate. 

(C) Selection of a Spectral Estimation Method 

Selection of the branch of parametric estimation is aided if knowledge of the 

spectral shape exists a priori. AR methods model spectra with sharp peaks 
but no deep nulls well, while MA methods are suitable for spectra showing the 

opposite characteristics of deep nulls and no sharp peaks. The ARMA methods 

are recommended when the spectral shape has both sharp peaks and deep nulls. 

Parametric methods also require the selection of an appropriate model order given 

that too low an order leads to poor spectral resolution while too high an order can 

produce spurious spectral peaks. Choice of model order is further complicated as 

the best order for one method may not be optimal for a different method. Various 

criteria, such as the Final Prediction Error (FPE) [70][71], Akaike Information 

Criterion (AIC) [72] and Criterion Autoregressive Transfer function (CAT) [73], 

can be used to aid in selection of the model order by analysing the prediction error 

power. However, this study is concerned with the accurate estimation of mean 

frequency and bandwidth (see section 2.2.6) for which the recognised criteria are 

ill-suited resulting in selection of model orders which are higher than necessary 

[10]. A selection criterion which specifically weights accuracy in estimation of 

the spectral mean frequency and bandwidth of a set of typical Doppler signals 

against the cost of different methods over a range of model orders is therefore 

required. 
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(D) Cost/Benefit Selection of Spectral Estimation Methods 
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Ruano and Fish [10][11] proposed a scheme specifically aimed at selection of 

optimal pulsed Doppler ultrasound spectral mean frequency and bandwidth es- 
timators and covers both conventional and modern methods. The cost/benefit 

criterion: 

c(m, k, p, q) 
cost(m, N(k), p, q) (2.20) 

benefit(W, Bf,, 
n, 

Sf, Bf,? Sfb 

weighs computational cost of different spectral estimation methods against the 

benefit or accuracy which they provide. The criterion, expressed in terms of 

the indices m- type of estimation method, p- AR model order, q- MA model 

order (for a non-parametric method p=q= 0), is minimised over a set of 

signals k which have Doppler signal characteristics, that is signals covering a 

range of typical mean frequency f, and half power bandwidth fb. The benefit 

of the particular estimator being considered is viewed as the inverse of the error 

it produces, in terms of the bias B and standard deviation S in the estimated 

values of f, and fb, with different weights applied to these statistics depending 

on whether f, or fb or both f, and fb are of interest. 

Cost/benefit analysis of a range of the spectral estimators overviewed in figure 2.5, 

including the periodogram windowed by boxcar and Hanning windows, results in 

selection of the Modified Covariance spectral estimator with model order p -- 4 

when both f, and fb are to be estimated. Estimation of f, alone for detection 

of average flow velocity results in selection of periodogram method with a boxcar 

window while the p=4 AR Modified Covariance method is once again chosen 

when determining just fb to measure flow disturbance alone. 

Another requirement is for estimation of spectral properties other than f, and fb 

involving the higher moments for which it is necessary to use large model orders. 

Model orders up to p= 30, presenting a very large computational burden, are 

envisaged. 
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(E) Modified Covartance Method 
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The Modified Covariance method is described in this section due to its suitability 

for determining f, and fb. The Modified Covariance spectral estimator models 

the signal whose spectrum is required by autoregressive (AR) filtered white noise. 

The core of the estimator depends on the solution of the matrix equation: 

C. A = -B (2.21) 

for filter parameters a[i] from the vector A where: 

a[l] 
a[2] (2.22) 

a[p] 

The covariance matrix C- 

c[l, 1] c[l, 2] ... C[l, P] 
c[2,1] c[2,2] c[2, p] (2.23) 

_c[p, 
l] c[p, 2] c[p, p]_, 

and RHS vector B: 

c[2,0] (2.24) 

Cy '01- 
contain elements c[j, k] given by: 

where 

and 

c[j, k] = 2(N 
I- 

P) . 
(c, [j, k]+ C2[j, k]) (2.25) 

N-1 
(2.26) 

n=p 

N-1-p 

(2.27) C2 [j, k] x[n + ']. x[n + k] 
n=O 

N is the number of samples in the time segment, p is the filter model order and 

x [n] is the signal sample at time nT where n=0,1,2, ---, 
N-I and T is the 

sampling period. 
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The white noise variance parameter is determined by: 

p 
-2 a c[O, 01 +Ea u a[k] 

. c[O, k] (2.28) 
k=l 

and this is then used in the calculation of the power spectral density (PSD): 

A 

PAR(fn) 
^2 olu 

11 
a [p] 

.e 
-3'2wf,, p 12 

where f, is a frequency index. 

(2.29) 

The four stages of the Modified Covariance method, the covariance/RHS matrix 

element calculation (2.25) to (2.27), the solution of the set of linear equations 

(2.21), the white noise variance calculation (2.28) and the calculation of the PSD 

(2.29), are summarised by the block diagram shown in figure 2.6. 

Modified Covariance method 

calculation of elements in 
Doppler signal 

X111 
)I covanance matrix C 

I 

and RHS matrix B 

caJculation of 
white noise variance 

parameter 62 
U 

calculate the P-SD 
T 

A 
using the FFT 

solve linear system C. A=B 
via decomposition, 

forward elimination and 
back substitution 

to find filter parameters 

Figure 2.6: Block diagram showing the four stages of the Modified Covariance 

spectral estimation method. 
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(F) Implementation of the Modified Covariance Spectral Estimator with the use 
of MIMD Model Topologies on a Transputer Platform 

Previous research has shown that parallel processing techniques need to be em- 

ployed in order to gain the throughput necessary for real-time computation of the 

Modified Covariance method [14] where the feasibility of modelling the estimator 

as a multiple instruction stream multiple data stream (MIMD) process [741 was 

investigated. Transputers [75], configured to various MIMD topologies (figure 

2.7), were used as an implementation platform [14][15][26] and programmed with 

the use of the OCCAM language [761. 

The Modified Covariance algorithms had to be partitioned before they were 

mapped onto the standard MIMD topologies. The partitioning involved the se- 

lection of a level of granularity, e. g. in a medium grain partitioning scheme a 

processor performed the entire computation of a matrix element as opposed to a 

fine grain scheme where this computation was shared amongst a number of pro- 

cessors. Tasks defined by the level of granularity were then allocated to specific 

processors for execution in a certain time frame. Partitioning of the algorithms 

concerned with individual blocks of the Modified Covariance method shown in 

figure 2.6 (apart from the white noise variance which was computed sequentially) 

onto the MIMD model topologies was initially considered [14]. The results of 

the investigation showed that the calculation of the covariance matrix elements 

(2.25) to (2.27) and the PSD calculation (2.29) could be efficiently performed on 

____ ____ ____ ____ ____ ____ 

I 

____ ______ 

I 
____ 

I 
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Figure 2.7: Transputer based topologies (a) processor farm linear, (b) processor 
farm tree - depth 2 (M denotes a master processor which schedules tasks to the 

worker processors indicated by W), and (c) ring topology. 



Chapter 2- Background 31 

depth 2 tree topologies. Despite this however the execution of the DFT part of the 

PSD calculation was too slow to meet the real-time requirement for certain signal 

cases when it was programmed onto the transputer based platform. Solution of 
the system of equations (2.21) was attempted using the Cholesky decomposition 

technique with forward elimination and back substitution [27]. However, it was 
found difficult to gain any useful speedup using the MIMD ring topology over 

sequential execution. 

A second approach, which considered spectral estimation on a number of Doppler 

data segments simultaneously, proved more successful, as this strategy did not 

require intercommunication between master and worker processors during execu- 

tion of the algorithm [26]. A processor farm tree topology was again used with 

communication only necessary to distribute input data time segments and to re- 

trieve the computed spectral estimates. However, the transputer based execution 

time results shown were only for a fixed data length of 10ms and estimation using 

data segments as short as 2ms could have led to difficulty. The range of model 

orders considered was limited to a maximum of p= 10 for which real-time opera- 

tion was just achieved for the case when N= 256. Estimation up to model order 

p= 30 would however have been desirable and this transputer implementation 

would not have been able to produce the required throughput to cope with the 

hugely increased burden of this high model order in certain conditions. 

In summary the MIMD topologies imposed restriction, in terms of the available 

communication resources and the number of processors, which constrained the 

partitioning of the algorithms. Finding the strategy which offered maximum 

speedup and minimum execution time, proved to be difficult as demonstrated by 

the inadequacy of the MIMD transputer implementations under certain condi- 

tions. The system also imposed fairly high costs, that cost of the host computer, 

the transputers, the transputer platform and the software. There was also a 

problem in that the large physical size made equipment difficult to transport. 
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2.4 Systolic Arrays 

2.4.1 The Systolic Model of Computation 
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As an alternative to the MIMD model the systolic model of computation [23] is 

considered for the real-time implementation of the Modified Covariance method 

in this thesis. The systolic model also utilises concurrent processing techniques 

to speed up computation but the constraints imposed by partitioning onto a 

predetermined topology are removed. Systolic architectures are designed to fit 

the algorithm by considering the communication and processing requirements 

presented by the data dependencies between the operations involved. This can 

be compared to trying to fit the algorithms onto different known MIMD topologies 

to determine which offers the best parallelism. The systolic design methodology 

is rigorous, and systolic architectures are suitable for implementation of a wide 

range of algorithms. They employ parallel and pipeline processing to exploit the 

inherent parallelism and recursive properties of the algorithms to a high degree, 

enabling the computationally demanding problems, such as those encountered in 

the Modified Covariance estimator, to be performed in real-time. 

2.4.2 What is the Systolic Model of Computation? 

The concept of the systolic systems was defined by Kung and Leiserson [171: 

"A systolic system is a network of processors which rhythmically compute and 

pass data through the system. Physiologists use the word 'systole' to refer to the 

rhythmically recurrent contraction of the heart and arteries which pulses blood 

through the body. In a systolic computing system, the function of a processor is 

analogous to that of the heart. Every processor regularly pumps data in and out, 

each time performing some short computation, so that a regular flow of data is 

kept up in the network. " 
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2.4.3 Systolic Architecture Implementation on VLSI 
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Systolic architectures are used to implement special purpose digital signal pro- 

cessing (DSP) hardware in real-time [23]. The driving factors in the design of the 

application specific hardware considered here are to provide cost effectiveness7 
increase portability and improve computational throughput [24]. The advantages 

of systolic architecture implementation of application specific hardware on a VLSI 

platform, as opposed to the transputer platform, are discussed here. 

Systolic architectures consist of a regular array of low complexity processing el- 

ements (PEs) which as the result of a very fine grain partitioning execute single 

assignment tasks such as multiply accumulate, square-root or division. In an 

ASIC solution PE's are designed to just execute these specific tasks leading to 

better cost effectiveness when compared with implementation on the more general 

purpose transputer system. The modular systolic nature allows easy extension, 

by adding extra PEs to cope with larger problems. Special purpose systolic sys- 

tems can therefore be designed to match the specified performance requirements, 

presenting improved efficiency over a general purpose system. The repeated use 

of simple building blocks which are regularly located, simplifies the fabrication of 

systolic arrays in VLSI because of the relatively low cost of replicating an existing 

PE, thus reducing the design cost. Low design cost coupled with the availability 

of VLSI technology and the efficiency in utilising resources justify the limited use 

of the application specific device. 

System portability can be achieved by utilisation of the full potential of VLSI 

technology which allows large highly functional designs to be cheaply mounted 

on a small number of packages. However, as the number of transistors that can 

be mounted on a chip continually increases with technological advances, intercon- 

nection delay and area pose a more significant constraint on the overall integrated 

circuit (IC) performance and speed [161. Hence, communication accounts for a 
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major proportion of the cost in a VLSI device and there is good reason to restrict 
the number and length of interconnections. Systolic arrays are therefore cost ef- 
fective in this sense as communication is localised so that only neighbouring PEs 

are interconnected, keeping track length as low as possible. 

There are two ways in which the designer can attempt to meet the high computa- 

tional throughput which is necessary in order to achieve real-time operation. The 

first is to use a highly specified processor capable of running at very fast speed 

and the second is to use a number of PEs operating concurrently [16]. The huge 

advances in the transistor packing densities over past decades are not matched 

by correspondent increases in device speed. IC speed growth rate is in contin- 

ual decline so exploitation of any concurrency which exists in the algorithms is 

more effective than trying to - reduce processor latency. VLSI technology allows 

relatively large numbers of the low complexity PEs to be implemented allowing 

systolic arrays to take full advantage of this concurrency. Systolic arrays employ 

data pipelining so that throughput rates become dependent on the lag associated 

with a single PE rather than a group of PEs and high levels of parallelism to 

spread the computational load over a relatively large number of simple PEs. 

Another feature of systolic arrays is simple control, data is transferred between 

processors on the systolic clock cycle and control signals may be needed to switch 

PE function, provide resetting or to schedule input/output data. Thus, control 

software such as OCCAM previously used in the transputer implementation is 

not needed. The control signals can easily be produced from on board hardware 

removing the need for a host PC to run the control software. 

Hence, the key features of low PE complexity, localised communication and reg- 

ularity make systolic array processors very amenable to VLSI implementation. 

Systolic array implementation of the real-time Modified Covariance spectral esti- 

mator on a VLSI platform should allow improved cost effectiveness and increased 

portability over a more general MIMI) transputer based system. 
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2.4.4 Systolic Array Design Methods 

A clear methodical architectural design strategy is needed in order to produce 
functionally correct, localised systolic arrays. To map the algorithm into a sys- 
tolic array it is usual to first express the algorithm in some type of intermediate 

format to help facilitate this. The alternative algorithm representation may be 

in graphical, matrix or computational language format and follows directly from 

a recursive algorithm description, resulting in a variety of approaches to systolic 

array design. 

The high level language ALPHA is used to express algorithms so that transforma- 

tions can be applied to the computational description to automatically synthesise 

systolic arrays [77]. Dense to band matrix transformation and triangular block 

partitioning techniques are two methods used in conjunction with each other to 

efficiently partition algorithms onto arrays of known dimension [28]. Snapshots 

allow the operation of arrays to be viewed on a series of frames which show cur- 

rent processor states and data communications (17]. Systolic mapping procedures 

based on mathematical transformations of index sets representing PE operations 

and data dependencies between these operations are also published [78]. Perhaps 

the most easily understandable and manipulative method is that developed by 

Kung [23] in which the algorithm is initially expressed in the form of a data 

dependence graph (DDG) that may be projected in a number of directions to 

produce a variety of systolic array solutions. The DDC method is adopted in this 

study. 

The DDG method is used here to illustrate the key aspects of recurrence rela- 

tionships, data dependence, dependence graph scheduling and projection in the 

mapping procedure from algorithm to systolic array. Systolic arrays for the simple 

white noise variance calculation in the Modified Covariance method are consid- 

ered here in order to introduce the design method and show how the key principle 

of pipelining is used to achieve concurrent processing. 
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Algorithmic Problem Definition 

The white noise variance calculation (2.28) may be rearranged slightly to incor- 

porate c[O, 01 within the summation assuming that a[O] = 1: 

p 
-2 
au a[k] - c[O, k] 

A: =O 

/r> I 
(. Bj Recurrence Equations 

(2-30) 

Most DSP algorithms can be written in the form of a set of recurrence equations 

consisting of a finite number of separate tasks, commonly referred to as single 

assignments in the literature. Expressing the summation (2.30) in terms of a 

recursive variable r(), where (k) (0 <k< p) is the recursion step: 

[kj. c[O, k] +r (2.31) 

then the white noise variance is given for Ic = p, i. e. &2 such that r(') = 07 
u 

Data Dependence Graph 

The recursion in (2.31) can be expressed in graphical format as shown by the 

node in figure 2.8(a). On the node there are 3 input arcs and I output arc, 
data communication flow directions are indicated by the arrow head and each 

arc carries a data word. A plot of these nodes on the [j, k] plane (I = 0) as 
in figure 2.8(b) shows the dependence between the single assignment operations 

in the calculation of the white noise variance (2.30) and is accordingly called a 

data dependence graph (DDG). Throughout the thesis nodes are represented as 

circular symbols and are referenced with respect to their graph coordinates, e. g. 

node[j, k]. The order in which the nodes must be processed is defined by the 

direction of the horizontal interconnection arcs, which are referred to as local 
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Figure 2.8: (a) Node representing the assignment in (2.31), (b) DDG for general 
A2 

matrix element calculation in a model order p=4 estimator 6, u - r('). 

data dependencies since the output of one node forms the input to the next. The 
DDG is fully localised, a condition which allows a purely systolic array to be 

formed. 

(D) Use of Timing and Allocation Functions in Systolization 

Different timing and allocation functions can be used to produce a variety of 

systolic array solutions from the DDG. The timing allocation dictates the time 

t in clock cycles that a node assignment is performed. Single assignment tasks 

must execute in the order defined by the directions of the data dependence arcs 

so for the localised DDG in figure 2.8(b) the linear schedule t -- k is valid. Figure 

2.9(a) indicates this timing function by the internal node numbering which shows 

that each node is executed on successive clock cycles. 

The allocation function dictates which node operations are performed by a par- 

ticular PE and also determines the size and shape of the systolic array. The most 

straightforward allocation is to have a PE representing each node of the DDG 

by projecting in the J direction (i-e. any direction orthogonal to the k axis since 

0 for all nodes) such that node[j, k] is mapped into pe[k], producing the sys- 

tolic array in figure 2.9(b) whose internal PE schematic is shown in (d). On each 

of the input buses to the PE there are systolic delay registers so that all data 

entering the PE is clocked in synchronously. It is important to set the convention 
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for input/output timing of data at this early stage to avoid confusion further on 
when more complex arrays considered. The timings t shown for the input data 
denote the positive clock edges on which data is clocked into the PEs while for 

the output t indicates when data should be clocked into external memory so that 
the result here is available for storage at t=5. Hardware can be reduced by 

nearly a fifth if the DDG is projected along the k direction into a single systolic 
PE as shown in figure 2.9(c). The internal PE configuration remains the same 
but a feedback loop is introduced so that products can be continuously updated 

and a multiplexor is required to provide initialisation. 
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in the (b) J direction to form a systolic array of 5 PEs and (c) k direction into a 
single systolic PE. Part (d) shows a key to the PE function for both of the arrays. 
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/r" P* el*ne and Parallel Processing (-pjj Tp z 

The systolic arrays in figure 2.9 are fully pipelined since there is no data broad- 

casting. The significance of pipelining can be demonstrated by removing the 

clocking from the array in figure 2.9(b) so that intermediate multiply- accumulate 

results ripple through. If each inner step product calculation takes time T,,, then 

the overall operation time of the ripple through array becomes 5. T,,, which is the 

minimum time between successive white noise variance computations or the block 

pipeline period. The minimum clock period of the systolic array is T,,, leading to 

the same overall operation time of 5. T,,,. However the block pipeline period of 
the systolic array is just T,,, so that 5 variance computations can be calculated 

on the array simultaneously or in other words the systolic array provides 5 times 

the throughput rate compared to the ripple through array. Despite the hardware 

cost saving of the single systolic PE solution in figure 2.9(c) there is disadvantage 

in that its continuous problem throughput is also a fifth that of the 5 PE array 

in (b). However, the single systolic PE offers the same performance as the ripple 

through array at a fifth of the cost, displaying the importance of pipelining in the 

design for high throughput applications. 

Parallel combines with pipeline processing to provide massive concurrency in 

other systolic arrays discussed in the thesis such those proposed for the matrix 

element calculation where a number of PEs similar to that in figure 2.9(b) perform 

internally pipelined inner-product calculations in parallel with one another. 

ID) 
(. v, / Design Methodology 

The DDC design methodology used is adapted from Kung's cut-set method [16]. 

Kung's intermediate signal flow graph stage is eliminated here and arc-to-bus 

mappings are thought of in terms of node-to-PE allocation function with systolic 

delays carried on these buses derived from the timing function. 
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2.4.5 Systolic Arrays for the Modified Covariance Spectral Estimator 

This section reviews previously proposed systolic arrays relevant to the Modified 

Covariance method. These systolic arrays fall into two distinct classes, that is 

problem size dependent and problem size independent. 

(A) Review of Problem Size Dependent Systolic Arrays 

Problem size dependent systolic arrays are specifically aimed at computing fixed 

dimension, or fixed model order in the case of the Modified Covariance method, 

algorithms. Often these systolic arrays can be used in problems of smaller model 

order but not for larger model order problems. 

The calculation of the covariance matrix elements (2.25) to (2.27) is a demanding 

compute bound algorithm, as the total number of operations involved is greater 

than the total number of inputs. Consequently the systolic approach represents 

an inexpensive method for achieving computational speedup [24]. The algorithm, 

although being somewhat more complicated, bears resemblance to the convolution 

operation and for this reason Kung's convolution linear systolic arrays [24] provide 

a useful guide to implementation of the matrix element calculation. 

The usual method of solving the system of linear equations for the filter param- 

eters (2.21) is to decompose the problem into the form of triangular systems of 

equations which can be easily solved by forward elimination and back substitu- 

tion. One of the first designs to be proposed is Kung and Leiserson's hexagonally 

connected LU decomposition systolic array [17]. The limiting factor in the attain- 

able throughput from this array tends to be the lag associated with the division 

PE, a slower operation than multiplication which creates a communication bot- 

tleneck at the top of the array. Consideration of alternative mapping directions 

[23][79] leads to a variety of LU systolic solutions. 
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One of the features of the Covariance Matrix is that it has symmetrical properties, 

allowing the Cholesky decomposition and LDL T algorithms to alternatively be 

used to reduce the number of single assignment operations. Brent and Luk illus- 

trate arrays for computing these decompositions [80] based on a development of 
the hexagonal LU array. These two arrays contain .1 (P2 + p) PEs, approximately 2 
half the number in the LU array but the Cholesky array has the disadvantage of 

requiring square-root operation while the LDLT array, not requiring square root 

operation, presents greater PE interconnection burden. 

QR decomposition [27] can also be used in matrix triangularisation, and hence in 

the solution of linear equations. With this method applying Given's rotations to 
the covariance/RHS matrix cuts out the need for the forward elimination stage. 
However, an initial comparison with the other decomposition methods leads to 

exclusion of QR decomposition since its overall hardware cost is much greater due 

to a typical QR systolic array PE needing to perform 4 multiplications [81][82]. 

This method is more widely used for least square computation [20][83][84] and 

could be used in a versatile hardware system to compute AR-Modified Covariance 

and ARMA-Least Square Modified Yule Walker Equations spectral estimation. 

The COordinate Rotation DIgital Computer (CORDIC) proposed by Volder [85] 

then later unified by Walther [86] can be used to compute mathematical opera- 

tions by performing a series of shift, addition and subtraction operations. Ahmed 

et al. [87] show the use of CORDIC PEs (see [88][89] for possible PE implementa- 

tions) in 2-dimensional systolic arrays for Given's orthogonal QR decomposition 

and for a variation of the Cholesky method which triangularises using hyperbolic 

rotations [90]. Despite the use of simple PE units, the scheme suffers in that 

it imposes a limited domain on the input data and variable scale factors [86] 

need to be removed before PE output. Attempts to overcome these limitations 

[91][92] add to PE/control complexity and as a consequence of its shortcomings, 

CORDIC implementation is not pursued in this study. 
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When considering the hardware implementation of problem size dependent de- 

composition arrays the precision of data to give sufficient accuracy in the fil- 
ter parameters needs to be determined. Errors arise due to quantisation of the 
Doppler signal [93] and finite length rounding effects during computations. If the 

covariance matrix is ill-conditioned the propagation of these errors through the 
decomposition array can lead to poor filter parameter estimates [27]. Wilkinson 

presents error bounds for Cholesky and LU decomposition fixed point arithmetic 

schemes [94][95][96]. However, the analysis does not consider any error already 
present in the matrix to be decomposed or the likelihood of overflow, both of 

which could severely affect the accuracy of the filter parameter results. Compu- 

tation of relative error bounds [97] on the output of a single assignment resulting 
from the relative errors on the input operands is also an unsuitable method of 
determining the filter parameter accuracy. This is because the bounds through 

all the successive computations grow very large and the probability of reaching 

such an error becomes extremely remote. 

/r) ) 
(. Bj Problem Size Independent Systolic Arrays 

The disadvantage with problem size dependent systolic arrays is that when deal- 

ing with large dimensioned problems the number of PEs can become too large, 

leading to high cost and implementation difficulties. Partitioning of algorithms, 

so that large dimensioned problems can be mapped onto small systolic arrays, is 

therefore recommended and is considered in [23][28][98]. Of particular interest 

is the work of Navarro, Llaberia and Valero [28][99][100] detailing partitioned 

systolic arrays for the solution of triangular linear systems of equations and LU 

decomposition. In the case of the LU decomposition the algorithm is divided 

into a number of sub-algorithms which represent LU decomposition, triangular 

system and inner product step matrix problems, all of smaller dimension than 

the original algorithm. Triangular block and dense to band matrix partitioning 
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techniques (DBT) are used to separately map each of the three different types of 

subproblem onto efficient s by s PE spiral systolic array processors. All of the 

subproblems can be sequentially chained together for solution of the LU decom- 

position on a single spiral systolic array. 

An unattractive feature of this array is that bi-directional ports are needed on 
the north and west PEs of the array for the input/output of the U and L matrix 

elements respectively. This adds to PE complexity as buffering is necessary to 

avoid logical contention. Similarly buffering is required on the input/output of 
the memory devices which are used to store the L and U matrices. The subject 

of storage and retrieval of this data is not discussed in the reference and so it is 

assumed that they intend to use an addressing system where each of the matrix 

elements are stored in a specific location. Another problem encountered in their 

design is that it is not clear how to chain the subproblems together. 

Computation of the PSD 

The computation of the PSD (2.29) requires use of a Fourier transform technique, 

and the two main choices are the discrete Fourier transform (DFT) and the 

fast Fourier transform (FFT) [23]. In implementing these algorithms on VLSI 

architectures such as systolic arrays there is a trade off between computational 

burden and communication when considering whether to use the DFT or FFT 

[16]. Kung demonstrates that the N-point DFT can be mapped onto a locally 

interconnected linear systolic array of length N PEs which needs to perform N' 

computations [16]. Kung compares this to a systolic array for the N-point FFT 

computation, requiring a global perfect-shuffle interconnection network which 

is more expensive in terms of VLSI implementation, but the array reduces the 

number of computations to N. 1092N effectively reducing operation time [16]. In 

both arrays however the hardware cost is dependent upon N and since N is quite 

large (N = 64,128 or 256 for example) the cost would be excessive. 
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The N-point DFT A[n] of a[n] can be expressed as the product of a weight matrix 
W and the filter parameters a[n] [101]. 

4[01 wo wo wo wo h[01 
4111 wo wl w2 

... 
wN-1 all] 

A[2] WO W2 w4 W2(N-2) h[2] (2.32) N 
A[N - 1], L-WO 

WN-1 W2(N-2) 
... 

W(N-1)(N-1)J 
Lh[N-1]j 

It is usual to make the number of points N in the DFT/FFT the same as the 
Doppler signal data sequence length as opposed to a p+1 point DFT/FFT 
(2-29), in order to obtain a smoothed estimate and to do this requires padding 

with zeroes. If N>p (e. g. p=4 and N= 128) then the DFT computation can 
be greatly simplified. The padding by zeroes sets a[n] =0 for p<n<N and 
the DFT for the p=4 problem can be rewritten as: 

4101 wo wo wo wo wo - 
4111 wo wl w2 w3 w4 ao 
4[2] wo w2 w4 w6 w8 a[l] 
4[3] WO w3 w6 9 W w12 h[2] (2-33) 
A[4] N WC) W4 w8 W 12 w16 a[3] 

L ä[4] J 

. A[N - 11 J L WO WN-1 W2(M-2) W3( -2) N-1) W4( 

The number of multiply- accumulate computations in (2.33) is greatly reduced to 

N(p + 1) from N2 in (2-32). Representing the matrix-vector multiplication (2.33) 

on a DDG is also a straightforward as shown in figure 2.10(a) [102]. Each row of 

the DDC is similar to the DDG for the white noise variance calculation (figure 

2.8) but now with the products W)'. a[k] being accumulated along the horizontal 

to form A[j]. The a[k] inputs are broadcast in the j direction to all nodes in a 

column as represented by the directionless vertical interconnection arcs. Figure 

2.10(b) shows a localised version of the DDG with the timing function t=J+k 

denoted by the internal node numbering. 

Projection of the DDG in the k- direction leads to an N PE linear systolic array 

similar to Kung's [16] but the number of PE's can be significantly reduced by 

projection in the J direction (node[j, k] --+ pe[k]) into p+I=5 PEs as illustrated 

in figure 2.11. This and other matrix-vector product arrays formed by other 
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DDG 'Projections are discussed in Megson [102]. The W weight factors can be 

retrieved from memory and the array also has the advantage that the results are 
piped out rather than being stored within the PEs thus eliminating parallel access 
difficulties. The PSD calculation is then the reciprocal of the squared magnitude 

of the array outputs. 
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Figure 2.10: (a) DDC representation of (2.33) with global communication for a[n] 
(b) fully localised DDC. 
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Figure 2.11: (a) systolic array formed by J direction proJectlon (b) PE function. 
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Other linear DFT arrays are also proposed in [103][104][105][106] but these have 

the disadvantage that the number of PEs is proportional to N which would lead 

to high cost for this application. Higher dimensioned arrays are used to improve 

throughput [107][108][109][110] however the linear array proposed here provides 

enough concurrency for the blood-flow estimation problem based on typical times 

for bit-serial arithmetic processing [111][112]. Attempts have been made to lo- 

calise the FFT computation [19](113] [114] [115] [1161 for example Willey et al. [117] 

develop a systolic elevator concept to replace the global communications with a 

number pipelined shifts. However complex control requirements in the FFT ar- 

rays lead to preference of the array shown in figure 2.11. 

(D) Use of Background Research in this Study 

The first half of the thesis is devoted to the design of problem size dependent 

systolic arrays for the matrix element, filter parameter and PSD computations 

within the Modified Covariance method. Of particular relevance are the pre- 

viously proposed decomposition systolic arrays, some of which are modified, to 

reduce cost or to improve throughput, for comparison with systolic arrays formed 

by alternative DDG mappings. Due to the disadvantages with the error analysis 

schemes reviewed, an error analysis of a fixed-point scheme, which utilises scale 

factors to improve dynamic range, is used in the selection of optimal word-length 

data in the spectral estimator. 

The rest of the thesis discusses problem size independent systolic arrays. Fur- 

ther partitioning the chosen systolic array for the matrix element calculation is 

used in the design of a programmable model order systolic array. The problems 

highlighted with the spiral systolic array presented by Navarro et al. [28] are ad- 

dressed by using DDG methods, as opposed to triangular block and dense to band 

matrix methods, to design a superior systolic array. A novel spiral-type systolic 

array for Cholesky decomposition is then designed using a similar partitioning 

but a different reindexing scheme to that used for the LU array. 
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Fixed Model Order - Covariance 
Matrix Element Calculation 

3.1 Introduction 

Section 2.3.4(E) reviews the Modified Covariance method and shows the parti- 

tioning of the calculation into a number of distinct sections. This chapter de- 

scribes the design of four systolic arrays which may be used for the real-time im- 

plementation of the first and most computationally demanding part of the model 

order p=4 estimator in which the covariance matrix elements are computed. 

The classic data dependence graph (DDG) mapping technique developed by Kung 

[16] is used to produce the systolic arrays. The DDG technique involves trans- 

lation of the initial algorithm into diagrammatical format where the individual 

nodes on the graph represent single assignment operations which occur in the 

algorithm. Multiply accumulate is one such single assignment operation which 

forms the basis of the computation considered here. Nodes are interconnected by 

arcs which represent data communication. In the example of a series of multiply 

accumulations the result of an operation affects that of the next. This is shown 

on the localised graph as a directed arc between the output of one node and the 

input of the adjacent node. After pipelining the communication on the DDG a 
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space and time indexing function can be applied to the DDG in order to pro- 
duce a systolic array. This involves selection of a projection direction such that 

a number of nodal operations along a certain channel of the graph are assigned 
to a particular processor. The timing function schedules the order in which the 

nodal operations are performed by their associated processor and is constrained 
by the data dependencies. 

The systolic arrays are compared with regard to their efficiency and suitability 

to VLSI implementation. This involves consideration of hardware cost estimate, 

control complexity, communication burden and timing constraints. 

3.2 Computational Burden 

Section 2.3.4(E) details the equations for the matrix element calculation in the 

Modified Covariance method. Equations (2.23) and (2.24) show that p2 +p matrix 

elements need to be calculated for the covariance matrix C (2.23) and RHS vector 

B (2.24). The calculation of elements c[j, k] (2.25) in matrix C is split into the 

sum of two other elements cl [j, k] (2.26) and C2 [j, k) (2.27). The calculations of 

cl and C2 each require N-P multiply accumulate operations. Hence for each 

window of data input into the spectral estimator a total number of M multiply 

accumulates would be required to calculate all of the covariance matrix elements, 

where: 
2(p 2+ 

p)(N - p) (3.1) 

N can range up to 256 samples for a window length of 5ms, corresponding to 

a maximum sampling frequency f, of 51.2kHz, leading to a maximum of just 

over two million multiply accumulate operations per second for this calculation 

when model order p=4 is considered. This represents a substantial processing 

task which can be partitioned onto systolic arrays of simple processing elements. 

The computational burden can also be reduced further by considering symmetries 

which are present in C and this is discussed in the design of the systolic arrays. 
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3.3 Systolic Array Design 

This section describes the DDG design of four systolic arrays for the calculation 

of the covariance matrix elements in the Modified Covariance estimator of model 

order p -- 4. The first design presented is used to introduce in further detail the 

DDG mapping methodology and results in a systolic array with a two dimensional 

architecture. The attributes of this array are studied and the design of the DDG 

is modified in order to improve performance. This results in the formation of a 

tri-linear systolic array. Further optimisation is then considered by separating 

the calculation into two pipelined sections. This produces a bi-linear systolic 

array which is used to feed data into a sorting network. A fourth design attempts 

to exploit the best features of the tri-linear and bi-linear arrays resulting in a 

partitioned multiply accumulate array. 

3.3.1 Two Dimensional Systolic Array Design 

(A) Data Dependence Graph Design 

When model order p=4 is considered a square 5 by 5 matrix C, which contains 

all the required c[j, k] elements for the determination of the covariance matrix C 

(2.23) and RHS vector B (2.24), can be formed: 

C[0,0] C[0, l] c[0,2] c[0,3] c[0,4 - 

C[l, 0] C[l, l] c[l, 2] c[l, 3] c[l, 4] 
Cl= c[2,0] c[2,1] c[2,2] c[2,3] c[2,4] (3.2) 

c[3,0] c[3,1] c[3,2] c[3,3] c[3,4] 
Lc[4,0] c[4,1] c[4,2] c[4,3] c[4,411 

Similar matrices C, and 
C2 

containing elements c, [j, k] (2.26) and C2 k] (2.27) 

respectively may be formed. The matrix C, can be viewed in terms of a recurrence 

variable C, (n) 
comprised of elements cl(n)[j, k] defined for (0 :ýJ, k :5 4) by: 

c(, ') 
0 

C(n- 1) [j, k] +x [n - A. x [n 

n=3 
(3.3) 

4n 
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leading to the assignment: 

C, = C(N-1) (3.4) 1 

By considering a square 3' versus k plane of nodes as shown in figure 3-1(a) a 
DDG for the calculation of Cl(') from Cl('-') can be derived. Since the index 

[n - 3] is independent of k, then, for a particular value of J, the input samples 

x[n - 3] will be common to all nodes across row 3 of the graph. This is known 

as a global broadcast of x[n - 3] and is shown on the graph by the horizon- 

tal lines connecting the nodes. For example x[n] is input to the graph and is 

transmitted simultaneously to all nodes in the top row where j=0. Similarly 

x[n - k] is globally transmitted along column k of the graph. Each node of the 

graph therefore has an x[n - 3] and an x[n - k] input whose product is added 

to the recursion input c(, '-') [j, k] to produce c(, ') [j, k] as defined in equation 3.3 

(4<n<N-1). The node function is denoted in figure 3.1(b). 

A DDG for the calculation of C, can be formed by connecting together the Cl(') 

graphs with substitution of n from 4 through to N-1. The three dimensional 

DDG shown in figure 3.2 therefore contains N-4 layers, nearest plane has n=4 

and n is incremented for consecutive planes going into the paper up until the last 

01234 

0 

k 

I 

2 

3 

4 

arrow on DDG 
edge node implies 
x[n] is an input 

cý)o X1 = c(, "' 1) 0,4 + xin-fl . 4n-k] 

x1rd 

cr 1) 0, 
xhl 

diredionless connection 
implies communication 
of xfn-4] is global. 

(b) 

Figure 3-1: (a) DDG for Cl(') (p <n<N- 1), (b) node function. 

x[n] x[ri-1) x[n-21 xin-31 x[n-4) 

(a) 
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Figure 3.2: Localised DDG for calculation of C1. 
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layer where n=N-1. When the layers are connected together in such a manner 

pipelines representing the recursive updating of the elements c (n) [j, k] are set up 1 

in the n direction. This means that the n direction output from node[j, k, n] will 

be input to node[j, k, n+I]. The pipelines are initialised by the input of zeroes, 

equivalent to C(3) for n=3 (3.3), to the nearest plane and the matrix C, is 
1 

output from the last layer as in the assignment (3.4). 

/D) 
(. Dj Data Dependence Graph Localisation 

Localised communication where a processor only communicates data with its 

neighbours is one of the key features which make systolic arrays very amenable 

to VLSI implementation [16]. It is therefore necessary to locallse or pipeline all 

of the communication in the DDG before formation of the systolic array since 

global DDG links would result in a semi-systolic array [82]. 

X[41 XPI )421 411 X(O) 



Chapter 3- Fixed Model Order - Covariance Matrix Element Calculation 52 

The global communication of the x[n-3*] and x[n-k] inputs in figure 3.1 therefore 

needs to be pipelined. The pipelining of this data is shown by the directional arcs 
on the horizontal and vertical connections between the nodes in figure 3.2. The 
directions of the pipelines are chosen by consideration of input data ordering as 

x[O] is available before x[I] etc. Formally x[n - J] data is passed leftward from 

node [j, k, n] to node [j, k-1, n] and x [n - k] data is transmitted upwards from 

node[j, k, n] to node[j - 1, k, n]. The DDG is now fully localised. 

Data Dependence Graph Timing Function 

The timing function sets up the input/output scheduling and determines the order 
in which the systolic processors perform tasks defined by nodes of the DDG. The 

function is limited by pipelining restrictions within the array which define the 

ordering of a set of tasks. Data is pumped through a systolic array on a global 

clock cycle. On each successive clock cycle a PE performs a task defined by the 

next node pipelined in the projection direction. The execution of any DDG node 

computation must therefore be complete within the clock period. In the text 

array timing functions are denoted in terms of clock cycles. 

The timing function used in the DDG is t[j, k, n] =4-I-k+n, which can 

also be represented in the form of a scalar and vector as 4+ [-1, -1,1]. The 

scheduling of the node operations, illustrated by the internal node numbering in 

figure 3.3, inserts single pipeline delays in each of the arcs of the DDG. The -1 

term of the timing function arises from the pipelining direction of the x[n - k] 

inputs where data is pumped up the columns of DDG nodes in the -J direction. 

So for example due to the inclusion of an offset of 4 in the timing function then 

at t=0 x[O] is input to node[4,4,4] and this word is passed onto node[3,4,4] 

at t=1. Similarly the -k part of the expression stems from the pipelining of 

x[n - 1]. The +n term means that a node[j, k, n] is executed a clock cycle before 

node[j, k, n+ 1] as defined by the pipelining of c 
(n) [j, kj. 1 
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Figure 3.3: Projection of time indexed C, DDG in the n direction. 

(D) Data Dependence Graph Allocation Function 

The allocation function determines which nodal operations are assigned to a par- 

ticular processor, providing a spatial mapping of tasks from the DDG into the 

systolic array. The allocation function can be applied by considering linear projec- 

tion of the DDG. There are many options available to the designer when choosing 

a projection direction and so a variety of systolic arrays can be formed from a 

single DDG. The main factors governing the choice of a projection direction are 

the hardware cost and speed of the resulting systolic array. For example a highly 

parallel array may result in fast operation in comparison with an array containing 

fewer processors. 

41,4j 

W2 
12.41 

. 

Given that the number of samples in a data window N is likely to be of the order 

)441 431 )421 411 
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of 64 to 256 it is fairly obvious that the DDG should be projected along the n 
direction ([0,0,1] vector) into a square systolic array containing 25 PEs. If the 

graph is projected along any other direction then the number of PEs would be 

dependent on N leading to huge arrays. For example systolic arrays produced 
by projection in either the 3 or k directions would contain 5(N - 4) processors. 
Figure 3.3 shows the n direction projection of the DDG. The processors of the 

systolic array are shown as square elements as opposed to the circular nodes of 
the DDG. Each processor is given a reference name pe[j, k] according to their 

coordinate position so that for example any node [0,0, n] (4 <n<N- 1) is 

mapped into pe[O, 0]. 

The communication arcs are also mapped into the systolic array. Since the hor- 

izontal and vertical arcs are orthogonal to the projection direction then these 

communications are represented by respective horizontal and vertical data buses 

in the systolic array. The n direction arcs however point in the same direction as 

the projection vector. The result of the mapping is that these links are shown as 
feedback data buses around the PEs of the systolic array. 

/L, I 

(Ej Systolic Array for Calculation of C, 

The systolic array for the calculation of C, with its input scheduling is shown in 

figure 3.4(a). The input scheduling is derived by looking at the operation times of 

nodes on the bottom and right hand faces of the DDG in figure 3.3. An advantage 

of the pipelining directions which were chosen for x[n-3'] and x[n-k] now becomes 

apparent since the lower border inputs to the systolic array are mirrored along 

the right hand edge and so array input burden can be reduced by a factor of two. 

Also with the use of multiplexors on the inputs to the lower edge then all of the 

five different data sequences can be derived from a common stream. The source 

of this stream is an analogue to digital converter which outputs an ordered time 

sequence of sampled data starting with x[O] and ending with x[N - 11. 
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Figure 3.4: (a) Systolic array for calculation of C1, (b) processor function. 

The processor construction is displayed in figure 3.4(b). It contains a multiplier, 

an adder and three systolic delay registers. The registers rj, rA, and r, are con- 

nected to the PE inputs and have common clock and reset signals which have not 
been included on the diagram. On the active clock edge the x [n input on the 

horizontal bus is stored in rl, and the vertical bus input x[n - k] is transferred 

to rj. The product of this data is then added with the word stored in register 

r.,,. Due to the feedback around the PEs the content of r, is the result of the 

addition on the previous clock cycle. On successive clock cycles the products are 

accumulated and the data stored in rj and ri, is passed onto neighbouring PEs 

to the right and above respectively. 

A similar systolic array can be designed for the calculation of the matrix C2. 

There is a difference however in that the pipelining direction for the x[n +A 

input is in the +k direction and that of the x [n + k) input is in the +J direction. 

The inputs here can also be routed from the input data streams of the C, array. 
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(F) Systolic Array for Calculation of C' 

The systolic arrays for C, and C2 can be merged so that each PE requires two 

multiply accumulate units plus an extra adder which is used to add the final 

values of C, and C2 together to form C' [29]. The matrix C' has symmetrical 

properties that can be used to reduce the computational burden of the problem. 
Matrix element values are reflected across the main diagonals which are drawn 

from c[0,0] to c[4,4] and through c[4, O] to c[0,4] separating C' into quadrants. 
For the diagonal running from c[0,01 to c[4,41 it follows from (2.26) and (2.27) 

that for elements lying either side of the diagonal, cU, k] -- c[k, J], whilst for the 

other diagonal from c[4,0] to c[O, 4] it is observed for elements not lying on this 

diagonal that cU, k] = c[4 - k, 4- J]. For example the 9 elements in the lower 

quadrant, c[4,0], c[4,1], c[4,2], c[4,3], c[4,41, c[3,1], c[3,2], c[3,3] and c[2,2], only 

need to be calculated. Due to the matrix symmetry the number of PEs can be 

reduced down from 25 to 9 as shown in figure 3.5. Note that certain pipeline 

delays from the PEs that are removed from the array must be kept to preserve 

the correct scheduling of input data. 

removed PE 

whose delay 

must be kept 

C 

input dala stream 
from A to D 

(a) (b) 

Figure 3-5: (a) Systolic array for calculation of C, (b) processor function. 
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The two dimensional systolic array described in section 3.3.1 suffers from several 
problems. Its main drawback is hardware cost. Each PE contains two multiply 
accumulate units, one for calculation of cl (2.26) and the other for C2 (2.27). 
Study reveals that the majority of multiplications performed in each of these two 

algorithms are common for N>p as is the case when p=4. As a consequence 
of this the use of two separate multipliers is very inefficient. Another problem 
with the array is that the two dimensional style of the architecture makes data 

retrieval of the computed matrix elements c[j, k] difficult, as these are left in 

their respective PEs at the end of the calculation. The addition of extra data 

buses from each PE to an edge of the array would lead to an untidy architecture. 
The output data buses would crossover existing PE interconnections increasing 

the number of circuit board layers required and this would not conform to the 

localised nature of a systolic architecture. A solution to this is to multiplex the 

output data onto existing localised connections but this has the drawback of 

increasing hardware cost and extra clock pulses would be necessary. 

3.3.2 M-i-Linear Systolic Array 

With the inadequacies of the two dimensional array in mind, an alternative DDG 

is derived in this section leading to the formation of a tri-linear systolic array. 

Data Dependence Graph Design 

A different method of partitioning the matrix element calculation is explored 

where the simplifications arising from the symmetry of C' (3.2) are taken into 

account at the start of the design process. As stated previously only 9 of the 25 

elements in C' need to be calculated and correspondingly 9 of the matrix elements 

in each of C, andC2 are required. Considering Ci, the elements ci[j, k] within its 

left hand quadrant can be split into three groups with k-0 (0 << 4), k-1 

(I <J <3) and k==2 (j'=-2). 
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Figure 3-6: (a) DDG for cl[j, k] for 0<j !ý4, k=0, (b) node function. 

Separate DDGs can be designed for each group by relating the matrix elements 

c, [j, k] to a recurrence variable c(, ') [j, k] as before (3.3). Firstly consider the 

situation when k=0. Since k is held constant the data dependencies from the 

calculations of c, [j, 0] (0 <j< 4) can be plotted on the j versus n plane as 
illustrated in figure 3.6. In order to form c, U, 0] the product of x [n - 1] and 

x [n - k] must be accumulated over n ranging from 4 to N-1. Input data x [n -I 
is globally transmitted to the diagonals while there is a global communication 

of x[n - k] across the columns of the graph. The products of the x[n - 1] and 

x[n - k] inputs are accumulated along each of the rows of the DDG and this is 

indicated by the horizontal local interconnects. Figure 3.7 shows the DDG for 

C2 [j7 01 on the J* versus n plane. The calculation here involves the accumulation 
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Figure 3.7: (a) DDG for C2[j*, k] for 0<<4, k=0, (b) node function. 
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of the products of x[n + J] and x[n + k]. The graph is very similar to that for 

, cl[j, O] (figure 3.6) except for the range of n from 0 to N-5 and the x[n+j] data 
is broadcast along the diagonal which is perp endicular to the diagonal on which 
x[n - J] is broadcast. 

Study of the DDGs in figures 3.6 and 3.7 reveals that some products calculated 
in one graph are repeated in the other. The DDGs for c, U, 01 andC2U7 01 may be 

merged together to see if the number of multiplications can be reduced. If nodes 
from each graph which produce the same product are coincidental the merged 
node function can be implemented by just one multiplication and a binary shift. 
Overlapping the graphs as they stand results in a complicated graph as two 
diagonal communications for x[n -A and x[n + j] are required. However the 

vertical x(n] (4 <n<N- 5) data buses can be combined but similar products 

only coincide in the c[O, 0] computation. 

The graph in figure 3.7 can be transformed to that shown in figure 3.8 by ex- 

pressingC2 
[j, 0] in terms of products of x[n] and x[n - 1] as opposed to x[n + 

and x [n] since: 
N-5 N-5+-7 

C2 U) 01 '--E x[n + J]. x[n] x[n]. x[n - Jj (3.5) 
n=O n=j 

The altered graph is effectively a skewed version of the old one with row 1 of 

nodes shifted by 1 positions along the n-axis. 
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Figure 3.8: (a) Skewed DDG for C2 [1) 01 
7 (b) node function. 
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Figure 3.9: (a) Merging of DDGs in figures 3.6 and 3.8, (b) node functions. 

Now combining the DDGs of figures 3.6 and 3.8 produces a much neater merged 
graph for the computation of cU, 0] as shown in figure 3.9. All the global com- 

munication lines which carry the same input data may now be merged. The 

shaded cells represent the regions of overlap for the two arrays and due to (2.25) 

the overlapping nodes are adapted to form twice the product. DDGs for cU, 1] 
(I <j:! ý, 3) and c[2,2] can be derived using the same methodology with the 

resulting DDGs being three rows and one row in height respectively. 

DDG LocaliSation, Scheduling and Projection 

Before timing and allocation function assignments are made it is necessary to 

pipeline the communication of x[n - and x[n]. The pipelining directions are 

chosen bearing in mind that the DDG should be projected in the n direction 

due the large value of N as in figure 3.10. In order to respect the time sequence 

ordering of the input data it is desirable to start accumulating from the left hand 

edge of the DDG and so the selected direction for x[n - J] is from node[j, k, n] 

to node [j + 1, k, n+ 1]. For x [n] the -J pipeline direction is arbitrarily chosen 

creating a bi-direction data flow within the systolic array. The timing function 

illustrated by the internal node numbering is given by: 

4-j-k+ 2n (3.6) 

N-6 N-5 N-4 N-3 N-2 N-1 
IIIi 

IN-61 x[N-51 xIN4] x(N-31 XIN-21 xfN-11 
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Figure 3.10: Projection of localised DDG for c[j, 0] into a linear systolic array. 

The [-1, -1,21 schedule vector places single delay registers in the x[n] and x[n-3] 

pipelines whilst each PE performs a new accumulation every two time steps. 
Extra nodes are included in the bottom left hand corner of the DDG to set up 

x[n] data within the systolic array. Since their x[n - J] inputs are held at zero 
then their function is to simply act as pipeline delays. The same timing and 

projection can be applied to the k=1 and k=2 DDGs to produce two more 
linear systolic arrays. 

(C) Systolic Array 

The complete tri-linear systolic array is shown in figure 3.11. Data enters the 

array once in every two clock cycles so that each systolic PE is active for only 

pe j 
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Figure 3.11: (a) Tri-linear systolic array (b) processor diagram. 
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50% of the time. Each PE accumulates single or double products depending on 
the state of an input control line. The doubling operation is just a matter of a 
shift operation in fixed point arithmetic. If zeroes are interleaved between the 

existent input data then there is only need for a single delay in the accumulator 
feedback link as the accumulation of the product of two zeroes will not change 
the stored value. The input data streams pe[3,1] and pe22 can both be derived 

from the pe[O, 0] input with the use of multiplexors. At the end of the calculation 

c[j, k] can be picked off from the feedback loop of peU, k]. 

3.3.3 Bi-Linear Systolic Array 

One of the shortcomings with the systolic arrays shown in figures 3.5 and 3.11 

is that multiplications are repeated when calculating different matrix elements. 

For example, all of the multiplications required to calculate c[2,21 are used in the 

formation of c[1,11. In general it can be said that the majority of products formed 

in the calculation of c[j, k] overlap with those for c[j + 1, k+ 11. A different way 

of attacking the problem would be to design a systolic array that accumulates 

all the desired products without any repetition, enabling the matrix elements to 

be calculated by selectively picking off the array outputs at appropriate times 

then adding and subtracting as necessary. Relaxing the adherence to the systolic 

model to allow a less regular DDG representation of the algorithm it is found 

that upon examination the number of PEs can be further reduced, resulting in 

the design of a bi-linear systolic array. 

(A) Data Dependence Graph Optimisation 

A DDG of similar to that of figure 3.10 but with the double product nodes 

replaced single product nodes could be used to represent all the necessary per- 

mutations of multiplication operations required for the calculation of C' (3.2). 

For the left hand quadrant of C' considered in the previous section it can be said 
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that element c[i, k] may be calculated from the accumulated products in row j-k 

of the graph. Therefore the new DDG is plotted on an axis of J-k versus n. One 

of the problems with the DDG in figure 3.10 is that once projected the systolic 

processors are active for only 50% of the time. To alleviate this the graph can be 

split into two separate graphs the first containing the rows with the even J-k 
index and the second with the two other rows as shown in figure 3.12. With the 

use of schedule vector 1], a new timing function: 22 

t=p-Jk (3.7) 
22 

is applied to the DDG in figure 3.12(a) whilst 

t=PJk+1+n (3-8) 
22 

is used in the graph in part (b). The effect of the partitioning and new timing 

function is to allow accumulation on successive clock steps whilst still maintaining 
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unit delays in the input data pipelines. There is no longer a need to interleave the 
input data with zeroes and consequently the efficiency of the array is doubled. 

The accumulation input to node[j' - k, n] is labelled S[j - k, nj for future reference. 

/r) I 
(13j OptZmised Systolic Array 

Figure 3.13 shows the two linear systolic arrays of length two and three PEs 

formed by projecting the graphs in figure 3.12 along the n direction. The internal 

PE structure in this array is basically the same as that in the tri-linear array of 
figure 3.11 except that there is no longer need for the product doubling function. 

The input data is clocked into the array on clock cycle t and the PE outputs at 

that time are denoted by SU - k, t]. 

xp] X[2] X[l ] X[O] 

II11 
32 

pe[4] L_L_l pe[21 L_Li_] pe[O] 

S[4, t] S[2, t] S[O, tl 

pe[3] pe[l] 

SP, t] S[l, t] 

(a) 

Figure 3.13: (a) Bi-linear systolic array (b) PE 

MatrIX Element Calculation Using Systolic Array Outputs 

(b) 

Referring back to the graphs in figure 3.12 when dealing the left hand quadrant 

of C' then cU, k] may be calculated from S[j - k, m] by addition and subtraction 

for various values m lying on the n axis. The task is therefore to determine the 

values of m (0 < rn < N) at which the accumulated product needs to be picked 

off. S[I - k, m] can be defined by analysis of the graphs in figure 3.12 bearing in 

mind that S [j - k, rn] is defined as the accumulative sum going into node [j - k, m]. 
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The summation sequence can be written out in a general format as follows: 

S[j - k, m] = 

0 

m-l-j+k 
1: x[n]. x[n +I - 
n=O 

mj-k 

m>)-k 

(3.9) 

In order to find the required values of m for c, (2.26) the summation in (3.9) for 

m>k needs to be expressed in terms of the product (x [n -J ]. x [n - k]). This 

can be achieved by subtracting I from the x indices in (3.9) providing the limits 

of summation are adjusted appropriately. The definition then becomes: 

m-l+k 
SU-k, ml= E x(n - JI. x[n - k] (3.10) 

n=-7 

The lower limit of summation in (3.10) is n=j whilst c, is summed from n= 
4. In order to counteract this problem equation (2.26) can be expressed in 

terms the difference of two separate summations: 

N-1 P-1 

cjU, k] E x[n - JI. x[n - k] -E x[n - jj. x[n - k] 
n=j n=j 

To find the values of m, say mo and mi , such that S[j - k, m] accurately rep- 

resents the calculation of c, [j, k] the upper summation limit in (3.10) may be 

equated with the upper limits of the two summations in (3.11): 

mo-l+k = N-1 

ml-l+k = p-I 

Therefore for the general case: 

[j, k] = 

mo = N-k 

m, = p-k 

mo S[j - k, mi ] 

- S[j-k, N-k]-S[3*-k, p-k] 

(3.12) 
(3.13) 

(3.14) 

(3.15) 

For the calculation0f C2[j, k] the product in (3.9) needs to be expressed in terms 

of x [n +)] and x [n + k]. An analysis similar to that above for c, [j, k] can be used 

to find an expression for C2[j, k] in terms of S[j - k, n]: 

C2[j, k] -- S[j - k, N-p+ J] - S[j - k, j1 (3.16) 
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Equations (3.15) and (3.16) are added together to give c[l, k]: 

S[I- k, N-k I -S[I -k, p-k] 
+ S[j- k, N-p+j*] -S[j -k, j] (3-17) 

The calculation of each matrix element from the systolic array shown in fig- 

ure 3.13 has therefore been reduced to the addition and subtraction of four 

values of the accumulative product PE outputs at appropriate times. To find 

the times at which the specific values m of n are output from the systolic array 

involves substitution into the timing functions t used for the graphs in figure 3.12. 

S[j - k, tj refers to the word being clocked into node[j - k, n] at time t. 

Equation(3.17) can therefore be expressed in terms of time by substitution of 

(3.7) and (3.8). So for even values of k: 

cU7k] S[j-kN+P--I]-SU-k, 3P 
- 

1] 
22 

+ SU-kN-E+I]-SU-k, 2+1] (3-18) 
22 

where: 
j+ (3-19) 

2 

and for odd values of k: 

c[j, k] S[j- k, N+P-- 2 ! -I] 2 -S[j- k, ý-P 
2 --! -11 2 

+ S[j- k, N-P-- 2 
! +I] 2 -S[j- k, E- 2 .! +Il (3.20) 

2 

The matrix elements are therefore calculated by substitution of p=4 and the 

appropriate [j, k] coordinates into (3.18) and (3.20). For example c[O, 0], c[1,1] 

and c[2,2] are derived from output S[O, t] as follows: 

c[o, 01 - - S[O, N+ 2) - S[O, 6] + S[O, N- 2] - S[O, 2] (3.21) 

c[l, 1] S[O, N+ 1] - S[O, 5] + S[O, N- 1] - S[O, 3] (3.22) 

c[2,2] S[O, N] - S[O, 4] + S[O, N] - S[O, 41 (3.23) 
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(D) Implementation of the Sorting PE 

Hardware implementation of (3.18) and (3.20) for each of the nine matrix elements 
in the left hand quadrant of C' is required. Figure 3.14 shows the architecture of 

a PE that may be used to calculate matrix elements from the output stream of a 

systolic PE from the array shown in figure 3.13. 

The operation of the sorting PE can be demonstrated with reference to (3.21) to 

(3-23). The first in first out (FIFO) S register bank initially stores the systolic 

array data output S[O, tj on successive clock cycles from t=2 to t=6. This 

data is held until t=N-2 when S[O, 2] is subtracted from S[O, N- 2] to form 

C2 [0) 01 which is stored in theC2 register. On the next cycle S[O, N- 1] is input 

to the sorter PE, the S register is shifted so that S[O, 31 is output and C2[1,11 

is formed from their difference then stored. The procedure is repeated on the 

following clock pulses and ends when c, [0,01 is stored in the c, register. The c, 

and C2 registers allow parallel access to their data for selective addition to form 

the matrix elements c[O, 0], c[l, 11 and c[2,2]. 

The same structure may be used for the calculation of the other matrix elements 

by altering the timing of the register clock enables appropriately. Although, since 

the storage requirement for the other systolic array outputs is less, this leads to 

some redundant registers. Hardware could be reduced by using fewer registers, 

however in VLSI design repeated structures of identical units are desirable leading 

to a tradeoff between an irregular structure and register redundancy. 

So-k, 

cl register 
-- -UTIT'-, - Im register 

+ 

c2 register 

co, k] 

Figure 3.14: Architecture of a sorting PE. 
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3.3.4 Partitioned Multiply Accumulate (PMA) Array 

The tri-linear array in figure 3.11 has the advantage of a basic multiplier accumu- 
lator PE configuration but suffers because a relatively large number of these PEs 

are required. The bi-linear array in figure 3.13 shows improved efficiency over the 

tri-linear array since repetition of multiplications is eliminated by reducing the 

number of PEs. However, the design of the sorting section of the bi-linear PE 

(figure 3.14) is much more complex creating a disadvantage in terms of storage 

capacity and control signal generation. A systolic array solution which combines 

the simplicity of the tri-linear approach while attempting to meet the efficiency 
(in terms of non repetition of multiplications) of the bi-linear design would be 

superior. The aim here is to produce an array which reduces the sorting required 

to a minimum while avoiding repeated calculations. 

An alternative design approach is to consider multiplications and accumulations 

on separate DDGs. Once hardware solutions for these two subproblems are de- 

rived the merging of the two Processes can be considered. 

(A) Accumulation DDGs 

The accumulations necessary to form the matrix elements can be drawn on a 

number of DDGs. DDG representations of the accumulations for the calculation 

of c[O, 0], c[l, 1] and c[2,2] share the same data inputs x[n]. x[n] (0 <n<N- 1) 

and are therefore illustrated on a common graph in figure 3.15(a). The x product 

inputs are assumed to be available from a single PE to avoid the repeated multi- 

plications. A similar graph for the calculation of c[l, 01 and c[2,11 is presented in 

part (b) of the figure as consisting of three rows to maintain PE uniformity after 

projection. 
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The x product inputs are globally transmitted down the columns of the graphs 

without transformation and the accumulations are made along the rows of the 

graphs in the n direction to output the matrix elements from the right hand 

border. The nodes work in three different modes. In mode 0 the nodes perform a 

straightforward accumulate, mode 1 is a data transfer without product addition 

and in mode 2 twice the input product is accumulated to allow for the overlap 

which arises from the calculations of cl (2.26) and C2 (2.27). In all, five such 
DDGs are created for the p=4 estimator. 
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Figure 3.15: Accumulation DDGs for calculation of (a) c[O, 0], c[1,1] and c[2,2], 
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Multi-prOjection of the Accumulation DDGs 

With the use of multi-projection [231 each of the p+1 accumulation DDGs can 
be projected into a single processor. Since the aim is to map all of the tasks of 

a DDG into a single PE, each node must be processed in its own exclusive time 

slot. The timing function: 

k+3n+ 1 (3.24) 

allows this, creating single delay k direction arcs while the arcs along the direction 

of n need three pipeline delays. Projection of the DDG in figure 3.15(a) in 

the direction of k results in the array of figure 3.16(a) where the operation of 

node[k, n] is processed in pe[n] and whose processor layout is detailed in figure 

3.16(b). There are a total of three systolic word delay registers interconnecting 

each of the PEs. Instead of implementing a wrap around feedback bus for the 

mapping of the k direction arcs a single input port is sufficient if the input data 

to these ports is clocked in, once in every three clock cycles. 

0 

X[O]. X[01 x[l]. xflj x[21. x[2] X[31. X[31 

(a) 

x[N-II. x(N-11 

3N-2 - x[N-II. x(N-11 
3N-5 - x[N-21. x[N-2) 

t 
10 - x[3]. x[3] 
7- x[2]. x[21 
4 x[l]. X[ll 
I X(O]. X[O] 

c[2,2] cfl, l I c[0,0] 

3N+l 3N 3N-1 

t 

C[2,21 c(l, l] c[0,0] 
F---T---l 

3N+l 3N 3N-1 

t 

(b) (c) 

Figure 3.16: (a) k direction projection of the accumulation DDG in figure 3.15(a), 
(b) PE function and (c) result of multi -projection in k and n directions. 
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Neighbouring PEs of the array produced by the k projection are active on con- 

secutive blocks of three clock cycles. Projection of this array in the n direction 

is therefore a possibility as the timing function used saves any of the processor 

operations from clashing. The result of the multi-projection is the single sys- 
tolic PE shown in figure 3.16(c), the internal layout of which is still the same as 
in figure 3.16(b). The PE interconnection buses of the previous array become 

feedback buses carrying four systolic delays whose contents at any time instant 

represent the current state of the accumulation of c[O, 0], c[l, 1] and c[2,2]. The 

initialisation state of these registers is provided by using their reset function. 

The same arrangement as that of figure 3.16(c) can be used for the calculation 

of the other matrix elements but the timing of the control signals and the input 

products need to be varied accordingly. 

Multiplication DDGs 

The split DDG approach of section 3.3.3(A) can be used to perform efficiently the 

multiplications required for supply of the accumulation DDGs. Figure 3.17(a) 

and (b) are the DDGs which cover all permutations of x[n]. x[n - k)] for 

(I - k) even and odd respectively. The timing allocations of the original array, 

(3.7) and (3-8) are scaled 3 times as each consecutive product is required to be 

updated every three clock cycles for input to the accumulation PEs. Usage of the 

allocation function where node[(I - k), n] is mapped into pe[(j"- k)] results in the 

systolic arrays shown on the right of the DDGs. The timing allocation suggests 

three register delays on each of the communication buses between PEs. A much 

simpler and less expensive solution is to opt for a clock signal whose frequency 

is a third of that on the accumulation feedback registers as with such a signal 

only single systolic delays are required. The output products of these PEs are fed 

directly to the accumulation PEs for complete calculation of the matrix elements 

from the sampled Doppler signal. 
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Figure 3.17: Split DDG and systolic mapping for calculation of products 
x[n]. x[n - k)] where (I - k) is (a) even, (b) odd. (c) systolic PE. 

(D) Merging the Multiplication and Accumulation Systolic Arrays 

The PMA systolic array is shown in figure 3.18(a) with the configuration of the 

merged multiply and accumulate PE shown in part (b) of the figure. Systolic 

delay registers within the PE are clocked at input data rate fS and those in the 

feedback loop are clocked at three times this frequency. 
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Figure 3.18: (a) PMA systolic array and (b) merged multiply accumulation PE. 
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3.4 Comparison of Systolic Arrays 

In the design of systolic arrays it is important to always bear in mind their 
feasibility to hardware implementation. This is often overlooked by designers who 

propose arrays without any thoughts to the constraints imposed by the available 
VLSI technology. A comparison of the four systolic arrays for the calculation of 
the matrix elements is made here bearing in mind their suitability to hardware 

implementation. The main scope for comparison is cost. Hardware cost may be 

divided between that for arithmetic, register and control modules. The cost is 

also affected by data communication and control signal requirements between the 

processors of the array. The efficiency of each of the systolic arrays in terms of 
the processor utilisation and block pipelining period, needs to be considered also. 
There is no need to compare the accuracy of the different arrays since the results 

produced by each should be closely matched if the same rounding methods and 

precision are used. 

3.4.1 Cost Estimate 

Ultimately the cost for implementation of a systolic array is decided by the route 

which is used to fabricate the VLSI device be it full custom, semi custom or 

programmable logic. The relative cost, not the final cost, of the four arrays is of 

interest here and therefore the functions used to make the comparison of designs 

are viewed as being independent of the production technology. The hardware cost 

analysis presented is viewed in terms of the approximate number of NAND gates 

needed to construct the systolic arrays. This enables the arithmetic, register and 

control costs to be fairly summed when calculating the total cost of each design. 

Communication requirement can be simply viewed as the number of wires which 

make up the data buses. The costs are affected by several factors, namely type 

of approach, data format and word-length. 
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(A) Type of Approach 

Word-parallel and bit-serial approaches are considered. The type of approach will 

affect the hardware cost, processor intercommunication requirements and speed 

of individual processor operation. In word-parallel arithmetic all bits in the data 

words are clocked into modules simultaneously. The communication links between 

PEs will therefore be in the form of data buses. Bit-serial modules tend to use less 

hardware and communication requirements can be substantially reduced as data 

buses are replaced with single communication lines making this an economical 

approach to systolic array implementation. However bit-serial modules need to 
be clocked within the systolic cycle. Although throughput can be improved by 

using high levels of pipelining the bit-serial modules tend to be slower and control 

circuitry may also be more complex. 

/D) 
(B) Data Format 

The leading choices for type of arithmetic are fixed point and floating point [94]. 

In floating point the data is expressed in terms of a mantissa and exponent. The 

scheme offers an increased dynamical range over fixed point [88] but at the cost 

of complex extra circuitry for normalisation and exponent calculation. The fixed 

point approach is pursued in the matrix element calculation due to the hardware 

cost saving when a number of PEs are utilised. 

(C) Word-Length 

Fixed point data can be represented by w bit binary numbers. Bus width in a 

word-parallel approach, arithmetical precision and logic gate usage are increased 

with greater word-length. A range of word-lengths from 8 to 20 bits is considered 

in the cost estimation. 
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Hardware Cost Eshmation 

The hardware cost estimates detailed here are based on two's complement fixed 

point word-parallel and bit-serial implementation of the four systolic arrays. In 

order to compare the hardware requirement of each of the designs in terms of 
NAND gates it is necessary to consider the gate count of the individual arith- 
metic, memory and control modules. The modules used in the matrix element 
calculation systolic arrays may be constructed from lower level cells such as full 

adders, and d-type flip flops. The relative sizes for NAND gate implementations 

of the cells that are used are shown in table 3.1. 

type of cell NAND gate : u: sa: g: e] 
full adder (FA) 12 
gated full adder (CFA) 13 
d-type flip flop (DFF) 6 
2 to 1 line multiplexor (MUX) 4 
exclusive OR gate (XOR) 4 

Table 3.1: NAND gate usage of low level cells. 

w bit module 1 1 word-parallel bit-serial 

addition FA. w FA+DFF 

subtraction CFA. w CFA+DFF 

multiplication GFA. (W2 + W) (CFA+3. DFF+XOR). (w + 1) 

register DFF. w DFF. w 

_multiplex 
MUX. w Mux 

Table 3.2: Cellular construction cost of arithmetic, memory and control modules 
for word-parallel and bit-serial approaches. 

Using the information in table 3.2 hardware cost for bit-serial and word-parallel 

versions of the various arithmetic, memory and control modules can be deduced in 

terms of a word-length w. The word-parallel addition and subtraction unit cost' 

is based on ripple carry linear arrays whilst their bit-serial versions are reduced 

to single cell units with carry feedback via d-flip-flops. 

'Note that word-parallel costs for addition, subtraction, multiplex and register units, double 

when manipulating double precision products. 
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The DDG concept can be extended to the bit-level in order to design word- 
parallel and bit-serial multiplication devices as shown by McCanny et al. [118], 

where the multiplication of positive binary numbers is explored. Moving to two's 

complement representation, the w=3 bit DDG in figure 3.19(a) is based on 
the use of an adjustment constant which is input to the right hand nodes for 

addition with partial products [119]. The adjustment is needed to account for 

negatively weighted bit products (i. e. those formed in the shaded nodes) which 
are logically inverted then treated as positive bit products in the partial product 
summations [1111. This DDG is highly regular and there are only two different 

types of node whose operation is shown in figure 3-19(b). The regularity of the 
DDG is reflected in the multiplier arrays resulting from various projections and 
this property together with the low number of PE operation modes eases VLSI 

implementation and results in simple control. Direct mapping such that each node 
is mapped into a single PE (nodeU, k] --ý peU, k]) results in a ripple through word- 

parallel array multiplier of w' +w GFAs. This design is preferred over, a design 
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Figure 3.19: (a) Bit level DDG for two's complement multiplication using an 
adjustment scheme (b) key to node operations (c) systolic bit- serial/word-parallel 
multiplier produced by projecting the DDG in the k direction and (d) PE layout. 
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such as the Pezaris multiplier array [88] for example which, despite containing 
2w fewer PEs, is difficult to implement in VLSI due to a less regular architecture 
and double the number of PE types. Lower cost, but slower, pipelined bit-serial 

multipliers can be designed by applying timing and allocation functions to the 

DDG. At first glance J projection into a systolic array of w PEs seems to produce 
the most cost efficient bit-serial multiplier. However, a more detailed inspection 

reveals that projection in the J direction, although resulting in aw+1 PE systolic 

array (figure 3.19(c)), has a lower cost for w>8 since the each of its PEs (figure 

3.19(d)) require one less register. 

The systolic delay registers contain the same number of d-type flip flops in the 

word-parallel and bit serial approaches since the number of bits that must be 

stored are the same in both cases. The difference occurs in the way in which 
the registers are configured. The word-parallel type are PIPO and the bit-serial 

registers are SISO. Bit-serial multiplexing is carried out one bit at a time and so 

requires just one MUX cell but in the word-parallel equivalent this hardware is 

increased by a factor of w. 

Finally the hardware usage of the systolic arrays can be described by the number 

of arithmetic, memory and control modules incorporated each design. This in- 

formation is detailed in table 3.3 enabling the NAND gate usage to be compared 

by using the information presented in this and the previous two tables. 

w bit module number of modules used in the systolic arrays 
2-dimensional tri-linear bi-finear PMA 

addition (d) 27 9 10 5 

subtraction (d) 0 0 5 0 

multiplication 18 9 5 5 

register 58 18 10 10 

register (d) 18 9 60 20 

multiplex 5 2 0 0 

multiplex(d) 0 9 20 10 

Table 3.3: Hardware usage for systolic arrays in terms of module usage where (d) 

indicates a double precision module. 
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/0) 
(-E) Hardware Cost Estimation Results 

Using the information from tables 3.1 to 3.3 the total number of NAND gates 
in each of the four systolic arrays may be approximated. The results of cost in 
terms of the total number of NAND gates in each design are plotted against the 

word-length w in the graphs shown in figure 3.20 for word-parallel and bit-serial 

approaches. As expected the word-parallel approach exhibits the greater hard- 

ware costs. The graphs show that the 2-dimensional array uses significantly more 
hardware than the other arrays in both approaches for all word-lengths which is 

mainly due to the large number of multipliers used. The bit-serial multipliers are 

smaller in size compared to those of the word-parallel scheme. Hence, between 

approaches the relative costs for all multipliers in an array against the systolic 

registers changes because storage requirements remain constant whatever the ap- 

proach. This effect is reflected in the results from the tri-linear and bi-linear 

arrays. Both of these arrays show similar costs in the word-parallel approach but 

the cost of the tri-linear array is significantly lower in the bit-serial approach due 

to the cost saving on a larger number of multipliers relative to the bi-linear ar- 

rays large memory requirement in both approaches. In both approaches the PMA 

array is the least expensive to implement due to its low multiplier and register 

combined cost. 
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Data Communication Cost 

The data communication cost covers the number of data communication lines 
between the processing elements and the number of feedback links around the 
PEs. The communication cost relates to printed circuit board track area, routeing 
resources on integrated circuits and the number of input/output pins around a 
device. Communication cost should be as low as possible to keep within physical 
limitations imposed by the hardware technology and to facilitate the ease of 
implementation. The communication cost analysis is expressed in terms of the 

number of data buses. For the word-parallel approach bus-width bw is equal to 

the word-length w. In the bit-serial approach bw =1 and is therefore independent 

of word-length, demonstrating the communication cost saving advantage of this 

approach when dealing with large systolic arrays and high precision data. 

The data communication costs in the four systolic arrays are detailed in 

table 3.4. The results of the cost analysis show that the 2-dimensional array 

uses by far the most resources. Its problems are further exasperated by the 

global communications around the array, which provide the input routeing, and 

the difficulty in data retrieval. The bi-linear and PMA arrays display lowest costs 

due to their smaller PE count. However there is greater communication burden 

within each PE of the bi-linear array since each consists of a multiplier accumu- 

lator and a sorting network. Internal PE communication is not reflected in the 

results table and so the advantage of the bi-linear array over the tri-linear design 

is not so great as the figures suggest. 

communication type number data buses 
2-dimensional tri-linear bi-linear PMA 

PE interconnection 40 15 8 8 

locallsed feedback 18 9 5 5 

array input 16 3 2 2 

array output 9 9 5 5 

Table 3.4: Data communication cost. 
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Control Signal Cost 

All the arrays have clock and reset signals which control activation and initiali- 
sation. The bi-linear array requires nine extra control lines for multiply-by-two 
selection at appropriate times plus two more controls on the multiplexor input 

selection lines. The sorting networks of the bi-linear design prove to have the 
biggest control burden. Each of the three registers contained within its sorting 
processors require clock enable generation and two more multiplexor select con- 
trol lines are needed. Of the four arrays considered the 2-dimensional design is 
the only one that requires no extra internal PE control during the calculation of 
the matrix elements but it does have five multiplexors which require input selec- 
tion signals. The tri-linear array needs 9 control lines for double product selection 
while 5 control lines are required for this function in the PMA array. Additionally 

there are five multiplexor select signals, for switching to accumulation mode 1, 

and an extra clock running at 3f, in the PMA array. 

3.4.2 Efficiency 

The allowable operation time of the array PEs TPE, and consequently, of the 

modules contained within the PEs, can be derived from the clock rate flk which 

is necessary for the real-time systolic array processing of data sampled at a rate 

of f'. 

TPE <1 (3.25) fclA: 

The allowable processing time will influence the choice of whether a word-parallel 

or bit-serial approach is to be followed. Once the approach is decided upon 

arithmetic modules can be designed to meet the specification imposed by the 

input data sampling rate. The most efficient systolic arrays have the longest 

processing time and allow arithmetic modules to be designed to less stringent 

specification than would be the case for an inefficient array. The efficiency of the 

designs may be looked at in terms of processor and block pipelining periods. 
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(A) Processor Pipelining Period 

The processor pipelining period a gives an indication of how busy each of the 

processors are and is thus related to their efficiency [23]. It is formally given 
by the time interval (in clock periods) between two successive computations and 
in general is the same for all the processors in the array. Ideally a=1. The 

processor pipeline period can be calculated from the product of the row schedule 
vector S and the transpose of the row projection vector PT: 

p (3.26) 

For example in the bi-linear systolic array where 9= [- 1, - 1,2] (3-6) and P 

[0,0,1] represents projection in the n direction then: 

-1) 2]. 

so that each processor is active in one in every two clock cycles. 

/D I 

(B) Block Pipelining Period 

(3.27) 

The block pipelining 3 period refers to how soon a new set of data can be pro- 

cessed in the systolic array after the previous set of data has been input. In 

terms of the matrix element calculation array, this is the shortest allowable time 

from array input of the x[O] data samples in two consecutive windows. The block 

pipeline period can be calculated from the product of the processor pipeline pe- 

riod and the maximum number of node operations performed by any processor 

in the array. So again for example considering the bi-linear array, then from the 

DDG in figure 3.10 each PE is required to perform N operations and therefore: 

0=a. N = IN - (3.28) 
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Results of Efficiency Analysis 

The pipelining periods noted in table 3.5 are derived by consideration of the 
timing functions and DDGs associated with each design. The 2-dimensional, 
bi-linear and PMA arrays show maximum processor utilisation with a=1 and 
therefore their processors are active on consecutive clock cycles. In the tri-linear 

array a=2 so its processors are only 50% efficient. The clock rate of this array 
therefore needs to be twice that of the others and its arithmetic units need to be 
designed to a higher specification. 

type of 11 pipelining periods for systolic arrays (clock pulses) 
pipelining period I mensional I tri-linear I bi-linear I PMA 

processor a 2 
block P N+4 2N N N 

Table 3.5: Processor and block pipelining periods. 

For the real-time processing of input data sampled at f, then: 

fclA: = a-f., (3.29) 

The highest sampling frequency needed for the incoming data is 51.2kHz in the 

Modified Covariance application. This gives approximate maximum allowable 
PE latency T, 11, of e-, 20jis for the 2-dimensional, bi-linear and PMA arrays com- 

pared to the more stringent 10ys for the tri-linear array. The PE latency is 

determined by the design of the internal arithmetic units, of which the multipli- 

ers display the greatest lag, and the VLSI implementation technology used (e. g. 

full custom or FPGAs) which affects communication delays and the propagation 

delays of logic gates. In the bi-linear and PMA arrays 3 is the same length as 

the data window and so these arrays have the ability to continuously process 

consecutive sets of data. For the tri-linear array however, 3 is double this but in 

terms of real time it is the same since the tri-linear array is being clocked at twice 

the rate. 
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3.5 Concluding Remarks 

This chapter has presented four different designs for the real-time calculation 
of the covariance matrix elements in a fixed model order Modified Covariance 

spectral estimator. The designs were based on implementation for model order 
p=4 as this has been previously determined as optimal for when both mean 
frequency and half bandwidth are to be calculated. 

The real-time calculation was shown to be computationally intensive and for this 

reason the algorithms involved were partitioned onto systolic array processors 

using data dependence graph methods. This chapter has shown different ways 

of capturing the matrix element calculation on DDGs, demonstrating the impor- 

tance of the DDG representation on the design of the systolic array which results 
from space-time mapping. Initially the formal DDG design method was strictly 

adhered to, to produce a two dimensional systolic array containing 9 processors, 

with each processor containing two multiply accumulate units and an adder. To 

reduce cost, a second array was designed from a number of independent DDGs 

resulting in the matrix element calculation being partitioned into three separate 

linear systolic arrays of length 5,3 and I processors. Each PE contained only 

a controlled multiply accumulate unit but it was observed that processor utili- 

sation was only 50% and that certain products were formed more than once in 

different PEs. In an attempt to optimise the tri-linear design the calculation was 

partitioned into two pipelined sections resulting in a less regular design. The 

first section was a bi-linear array which formed and accumulated all the required 

products just once with maximum efficiency. The other section contained sorting 

networks to form the matrix elements but the greater storage requirement of this 

module led to high bit-serial bi-linear array costs. A fourth systolic array was 

designed by partitioning the multiplications from the accumulations. This PMA 

array matched the efficiency, while eliminating the large memory and control 

burdens imposed by the bi-linear design. 
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The cost in terms of hardware usage of the arrays was estimated in order to 

compare between the three arrays for word parallel and bit-serial implementation 

approaches at different word-lengths. The PMA array was chosen as the opti- 

mal solution since it displayed the lowest cost for all the word-lengths in both 

approaches, it also showed low communication burden and high efficiency with 
the only drawback for the requirement of two clocks running at f, and 3f,. 

The choice on whether bit-serial or word-parallel arithmetic units are to be used 

can be based upon the allowable lag of a PE operation given the sampling fre- 

quency of the input data. Multiplication of two w bit numbers is in the order of 

w times more computationally complex than their addition and so multiplication 

execution time tends to be longer. In the PMA array the maximum allowable 
PE lag is ^-. I 20/Ls (see section 3.4.2(C)) and thus multiplication execution time 

must be less than 20ps assuming the systolic register transfer delays are rel- 

atively small. Typically, a two's complement, bit-serial multiplication module 

implemented in CMOS technology can perform a complete multiplication in 1 

to 2ps for word-length ranging from 8 to 20 bits [111][112]. Hence, the bit-serial 

approach is deemed to meet the specification imposed by the real-time systolic 

processing restrictions and is capable of achieving a factor of 10 times the nec- 

essary throughput due to the high computational efficiency of the systolic array. 

This justifies the use of a bit-serial scheme over the more highly specified but 

expensive to implement word-parallel approach. 

The computationally efficient bit-serial PMA systolic array design requires -ý., 4100 

to 9800 NAND gates for word-lengths from 8 to 20 bits respectively. The next 

stage in the design of the PMA array is to select the word-length which is required 

to obtain sufficient precision in the covariance matrix input data to the next 

stage of the estimator in which the filter parameters are computed. Following a 

review in chapter 4 of decomposition systolic arrays for use in the filter parameter 

computation chapter 5 goes on to consider the word-length requirements. 



Chapter 4 

Fixed Model Order - 
of Filter Parameters 

4.1 Introduction 

Calculation 

Chapter 3 considers the calculation of the covariance matrix elements in the Mod- 

ified Covariance spectral estimator of fixed model order. This chapter considers 

systolic array designs that could be used for the next main section of the fixed 

model order estimator in which the autoregressive filter parameters are calculated 

by solving the modified covariance system of equations (2.21). 

The main part of the chapter is devoted to consideration of systolic array imple- 

mentations of decomposition techniques which may be used to efficiently solve the 

system of equations. Using these techniques the set of covariance equations can 

be rewritten in the form of lower and upper triangular systems of equations which 

may be respectively solved using the forward elimination and back substitution 

algorithms. Systolic array realizations of the three most applicable decomposition 

algorithms, Cholesky, LU and LDL T, are reviewed. Data dependence graph rep- 

resentations for each of these methods are presented. From these graphs a wide 

variety of systolic arrays are derived by choosing different projection directions. 
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Figure 4.1: Overview of the decomposition systolic arrays described. 

Figure 4.1 overviews the decomposition systolic arrays which are discussed in 

this chapter with regard the calculation of the filter parameters'. The Cholesky 

algorithm is considered as it displays good numerical stability [27] and is suited 

to solution of a symmetrical positive definite system of equations such as that in 

the Modified Covariance method. The dimension of the Cholesky decomposition 

DDG for the model order p=4 spectral estimator is no greater than 4 nodes 

in either the J, k or n directions, thus a wide choice of projection directions are 

feasible. The selection of the projection vector leading to the optimal decom- 

position systolic array design is therefore not as clear cut as in the case of the 

matrix element calculation DDGs discussed in the previous chapter, whose length 

restricted the projection to along the n-axis in order to avoid excessively long 

systolic arrays. The design of the various systolic arrays in chapter 3 is based 

'It should be noted that, despite the symmetrical properties of the Modified Covariance 

matrix, it is not Toeplitz. The Modified Covariance equations cannot therefore be solved by 

the computationally superior Levinson algorithm. 
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around projection of different DDG representations of the matrix element algo- 
rithm. Using the same DDG design methodology, this chapter provides a tutorial 

overview of the design of five Cholesky decomposition systolic arrays resulting 
from the different projections of a single DDG (figure 4-1). Brent & Luk's array, 
topologically equivalent to a [1,1,1] mapping is compared with those formed by 
the alternative mappings to prove that it is in fact the optimal design in order to 
justify its selection. 

On the comparison of the systolic arrays it is difficult to make a decision as 
to what makes a design optimal. Many designers would just make the choice 
by looking for the design which uses the least amount of PEs, but which array 

should be chosen if they all contain the same number of PEs? The in depth com- 

parison of the arrays used here is concerned with the relative costs involved when 

actually implementing the designs on a VLSI device. Such factors as hardware 

cost in terms of NAND gates, communication burden and control complexity are 

considered providing detailed comparison. 

The square-root algorithm, which is required for the Cholesky decomposition, 

is not well suited to VLSI implementation [120]. The DDG representation of 

the square-root algorithm is irregular and its nodes are required to work in 4 

different modes [88]. Therefore pipelined square-root arrays have complex control 

requirements. An intrinsic dependence among the iteration steps also makes 

square-root devices considerably slower than multipliers [121] and this results 

in a bottleneck which limits the maximum clock frequency of the systolic array 

[80]. The problems associated with the square-root VLSI implementation lead 

to consideration of non-square-root decomposition algorithms, such as the LU 

and LDLT, respectively used to decompose non-symmetrical and symmetrical 

matrices. 
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Once again using the DDC design method, the [1,0,01 and [1,1,1] projection vec- 
tors, which are found to produce the two optimal systolic arrays for square-root 
Cholesky decomposition, are applied to DDCs for the non-square-root decom- 

position methods. The [1,0,0] projection of the LU DDG produces the array 

proposed by Kung [23] and analysis of Kung's design shows that no provision is 

made for retrieval of the upper triangular matrix from the array PEs. A new 
DDG is presented which when projected by the [1,0,0] vector produces a systolic 

array with a novel on-the-fly data retrieval network at no extra cost. This array 
is compared with [1,1,1] projections of LU and LDL' decomposition which re- 

spectively produce systolic arrays topologically equivalent to those proposed by 

Kung. & Leiserson [17] and Brent & Luk [80]. Inefficiencies with Brent and Luk's 

[1,1,1] LDL T design [80] are recognised and after re-examination of the recur- 

rence equations a modified DDG which re-represents the data flow is presented. 

A new LDL T systolic array, produced by the [1,1,1] projections, is proposed and 

is found to show significant cost reduction over Brent & Luk's. A new array 

produced by [1,0,0] projection of the modified LDLT DDG is also presented and 

compared in detail in terms of VLSI implementation cost with rest of non-square- 

root decomposition systolic arrays. 

4.2 Computational Burden 

When considering model order p=4 this part of the problem is less computation- 

ally intensive than the matrix element calculation. The Cholesky decomposition 

algorithm for example requires P-3- operations. Assuming that one decomposi- 
6 

tion needs to be performed within one data window of 5ms length then this leads 

to a computational rate of approximately two thousand operations per second 

which is much less demanding than the burden imposed by the matrix element 

calculation as described in section 3.2. Slower clock rates may be used for this 

section of the estimator and it seems sensible to follow a bit-serial approach. 
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4.3 M-iangUlar Systems 

A common feature of the decomposition methods which are described is that 
they all produce triangular systems of simultaneous equations. Cholesky, LU and 
LDL T decompositions all produce lower and upper triangular systems which may 
be solved by the forward elimination and back substitution processes respectively. 

4.3.1 Forward Elimination and Back Substitution Algorithms 

Forward elimination is used to solve the lower triangular system of equations: 

L. Y = 

which, for model order p=4 is written as: 
1[111] 000 y1 -bl 
1[2,1] 1[2,2] 00 y [21 b[2] (4.2) 1[3,1] 1[3,2] 1[3) 3] 0 y[3] b[3] 
1[4,1] 1[4,21 1[4,3] 1[4,4] J Ly [4] 1 L b[4] i 

The forward elimination recurrences to calculate Y, described in [27], show that 
2 

the algorithm requires F-I operations. The single assignment format of the forward 2 

elimination algorithm: 

(k+l) [j ] 

0 

r(')[3] + I[], k]. y[k] 

k=O 
(4.3) 

Ylil = (b[j] -13 .1 

Ik<I 

1 (4.4) 

defines the computation, firstly of element y[I] through to element y[4]. Back 

substitution is used for the solution of an upper triangular system of equations: 

U. A =Y 

and for model order 4: 
u[l, 1] u[l, 2] u[l, 3] u 1,4 - a1 Y111 

0 u[2,2] u[2,3] u[2,4] a[2] y[2] 
00 u[3,3] u[3,4] a[3] y[3] 
000 u[4,4] - - a[4] -y[4] 

(4.5) 

(4-6) 
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The back substitution recurrences: 

r 
(p+2-k) [j ]k=, p +1 

(4.7) 

1 

r(P+'-) [J] + u[j, k]. a[k] I. <k<p 

a[j] (y[ rII<, <p (4-8) lp+'- *1 ljl)lu[j, 31 -3 - 

are similar to those for forward elimination except that the vector A is calculated 
a[4] first then a[3] etc. 

4.3.2 Forward Elimination and Back Substitution Systolic Arrays 

The forward elimination and back substitution recurrences can be mapped into 

the systolic arrays shown in figures 4.2(a) and (b) respectively which were first 

presented by Kung & Leiserson [17][122]. The systolic array contains two types 

of processor PEO which calculates (4.4) and (4.8) and PE1 which handles (4.3) 

and (4.7). Of the four processors in each of the arrays pe[O] is an instance of type 

PEO and pe(l] to pe[3] are of type PEL 

6- b(4] 
5- 0 
4- b[3] 

t 3- 0 
2- b[21 
1- 0 
0- 11 

PEO PEI PE1 PE1 0 
Plo(01 pell) POM 

9 

pop) y[4] 0 y[31 0 y[21 0 y[l] 

ii: 

o- 1[1,1] 0 0 

F111111 

09876543 
1- 0 1[2,11 0 0t 
2- l(2,21 0 l(3,1) 0 

t 3- 0 1[3,21 0 l(4,1) 
4- l(3,31 0 1[4,21 0 
5- 0 1[4,31 0 0 
6- 1[4,41 0 0 0 

(a) 
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2- y[31 
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0- yI 

PEO - PEI PEI PEI 0 
peiol Pe( 11 pe(21 pe[3) a[l) 0 a(21 0 a(31 0 a[41 
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t 

1- 0 u[3,4] 0 0 
2- up, 31 0 u[2,4] 0 
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Figure 4.2: Systolic arrays for (a) forward elimination, (b) back substitution and 
(c) PE function. 
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4.4 Square-Root Cholesky Decomposition 

4.4.1 Cholesky Decomposition Algorithm 

In the Cholesky decomposition method the covariance matrix is decomposed into 
the product of a lower triangular matrix and its transpose: 

L. L 

where for model order 4: 

-1[171] 
1[2,1] 
1[3,1] 
1[4,11 

000 

1[2,2] 00 
1[3,2] 1[3,31 0 
1[4,2] 1[4,3] 1[47 4] j 

(4.9) 

(4.10) 

This method takes the symmetry about the northwest to southeast diagonal of 
the positive definite covariance matrix into account and therefore only the lower 

triangular part of the covariance matrix is required in the evaluation of L. The 

purpose of forming the decomposed system is to produce two triangular sets of 

simultaneous equations which can be easily solved. Substitution of (4.9) into 

(2.21) leads to the following equation: 

L. L A-B (4.11) 

The product of the p by p matrix L with the length p vectorAcan be said to 

equal another length p vector Y: 

LT A=y (4.12) 

Equation (4.12) has the same format as the upper triangular system given in 

A may therefore be calculated using back substitution once Y has been 

determined. Substitution of (4.12) into (4.11) yields the lower triangular system: 

L. Y =B (4.13) 

which has the same style as (4.1) for solution by forward elimination. 
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The algorithm for the calculation of the Cholesky decomposition is described in 

terms of a for loop algorithm in Golub and Van Loan [27] who state the compu- 
tational complexity as E-3 flops. It can be viewed in terms of a series of iterative 6 

updates on the matrix C which is being decomposed. The following recurrence 

equations show the Cholesky Decomposition algorithm written in single assign- 

ment format from which the DDG can be derived: 

0<k 

c[j, k] k<j 
(4.14) 

0<k 

c('+')U, k] 0<n (4.15) 

C(n) [j, k] -I [j, n]. I [k, n] n<k< 

0 

I[j, k] Vrc(k) [j, k] 

c(l) [j, k] /I [k, k] 

<k 

k (4.16) 

k<j 

4.4.2 Cholesky Decomposition Data Dependence Graph 

To aid in the derivation of the DDG for Cholesky decomposition a series of matri- 

ces C(7+') with elements c("+') [j, k] (4.14) (4.15) can be formed. The initialisation 

of matrix of C('+') for n=0 (4.14) to the lower triangular part of the original 

covariance matrix C is shown below: 

C[l, 1] 000 

c[2,1] c(2,2] 00 

c(3,1] c[3,2] c[3,3] 0 

c[4,11 c[4,2] c [4,3] c(4,41 



Chapter 4- Fixed Model Order - Calculation of Filter Parameters 93 

Assignment (4.15) describes how the matrix C(l) (4.17) is iteratively updated as 
the recursion index n is incremented. The sequence of iterations for calculation 

of the Cholesky decomposition, matrices (4.18) to (4.20), show that as C(, n+') is 

updated the dimensions of the lower triangular matrix are reduced because the 

elements in column n are replaced with zeros as defined by (4.15) for j<n: 

00 0 0 

c(l) [2,2] 0 0 

c(l) [3,2] c(l) [3,3) 0 

-1[2,11.1[3,1] -(1[3,1])2 

c(l) [4,21 c(l) (4,3] c(l) [4,41 

-1[2,1]. 1[4,1] -1[3,1]. 1[4,1] -(1[4, lj)2 

0000 

0000 

C(3) 
00 C(2) (3,3] 0 

-(1[3,2])2 

00 C(2)[4,31 C(2) [4,4) 

-1[3,2]. 1[4,2] -(1[4,2) 
)2 

0000 

0000 

(4) 

0000 

000 C(3) [4,41 

-(1[4,3] )2 

(4.18) 

(4.19) 

(4.20) 

The elements 1[j, k] in column k=n+I of the lower triangular matrix L can 

be calculated from the elements of the same column in matrix C(71+1) by the 

assignments detailed in (4.16). For example when n-1,1[2,2] is calculated from 

the square root of element C(2) [2,2] in matrix 
C(2) (4.18). Element 1[3,2] can then 

be calculated from the quotient Of C(2) [3,2] with 1[2,2] and similarly for 1[4,2]. 
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Figure 4.3(a) shows the Cholesky decomposition DDG. The three dimensional 

graph consists of four planes of nodes, each lower triangular shaped plane cor- 

responding to a particular value of n. The nodes of the graph operate in either 

mode 0, mode 1, mode 2 or mode 3 (figure 4.3(b)), each mode corresponding to 

a specific task respectively defined by the recurrences (4.16) k, (4.16) > k, 

(4.15) j=k and (4.15) J, > k. The orthogonal input to layer n of the graph is 

matrix C(n) 
, each element c(n) [j, k] is input to node [j, k, n] and matrix C(n+l) is 

the output. Therefore in the nearest layer where n=1, elements c(')[3, k] of ma- 

trix 01) (4.17) are input in the n direction to nodeU, k, 1] (nodes are referenced 

as node[j, k, nj) and C(') (4.18) is produced by this plane. Elements of the matrix 

L computed in the mode 0 and mode I nodes are globally transmitted in the J 

and k directions. 

node[4,4,4] 

4,4] 

n( 
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c[2, 

c[3, 

c[4, 
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k 

Figure 4.3: (a) DDG for Cholesky decomposition, (b) key to symbols. 
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4.4.3 Cholesky Decomposition DDG Localisation 

The pipelining directions of the data in the Cholesky decomposition DDG are 

also shown in figure 4.3 by the node interconnection arcs. The pipeline of 1[1,1] 

from node[l, 1,1] to node[4,1,1] in the ) direction defines the ordering of the 

computations as 1[2,1], 1[3,1] then 1[4,1]. Although this ordering is not critical it 

is necessary to maintain localised communication throughout the DDG. Similarly, 

pipelines can be set up in the second, third planes for 1[2,2] and 1[3,3] respectively. 
In the n layers elements I[j, n] (n <J< 4) are also localised in the k direction 

along rows and in the 3 direction along column 3. Localisation for the updating 

of the C('+') matrices in the n direction respects the imposed data dependencies. 

4.4.4 Cholesky Decomposition DDG Timing Function 

A timing function can be derived for the Cholesky decomposition DDG based on 

the localisation. Insertion of unit delay into each of the node interconnection arcs 

leads to a timing function: 

t[j, k, n] =J + k+n+o (4.21) 

where t is given in clock cycles and o is an offset which defines the start time 

of the computation at node[l, 1,1]. This start time may vary depending upon 

the allocation function chosen since some of the systolic arrays derived in the 

following section need several clock cycles for data to be loaded into the array 

before calculation can begin. The timing function also determines the overall 

operation time of the array. For example, the timing function is illustrated by 

the internal node numbering in figure 4.3 is for an array whose computation in 

node[l, 1,1] begins at t=0. For this timing function o= -3 and operation is 

complete after 10 clock cycles when node[4,4,4] executes at t=9. Processor and 

block pipeline periods are determined partly by the timing function but are also 

related to the chosen allocation function (see section 3.4.2)- 
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4.4.5 Cholesky Decomposition DDG Projection 

A variety of systolic arrays can be formed by projecting the Cholesky decompo- 

sition DDG in different directions. There are many more viable projections for 

this DDG compared with the matrix element calculation DDGs whose options for 

projection are limited due to the long graph lengths of approximately N nodes in 
the n direction. The length of the Cholesky DDG however only extends to four 

nodes along the n axis and so projection in directions other than n is feasible. 

Projection directions are represented by vector [j, k, n] which is the line drawn 

from the origin to node[j, k, n]. Five different projection directions are consid- 

ered. The [1,0,01, [0,1,01 and [0,0,11 vectors project along the directions of the 

J, k and n axis respectively. The [1,1,0] and [1,1,1] vectors are also considered. 

4.4.6 Cholesky Decomposition Systolic Arrays 

Of the five Cholesky decomposition systolic arrays discussed those produced by 

the [1,0,0], [0,1) 0], [0,0,1] and [1,1) 01 projection vectors are new. The [1,0,0] 

systolic array bears slight similarity, in terms of its orthogonally connected ar- 

chitecture and input data ordering, with an array reported by Jain et al. [123]. 

However the referenced array contains extra multiply accumulate PEs along its 

diagonal border which are unnecessary, increasing hardware cost and computa- 

tional delays. The faults with their array are no doubt the result of an uncoor- 

dinated algorithm to systolic array mapping strategy and comparison with the 

[1,0,0] Cholesky systolic array presented here clearly demonstrates the superior- 

ity of the DDG methodology in the design of efficient systolic arrays. The final 

Cholesky array to be discussed is that produced by the [1,1,1] mapping, initially 

proposed by Brent & Luk [80]. 
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(A) [1,0,0] Vector Projection 

Figure 4.4(a) shows the orthogonally connected systoli Ic array produced by the 

[1,0,0] projection vector. The J direction arcs are represented by the feedback 

buses around each of the PEs. Part (b) of the figure shows the architecture of 

the two different types of processor that are required. Each processor handles 

two different modes and the circuitry for each of the different states is detailed 

in figure 4.4(c). Switches between the different modes are made by enabling the 

clocks on the rl registers and by multiplexor selection. The timing assignment 

t=J+k+n-3 is used to determine the input scheduling by considering the 

execution times of nodes in the n=1 plane of the DDG of figure 4.3. Output 

is retrieved from feedback loops of PEs along the diagonal edge with the use 

of a multiplexor to route the k direction I[j, k] (i > k) elements onto this bus. 

A pipelined control strategy is indicated in figure 4.4 for this example but for 

reasons of clarity control lines are not shown in the rest of the arrays discussed. 

1- I[I'l) 0 0 0 
2- 1[2,11 0 0 0 
3- q3,11 0 0 0 
4- q4,11 1[2,2] 0 0 

t 5- 0 1[3,21 0 0 outputs available 
6- 0 1(4,2] 0 0 for storage on clock 
7- 0 0 1(3,3] 0 edge I 
8- 0 0 1(4,31 0 
9- 0 0 0 0 
to- 0 0 0 1[4,41 

0- 0 C(l, l] :0 :0 :0 
1- 1 C(2,11 :0 0 o 
2- 1 C[3,11 0 c[2,2] 0 0 

3- 1 C(4,11 1 c[3,21 0 0 

4- 0 1 c[4,2] 0 cp, 3] 0 

5- 0 0 1 c[4,3] 0 
6 0 0 0 0 c[4,41 

7 0 0 0 0 

(a) 

inputs clocked into 
the systolic array on 
clock cycle t 

PEO PEI 

square root call control line data bus 

(b) PEO: mode 0 PEI: mode 2 

(c) 

Figure 4.4: (a) Systolic array produced by [1,0,0] projection vector, (b) PEs, (c) 

PEs configured in different modes. 

PEO: mode I PEl: mode 3 
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/n) 
(B) [0,1,0] Vector Projection 

When the DDC is systolized using the [0,1,0] vector node[j, k, n] is mapped into 

pe[j, n]. This vector projects the DDG in the k direction resulting in the orthog- 

onally systolic array of figure 4.5(a). This array has a very similar architecture 

to that of the [1,0,0] mapping in figure 4.4(a) except that PE feedback links are 

not required on the type PEO processors. Again there are two different types of 

PE (figure 4.5(b)) but here the type PEO processors are only required to operate 

in mode 0 whilst the processors of type PE1 must handle the other three modes. 

The same timing function t-J+k+n-3 is used again so that the operation 

of the array is complete at t= 10. One advantage of this array is that data 

input and output is straightforward eliminating the need for extra multiplexing 

functions thus alleviating the control signal complexity. 

PEO 

4- 1(1,11 0 0 0 
5- I(Zll 0 0 0 
6- 1[3,11 1[2,21 0 0 

t 7- 1[4,11 Q3,21 0 0 
8- 0 1[4,21 1[3.31 0 
9- 0 0 1[4,31 0 
101 0 0 0 1[4,4] 

(b) 

0- C[l, l) 0 0 0 
1- 0 c[2,1 0 0 

2- 0 c[2,21 c[3,11 0 

3- 0 0 c[3,2] C[4,11 
4- 0 0 c[3,3] c[4,21 
5 0 0 0 c(4,31 
6 0 0 0 c(4,4] 

7 0 0 0 0 

(a) 

PEO: mode 0 

PEI: mode 1 

(C) 

PE1 

PEl: mode 2 

Figure 4.5: (a) Systolic array produced by [0,1,0] projection vector, (b) PEs, (c) 

PEs configured in different modes. 

PEl: mcWe 3 



Chapter 4- Fixed Model Order - Calculation of Filter Parameters 99 

[0,0,1] Vector Projection 

The [0,0,11 vector maps the DDG into the systolic array shown in figure 4.6(a). 

Once again the PEs are orthogonally connected with feedback links around the 

PEs. The two types of processor illustrated in 4.6(b) each are required to compute 
in two different modes. The type PEO processors work in mode 0 and mode 3 

leaving the mode 1 and mode 2 operations for the type PE1 processors (figure 

4.6(c)). Projection in the direction n leads to a problem in that the matrix 
0) (4.17) must be loaded into the rc registers of each PE before computation 

may commence. An extra multiplexor is included in each PE to configure the 

array for loading using the k direction buses. The DDG timing function becomes 

t=J+k+n+1 and so operation does not begin until t=4 and ends at t= 14. 

This procedure adds to hardware cost and control complexity. 

PEO PE1 

8- I(I'll 0 0 0 
9- 0 1[2,11 0 0 
lo- 0 I[Z21 ý3,11 0 
11- 0 0 1[3,2] q4, I] 
12- 0 0 1[3,31 1[4,21 
13 1 0 0 0 1[4.3) 
14 0 0 0 1[4,41 

(b) 
PEO: mode 0 PEl: mode I 

1- 
t 2- 

a- 
4- 

/ 

(a) (c) 

Figure 4-6: (a) Systolic array produced by [0,0,1] projection vector, (b) PEs, (c) 

PEs configured in different modes. 

PEI: mode 2 PEO: mods 3 

00 C[4,4] 
00 cp, 31 c[4,31 
0 c[2,21 cp, 21 c[4,21 

c[l, l] c[2, I) CP, l) c[4,1 
0000 
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(D) [1,1,0] Vector Projection 

The allocation function that maps node[j, k, n] into pe[j -k+1, n] corresponds 

to the projection vector [1,1,0] and is used to derive the systolic array shown 
in figure 4.7(a). An orthogonal architecture is still displayed but here the PE 

feedback is replaced by a bidirectional data flow. The advantage of the new 

architecture is that it eliminates the need for clock enable signals which were 

previously required in the ri feedback loop registers of the (1,0,0] and [0,1,0] 

projections. The two different types of processor PEO and PE1 shown in figure 

4.7(b) each handle two modes, the former operating in mode 0 and mode 3, the 

latter handling mode 1 and mode 2. The configurations modes of these PEs are 

illustrated in figure 4.7(c). The optimal timing function t=I+k+n-3 is 

applied to the DDG and operation is completed at t= 10. 

PEO 

4- 0 0 0 I[I'l] 
5- 0 0 0 0 
6- 0 0 1[2,2) 1[2,11 
7- 0 0 0 0 
8- 0 1[3,3] lp, 2] 1[3,1] 
9 
10 

j 
1[4,41 
0 

14,3] 
0 

1[4,2] 
0 

1[4.1] 
0 

0 0 0 0 

0- Cp, l] 0 0 0 
1- 0 c[2,11 0 0 
2- c[2,2] 0 c[3,11 0 
3- 0 c(3,2] 0 c(4,1] 
4- C[3,3] 0 C[4,21 0 
5- 0 c[4,3] 0 0 
6 c(4,41 0 0 0 

71 0 0 

(a) 0 0 

PEO: mode 0 

(b) 

(c) 

PE1 

PEl: mode 1 

Figure 4-7: (a) Systolic array produced by [1,1,0] projection vector, (b) PEs, (c) 

PEs configured in different modes. 

PEl, mode2 PEO: mode 3 
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/vl 
(-oj [1,1,1] Vector Projection 

The [1,1,1] projection vector, which maps the operation o. f node[J, k, n] into 

pe[J -n+ 11 k-n+ 1], produces the systolic array shown in figure 4.8(a). This 

hexagonally interconnected architecture is topologically equivalent to that pro- 

posed by Brent and Luk [80]. There are four different types of processor in the 

array which has a distinct advantage since each type is only required to work in 

a single mode, eliminating the multiplexing functions which are needed to switch 
between modes in the other mappings, making control simple. The timing func- 

tion t+k+n is applied to the DDG as three clock cycles are required to set 

up the input data. The array does differ slightly from Brent & Luk's design [80] 

in that their PEO performs square-root /reciprocal while the PEs of type PEI 

are multiplication. Here the type PEO processor performs just square-root and 

to compensate the PEI processors compute division approximately doubling the 

maximum allowable systolic clock frequency. 

4- 0 0 0 qI'll 
5- 0 0 q2,11 0 
6- 0 13,1) 0 0 
7- q4, I) 0 0 q2,2) 

t a- 0 0 13,2) 0 
9- 0 q4,21 0 0 

1 0 0 0 q3,31 
1 0 0 k4,3] 0 

12 0 0 0 0 
13 0 0 0 q4,4] 

PFO 
n 

k 
pqjjj - 

El PE2 i 
ps(2,11 p4(2,4 

PEI PE3 P F-2 
pq3,11 k3A 3.31 

PEI PE3 PE3 PE2 
4.1] P-, (AA A p44,41 

0 0 0 0 cp, l] 

1- 0 0 00 
2- 0 0 c(2,11 0 

3- 0 0 0 c(2,21 
4- 0 c13,11 00 

t 5- 0 0 c(3,21 0 

6- C14, l) 0 0 c(3,31 
7- 0 c(4,21 00 
8- 0 0 c(4,31 0 

9- 0 0 0 c(4,41 
10- 0 0 00 

(a) 

PEO: modoO PEI: mode 1 

PE2: mode2 PEI mode 3 

(b) 

Figure 4.8: (a) Systolic array produced by [1,1,1] projection vector, (b) PEs. 
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4.4.7 Comparison of Cholesky Decomposition Arrays 

The five systolic arrays represent a good cross section of solutions for implementa- 

tion of the Cholesky decomposition algorithm. The arrays presented use the most 

obvious mapping directions and it is likely that the systolic arrays produced are in 

an optimal set. Other, not so obvious mappings are possible but these are likely 

to result in systolic arrays with more complicated communication requirements, 

greater processor complexity and bigger pipelining delays. A similar analysis to 

that used in section 3.4 for comparison of the matrix element calculation systolic 

arrays is used for selection of the optimal mapping. For completeness both word- 

parallel and bit-serial approaches are considered even though the latter is most 
likely to be selected due to the lower computational burden of this part of the 

estimator. 

4.4.8 Cost Estimation 

The design of division and square-root hardware units needs to be considered 
before the cost of the Cholesky decomposition arrays can be estimated. 

(A) Division Unit Cost Estimation 

The bit-level DDC for division (3 bit output) shown in figure 4.9(a) is based 

on the non-restoring array divider proposed by Guild [88][124]. Each row of the 

DDG performs either addition or subtraction of the divisor to or from the partial 

remainder dividend, that is the word formed on the si inputs to a row. The 

operation mode depends on the state of the controlled- add- subtract (CAS) cell 

dr input (figure 4.9(b)) which is set by the result quotient bit produced from the 

output carry of the previous iteration. 
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(co, s, )=FA(ci, s j, ctred) 

(b) 

(c) (d) 
Figure 4-9: (a) DDG for the non-restoring division Q= NID where quotient 
Q= q2q, qo, numerator N= n4n3n2n, no, divisor D= d2d, do, (b) CAS node 
function, (c) bit-serial semi-pipelined arithmetic unit and (d) CAS division cell. 

A word-parallel ripple through divider is formed from a direct node to PE map- 

ping and would therefore require w' PEs. Operation is however fairly slow as 

carries must ripple through each row of the DDG before a quotient bit can be 

calculated, the result of which determines the CAS mode operation for the next 

row of nodes. Alternatively a bit-serial array can be produced by assigning a 

timing and allocation function to the graph. The timing allocation t=k, such 

that a bit of the quotient is calculated on each clock cycle, and the projection by 

the [1, I] vector, which allocates node[j, k] to pe[J - k], results in the semi-systolic 

array shown in figure 4.9(c) whose CAS PE function is given in part (d). The 

bit-serial array is semi-systolic as while the sum input line is pipelined the carry 

is left to ripple through. Full pipelining of the carry is possible but this would 

increase the number of delays required on the sum pipeline to w leading to higher 

cost. The bit-serial divider is an MSB first device, unlike the adders and mul- 

tipliers which are LSB first (figure 3.19), and therefore some data reordering is 

required between PES. 
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/]: ) I 
(11) Square Root Unit Cost Estimation 

Square root can also be calculated using non-restoring arithmetic. The DDG in 
figure 4.10(a) is based on the schematic for a non-restoring square-root extractor 
built with CAS cells. However the communication strategy demonstrated in 

the DDG in figure 4.10(a) is more regular and is localised throughout. The 
localised variations in the communication of the square-root unit proposed in [88] 

are transformed here to particular modes of the nodes. There are 4 modes in 

total (figure 4.10(b)) and therefore a general purpose PE design would require 
2 control lines for mode selection. The cells lying in the shaded backdrop area 
directly correspond to those for a6 bit version of the non-restoring array and are 

all that is required for the word-parallel ripple through version. Extra mode 0 

nodes extend the array to a more regular shape for projection by the [1,11 vector 

which results in the semi-pipelined bit-serial array shown in figure 4.10(c). 
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a, sl 
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Figure 4.10: (a) DDG for non-restoring square-root, (b) CAS node function, (c) 

bit-serial semi-pipelined arithmetic unit and (d) CAS bit-serial array PE. 
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(C) Summary of Division and Square Root Unit Cost 

Table 4.1 details approximate NAND gate costs for these modules in terms of 
word-length w. The word parallel costs are based on non-restoring arrays shown 
in figures 4.9 and 4.10. The cost of a CAS cell is given by CAS=FA+XOR which 
is the equivalent of 16 NAND gates. 

w bit module I approach hardware cost (NANDs) 
division word-paraRel CAS. w 

2 

bit-serial (CAS+2. DFF). w+MUX+DFF 
square-root word-paraHel (CAS+3. MUX+ 1). (W2 + 5w - 2)/2 

bit-serial (CAS+2. DFF+3. MUX+1). (w+2)+MUX+DFF 

Table 4.1: Cellular construction cost of square root and division modules. 

(D) Modular Hardware Cost for the Cholesky Decomposition Systolic Arrays k-/ 

The hardware usage for each of the five systolic arrays formed by projection of 

the Cholesky decomposition DDG is demonstrated in terms of the number of 

modules in table 4.2. This can be used with the information in tables 3.1,3.2 

and 4.1 to estimate the total NAND gate requirement of each mapping. 

w bit module number of modules used in the arrays 
[1 

7 070] 1 [07 110] 1 [01011] 1 [17 110] 1 [17 17 1] 
addition 0 0 0 0 0 
subtraction 6 6 10 10 6 

multiplication 6 6 10 10 6 
division 4 6 6 6 3 

square root 4 4 4 4 1 

register 22 22 26 26 18 

multiplex 10 6 10 10 0 

Table 4.2: Hardware usage for Cholesky systolic arrays in terms of module usage. 
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/MI 
(. D) Hardware Cost Estimation Results 

106 

The results of the hardware cost estimation for the Cholesky decomposition sys- 
tolic arrays can be seen in figure 4.11. As expected the bit-serial costs are lower 
than the word-parallel. However, with regard to relative hardware usage in both 

approaches the results are very similar. The [1,1,1] shows the least hardware us- 
age and the [1,0,0] projection also displays good results. The [0,0,1] and [1,1,0] 

arrays display the largest NAND gate usage for all bus widths. 
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Figure 4.11: Cost for (a) word parallel and (b) bit-serial approaches. 

Data Communication Cost 

The various communication costs incurred in each of the 5 Cholesky decomposi- 

tion systolic arrays are surnmarised in table 4.3. The diagonal PE interconnec- 

tions are weighted by -vF2 relative to the orthogonal interconnections to allow for 

their longer physical length, approximated using simple geometry. The communi- 

cation cost is similar for all the arrays considered. The [1,1,1] and [1,1,0] systolic 

arrays require the greatest amount of PE interconnection but do not need any 

feedback links around the PEs. The J, k and n projections form systolic arrays 

that require less PE interconnections but these do need feedback links around the 
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PEs. The PE interconnection links burden pin resources if it is not feasible to 

mount the whole systolic array on a single integrated circuit while the feedback 
links are made internally on the IC due to their extreme locality. This therefore 

leads to preference of the J, k and n arrays when considering the communication 
factor. All of the arrays share the same input/output burden. 

communication type number of data buses 

[11 07 01 1 [0117 0] 1 [0107 11 1 [1117-617 T-- FI-717 1] PE interconnection 12 12 12 18 12+6-, /2 
localised feedback 10 6 10 0 0 
array input 4 4 4 4 4 
array output 4 4 4 4 4 

Table 4.3: Data communication cost. 

(G) Control Cost 

Clock, reset and module level control signals such as an MSB indicator bit in 

a two's complement multiplier are common to all of the designs and so do not 

serve for comparison. Extra control signals must be generated in order to switch 

multiplexors and enable clocks for processor mode selection and input/output 

data retrieval and each mapping has its own requirements. The [1,1,11 array 

needs no extra control since each PE works in single mode during calculation. All 

the other arrays require mode switching signals; the [1,0,0], [0,0,11 and [1,1,01 

mappings each contain two different types of PE which need to be switched 

between two different modes while the [0,1,0] array uses two PE types one of 

which works in three of the modes, the other in fixed mode. The [0,0,1] array 

also requires extra control signals to load data into the array for initialisation. 
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4.4.9 Efficiency 

Table 4.4 summarises computation time in terms of number of clock cycles N, 1k, 
processor pipelining period a and block pipelining period 3 for each of the five 
different Cholesky decomposition arrays discussed. 

timing number of clock cycles 
factor 11,0,01 116,1, OU 10,0,11 F11) 1,01 111,1,11 N, 11, 10 10 14 10 13 

a 1 1 1 2 3 
)3 4 4 10 8 12 

Table 4.4: Processor/block pipelining periods and block latency. 

(A) Block latency 

The [1,1,1] and the [0,0,1] arrays come off worst in terms of the number of clock 

cycles from input of the first data word to output of the last since the input data 

has to loaded into these arrays to before the calculation can begin. The other 

arrays all require a total of ten clock edges. 

/r> I 
(Bj ProcessorlBlock Pyelining Penod 

The PEs of the [1,1,0] and [1,1,1] arrays are active on one in every 2 and 3 

clock cycles respectively and so their PEs display at best 50% and 33% efficiency. 

The block pipelining period of the hexagonal array is determined by the time 

that its processor pe[O] is active and the results show that a new decomposition 

may be processed every 12 clock pulses compared to 8 for the [1,1,0] array. 

However the pipelining periods of these two arrays can be improved as the zeroes 

which are input between the existing data may be replaced with new data sets. 

The [1,1,0] and [1,1,1] mappings could respectively work on 2 and 3 sets of 
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data simultaneously leading to higher PE utilisation and average block pipelines 
of 4 clock signals matching the performance of the [1,0,0] and [0,1,0] arrays. 
Although displaying good PE utilisation the [0,0,1] array can only process a new 
set of data after 10 clock pulses due to the input data loading restrictions. 

4.4.10 Selection of the Optimal Cholesky Decomposition Array 

Of the five different arrays for Cholesky decomposition produced by mapping its 

DDG in different directions, the hexagonal systolic array formed by the [1,11 1] 

projection vector displays the lowest hardware cost. Analysis shows that this 

systolic array also matches the best performance of any of the other Cholesky 

decomposition arrays in terms of processor and block pipelining when a data 

interleave strategy is adopted. Hence there is no degradation of throughput when 

using this array even though the total operation time for one complete block of 
data is greater than most of the other designs by three clock cycles. None of the 

PEs require any mode switching and for this reason the [1,17 1] array is the easiest 

to control. Its only drawback comes from its greater processor interconnection 

burden but the advantages of the array become over-riding when considering the 

bit-serial approach where communication cost becomes less significant. 

The [1,0,0] systolic array presents low communication burden, compared with 

the [1,1,11 array. The [1,0,0] array is also very efficient as a processor pipeline 

period of a=I can be achieved without having to interleave data sets from 

successive windows. Despite these advantages however its use cannot be justified 

as the hardware cost of the [1,0,0] array, although being lower in comparison 

with most of the Cholesky decomposition arrays formed by different mappings, is 

in fact higher than the cost of the [1,1,1] array, and control is significantly more 

complex as processor modes are required to be switched. 
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4.5 Non-Square-Root Decomposition Methods 

Study of the non-restoring word-parallel and bit-serial designs presented in figure 

4.10 demonstrates the problems associated with VLSI implementation of square- 

root. Firstly the PE cost is high, each cell being required to perform a CAS type 

function with a4 to I line multiplexor required for mode selection. Despite the 

square-root design having a lower number of PEs in the word-parallel approach 

when compared to an equivalent word-length multiplier, the square-root design 

presents higher overall hardware cost and the irregular shape of the array makes 

efficient floor-planning difficult. The bit-serial square-root design also presents 

relatively high hardware cost and control signal generation cost to switch each 

PE between the four modes. Due to the problems encountered in the VLSI imple- 

mentation of the square-root, this section studies non-square-root LU and LDL' 

decomposition using the results from the square-root Cholesky decomposition 

example to narrow down the field of projection vectors considered. 

4.5.1 LU Decomposition Algorithm 

In the LU decomposition the covariance matrix is split into the product of a 

lower triangular matrix L and an upper triangular matrix U, as is the case for 

Cholesky decomposition, except that here L now has ones along its diagonal and 

U is no longer the transpose of L. Therefore the decomposition of the matrix C 

is defined as: 
L. U (4.22) 

where for the model order 4 system: 
100 0- 

1[2,1] 100 (4.23) 
1[3,1] 1[3,2] 10 

-1[4,1] 
1[4,2] 1[47 3] 1- 

u[l, 1] u[l, 2] u[I , 3] u 1,4 - 
0 u[2,2] u[2,3] u[2,4] (4.24) 
00 u[3,3] u[3,4] 
000 u[4,4] _ 
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This method is more general than Cholesky because the matrix that is being 

decomposed does not have to be symmetrical. This does however have the dis- 

advantage of approximately doubling the number of computations required. As 

with the Cholesky decomposition, substitution allows two triangular sets of si- 

multaneous equations to be formed. The lower triangular system: 

L. Y =B (4.25) 

is initially solved by forward elimination using the systolic array shown in 

figure 4.2. This array can however be simplified when used with LU decom- 

position because the ones along the leading diagonal of L allow the dividers in 

the type PEO processors of the forward elimination array to be omitted. The 

filter parameters may then be derived by solution of the upper triangular system: 

U. A =Y (4.26) 

using the back substitution systolic architecture shown in figure 4.2(b). 

Golub and Van Loan [271 details the LU decomposition algorithm which may be 

converted into the form of the following set of single assignments. 

U, k] 

(n+l) 

l[j, k} 

= c[j, 

0 

[j, k] - IU, n]. u[n, k] 

0 

C(k) [j, k]/u[k, k] 

0 

u[j, k] 
c(j) 

(4.27) 

I. 

< (4.28) 

j. >n, k >n 

J 

I. = (4.29) 

> 

j. 

I 

(4.30) 
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Since the symmetry of the covariance matrix is not utilised then each iteration of 

the matrix C(n+l) (4.28) contains square sections of non-zero elements C(n+l) U, k] 

(I > n, k> n). The difference between the Cholesky and LU decompositions can 

be seen by comparing (4.16) with (4.29). In the Cholesky case the assignment 

of 1[j, k] for the J=k condition results in a square-root operation while in the 

LU decomposition these elements are simply assigned to unity and the added 

computation of U is no more than a set of straightforward assignments (4-30). 

4.5.2 LU Decomposition Data Dependence Graph 

The DDG for the LU decomposition shown in figure 4.12(a) is derived using a 

similar procedure to that used for the Cholesky decomposition DDG in section 

4.4.2. Only three types of node are required for the LU DDG and their functions 

are noted in figure 4.12(b). 

node[4,4,4] 

node[3,3,3] u[4,4] 

node[22,2] 
1[4,31 

node[1,1,1] 
1(321 u[3,31 u[3,41 

c(1,11 c[1,2] c[1,31... cf 1,4].. - 

1[2,1] 

c[2,1 [2,21 c[2,3].. c[2,41. 

1[3,11 u[2,2] u(2,31 u[2,4] 
5 

c[3,11 c[3,21 c[3,31 c[3,41 

1[4,1] 45 

c[4,11 
U[1,1] 

c[4,21 
ufl, 2] 

C[4,3] 
u[1,3] 

c(4, 
u[1,41 (a) 

mode 0 mode 1 mode 2 

uu 
c(n+])=C(n) -I. u 

1= c (n)lu 

c (n) c (n) C (n) 

U=C(n) u 

(b) 

Figure 4.12: (a) DDG for LU decomposition, (b) key to symbols. 
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4.5.3 LU Decomposition DDG Localisation and Timing 

The communication in the LU DDG of figure 4.12 is localised with unit pipeline 
delays along J, k and n direction communication paths. The same schedule 
(4.21) as for the Cholesky decomposition DDG from figure 4.3 is indicated by the 

internal node numbering on the graph in figure 4.12. Despite the fact that the 

graph contains more nodes (representing a greater number of computations) than 

the Cholesky DDG, operation is still complete after the same number of clock 

cycles as both graphs operate on the same timing function which gives the order 
in which computations take place for parallel processing. 

4.5.4 LU Decomposition DDG Projection 

The previous section identified the advantages and disadvantages for hardware 

implementation of five arrays formed by various projections of the Cholesky DDG. 

Complex control for array initialisation and poor block pipelining rate led to 

rejection of the [0,0,1] mapping while high hardware and communication cost 

resulted in exclusion of the [1,1,01 projection. The [1,1,1] projection produced 

a hexagonally interconnected systolic array which had the lowest hardware cost 

at the price of a large communication burden. The [1,0,0] and [0,1,0] mappings 

displayed similar results to each other in terms of efficient hardware usage and 

low communication burden but did however require control signals to change the 

operating modes of the PEs. 

Due to the similarities between the LU and Cholesky DDGs then it is reasonable 

to assume that arrays produced by the same projection vectors share some sim- 

ilar traits, e. g. the LU (0,0,1] mapping would also need an input data loading 

procedure. LU arrays produced by the [1,0,0] and [1,1,1] projection judged to 

be the best projection vectors for Cholesky are discussed and a new array for 

on-the-fly data retrieval when using the [1,0,0] mapping is presented. 
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4.5.5 LU Decomposition Systolic Arrays 

An array equivalent to that produced by the [1,1,1] projection vector, first pre- 

sented by Kung and Leiserson [17][122], is also discussed by Rajopadhye [79] and 
Megson [1021. Kung [23] briefly compares this array with that produced by the 
[1,0,01 mapping. His conclusions are that the hexagonal array produced by the 
[1,1,11 mapping has the advantage that its processors do not need reprogramming 

while the [1,0,0) projection is attractive due to the fact that diagonal connections 

are not required and its PE utilisation is more efficient since it yields the same 
throughput with approximately 50% of the PEs. 

(A) [1,0,0] Vector Projection 

In the [1,0,0) mapping the DDG is mapped in the j direction and so the elements 

uU, k] which are also pipelined in this direction get stored within the PE feedback 

loops at the end of the calculation. One method of data retrieval would be to 

multiplex the values onto the k direction buses at the end of the calculation after 

L has been output, but this however would increase the block pipelining period. 

A modification is proposed by re-representing the data flows in the form of the 

DDG of figure 4.13(a) to enable on-the-fly data output. The mode 0 nodes now 

have n direction outputs which are routed straight to the node input. Otherwise 

the modes are the same as for figure 4.12(b). Extra nodes are added to extend all 

the layers of the DDG up to the same height facilitating output of uU, k] elements 

from the n direction border of the graph without increasing the block pipelining 

period. The systolic array produced, shown in figure 4-13(b), is orthogonally 

connected with PE feedback links. A total of seven output buses are required, 

four for elements of U output from the diagonal border and three for elements 

of L available from the right hand edge PEs. PE descriptions are given in figure 

4.13(c) with their mode configurations in (d). Both PE types are required to 

operate in mode 0 and the mode is changed by appropriately controlling the 

clock enable signal of the ru registers. Operation is complete by t=9. 
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0 

node(1,1, 

CR 

0[2 

C(3, 

C[4, 

(a) 

1- L41,11 0 0 0 0 0 0 

2- 0 0 0 0 0 0 0 
3- 0 ull, 21 0 0 0 0 0 
4- 0 U(2-2) 0 0 0 0 0 

t 5- 0 0 u(1,31 0 0 0 1[2,1] 
6- 0 0 uJ2,31 0 0 0 1[3,11 
7 0 0 u(3,31 ufl, 41 0 113,21 1[4,11 
8 

1 

0 0 0 u(2,41 0 1[4,21 0 
9 0 0 0 u13,41 1(4,31 0 0 

10 0 0 0 u[4,41 0 0 0 

PEO 

(c) 
PEO: mode 0 PEI: mode 0 

PEO: mode 1 

0- C(I'll 000n 
I- c[2,1 ) C(1,2] 00 
2- c[3,11 cJ2,21 c(1,3) 0 
3- c[4,11 c(3,21 c(2,3] C(1,41 

k 
4- o c14,21 cJ3,31 c[2,41 

5- 00 C(4,31 cJ3,41 

6000 C(4,41 

70000 

(b) (d) 

Figure 4.13: (a) Modified DDG for [1,0,0] mapping, (b) systolic array produced 
by [1,0,0] projection vector, (c) PEs, (d) PEs configured in different modes. 
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/ Z: ) I 
(Bj Vector Projection 

This mapping results in Kung and Leiserson's array, a representation of which is 

shown in figure 4.14(a). The allocation function is the same as for the equivalent 
Cholesky mapping and therefore node[j, k, n] of the original DDG in figure 4.12 is 

processed bype[j-n+l, k-n+l]. The square shape of the n plane however results 

in the formation of a square shaped systolic array containing 16 PEs. There are 

three different types of processor in the array each corresponding to a particular 

mode as detailed in part (b) of the figure. The array has the hexagonal commu- 

nication structure and does not require processor feedback as a consequence of 

this. The input/output burden is relatively large as there are seven input buses 

and seven output buses. The timing function used t+k+n results in the first 

operation being carried out at t=3 by pe[l, 1] and this processor also completes 

the decomposition on the t= 12 cycle. 

4- 0 0 0 Lqi, ll 0 0 0 
5- 0 0 q2,11 0 t4l, 21 0 0 
6- 0 q3,11 0 0 0 L41,31 0 
7- q4,11 0 0 U[2,21 0 0 L41,41 

0 0 q3,21 0 L42,31 0 0 
0 q4,2) 0 0 0 LJ2,41 0 

10 0 0 0 tq3.31 0 0 0 ] 
11 0 0 44,31 0 t43.41 0 0 
12 0 0 0 0 0 0 0 
13 0 0 0 U[4,41 0 0 0 

n 

0- 0 0 0 c(l, l) 0 0 0 

I- 0 0 0 0 0 0 0 
2- 0 0 c(2,11 0 c1l, 21 0 0 

3- 0 0 0 c(2,21 0 0 0 

4- 0 c(3,11 0 0 0 c(1,31 0 

t 5- 0 0 c(3,21 0 c(2,31 0 0 

6- cf4,11 0 0 c(3.31 0 0 c[1,41 
7 0 C(4,21 0 0 0 C12A) 0 1 

a 0 0 c(4.3] 0 cf3,41 0 0 

9 0 0 0 cf4,4) 0 0 0 

10 0 0 0 0 0 0 0 

(a) 

PEO: mode 0 

(b) 

Figure 4.14: (a) Systolic array produced by [1,1,1] projection vector, (b) PEs. 

PEl: mode 1 

PE2: mode 2 
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4.5.6 LDL T Decomposition Algorithm 
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The LU decomposition algorithm may be refined for use with symmetric matrices 
as in LDL T decomposition. The computational burden of this algorithm is there- 
fore lower than the LU and similar to the Cholesky algorithm in terms of number 
of operations. In the LDL T algorithm the covariance matrix is decomposed into 

the product of a lower triangular matrix L, a diagonal matrix D and an upper 
triangular matrix LT which is the transpose of the lower triangular matrix: 

L. D. L (4.31) 

When considering the model order 4 system L is defined the same as that in the 
LU decomposition (4.23) which has ones along its leading diagonal. The product 

of D. L T is equivalent to U (4.24) where D takes the form: 

d[l] 000 

D0 
d[2] 00 (4.32) 

00 d[3] 0 
000 d[4] 

Substitution of (4.31) into (2.21) leads to: 

L. D. L T A= B (4.33) 

This can be separated into different groups of equations which can be easily 

solved. Firstly Y can be defined as: 

D. L TA (4.34) 

so that the lower triangular system of equations: 

L. Y -- B (4.35) 

can be formed and solved by forward elimination again using the systolic array 

shown in figure 4.2 but with the omission of the dividers in pe[O] as suggested for 

the LU decomposition example in section 4.5.1. 
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Another new vector Z can be defined such that: 

LTA (4.36) 

which allows the solution of the original set of equations to be calculated using 

back substitution once Z has been determined from: 

D. Z =Y (4.37) 

Elements z[jl (1 <j :5 4) of Z can therefore be calculated with division operation: 

zlil = yfil 
d(j] 

(4.38) 

This could be achieved by using a divider on the input to pe[O] of the back 

substitution array (figure 4.2(b)). Processor pe[Ol can also be modified similarly 

to the forward elimination array since L' also has ones along its leading diagonal. 

The L. D. L' decomposition is defined according to the following single assign- 

ments: 
0<k 

CMU, k] 
cU, k] >k 

(4.39) 

0<n 

0<k 
(n+l) [j, k] 

C(n) [j, k] - 
(C(n) U, nj)2 k 

(4.40) 

d[n] 

C(n) [j, k] _ C(n) [j, n]. I[ k, n] >k 

d[n] = c(n)[nn] 

<n 
(4.42) 

>n d(n] 



Chapter 4- Fixed Model Order - Calculation of Filter Parameters 119 

4.5.7 LD LT Decomposition Localised DDG 

The DDG for the LDL' decomposition is detailed in figure 4.15(a). Apart from 

the interconnections between the nodes on the diagonal border of the graph the 

structure is the same as the Cholesky decomposition graph of figure 4.3 and 
the same timing function may be applied. However, the node functions shown in 

part (b) of the figure differ considerably from the Cholesky example. Those nodes 

operating in mode 0 perform (4.41) to assign values to d[n] whose reciprocal is 

transmitted in the J direction so that I[j, k] (4.42) can be calculated in the mode 
1 nodes from a multiplication. The mode 2 nodes perform the calculation of 

C(n+l) (4.40) for I=k and the mode 3 nodes cope with the J>k situation. The 

Cholesky timing function (4.21) is applied and that shown in the figure is offset 
for [1,1,1] mapping where data must be piped in before commencement. 

node[4,4,4] 

d[l] 

C[ 

1[2,1 

C[ 

1[3,1 

C[ 

1[4,1 

C[d 

mode 0 mode 1 mode 2 

r c(n+l)=C(n) C 
2. 

I=r. c (n) (n 
d= c (n) Ck=c 

Ck 

C (n) C (n) r 
Cr Ij -c k. r r=11 c (n) 

(b) 

mode 3 

Ck 

c (n) 

)=c (n) + Ck - 
li 

Ck 

Figure 4.15: (a) DDG for LDL' decomposition, (b) key to symbols. 
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4.5.8 LDLT Decomposition Systolic Array 

(A) [1,1,1] Vector Projection 
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In an effort to avoid the square root bottleneck operation of the hexagonally 

connected Cholesky Decomposition array Brent and Luk [80] developed a hexag- 

onally connected array for LDL T decomposition which is topologically equivalent 
to the array shown in figure 4.16(a). This array is produced by [1,1,1] mapping 

of the DDG in figure 4.15. The array structure is similar to that for the [1,1,1] 

Cholesky projection except that along the diagonal border of the array there are 

extra buses whose localised connections have a delay of two. Study of this ar- 

ray reveals inefficiencies because the multiplications carried out by the type PE1 

processors to form 1U, k] are repeated in the type PE2 processors. This prompts 

re-representation of the data flow to form a modified LDL T decomposition DDG. 

4- 0 0 0 C41, I] 
5- 0 0 lZil 0 
6- 0 13,11 0 0 
7- 114,11 0 0 cqZ21 
a- 0 0 43,21 0 
9- 0 (4,21 0 0 

10 0 0 0 cq3,31 
11 

1 

0 0 q4,31 0 
12 0 0 0 0 
13 0 0 0 (44,41 

PEO 
1.1] 

n 

-k 

PEI PE2 
zi) pq221 

p1 PE3 PE2 

. 11 321 pq3,1 

PEI PE3 PE3 PE2 
4,11 pq421 pq4.1 4.4] 

0- 0 0 0 C(1,1) 
I- 0 0 00 
2- 0 0 c(2,11 0 
3- 0 0 0 c(2,21 
4- 0 C(3,1 00 

t 5- 0 0 c(3,21 0 
6- C(4,1) 0 0 c(3,31 
7 0 c[4,2) 00 
8 

1 
0 0 c[4,31 0 

9 0 0 0 c(4,41 
10 0 0 00 

(a) 

PEO: mode 0 

PE2: nvde 2 

(b) 

PEI: mode I 

PE3: n)o& 3 

Figure 4.16: (a) Systolic array produced by [1,1,1] projection vector, (b) PEs. 
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4.5.9 Modified LDL' Decomposition DDG 

The assignment for c(7+') [3, k] in (4.40) may be expressed in a slightly more 

concise format as follows: 

0<n 

c 
(n+l) [j, k] 0<k (4.43) 

C(n) [j, k] _ C(n) [j, nj. l[k, n] >k 

This simplifies the J=k condition squaring and division computation to just 

a multiplication and the modified recurrence (4.43) can be incorporated into a 

new DDG for LDL T decomposition illustrated in figure 4.17(a). The diagonal 

communications for the reciprocal of d[n] are no longer necessary but now extra 
k direction arcs are needed to broadcast IU, n]. 

node[1,1,1] 

d[l] 

c[l, l] 

C[2,11 f C[2,2] 
1[3,1] 

c[3,1 c[3,2] C[3,31. 
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78 
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Ck 

Figure 4.17: (a) Modified DDG for LDL' decomposition, (b) key to symbols. 
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4.5.10 Modified LDLTDecomposition Systolic Arrays 

Section 4.5.4 discussed selection of projection directions of the LU decomposition 

DDG based on the results of the optimal Cholesky decomposition mapping. Once 

again, due to the similarity of the LDL T DDG with that of the Cholesky, the 
[1,0,0] and [1,1,1] mappings are investigated. 

[1,0,0] Vector Projection 

The J* direction mapping results in the orthogonally connected array shown in 

figure 4.18(a). The array contains two types of PE whose construction is detailed 

in figure 4.18(b) and the configuration of each in the different modes is shown 
in section (c) of the diagram. To save hardware the function of the type PEO 

processors is changed slightly so that the actual value rather than the reciprocal 

I- d[l, I) 0 0 0 
2- 1[2,11 0 0 0 
3- 1[3.11 0 0 0 
4- 1[4,11 d[Z2] 0 0 

t 5- 0 1(3,21 0 0 
6- 0 1[4,21 0 0 
7- 0 0 d[3,3] 0 
8- 0 0 1[4,3] 0 
9- 0 0 0 0 
10- 0 0 0 d[4,4] 

PEO PEI 

(b) 

0- cp, l] 0 0 0 
1- c(2,11 0 0 0 
2- C[3,11 cr2,21 0 0 
3- C[4,11 cP, 2] 0 0 
4- 0 c[4,21 cp, 3] 0 
5 0 0 c[4,3] 0 1 
6 0 0 0 C(4,41 

7 0 0 0 0 

(a) 

PEO: mode 0 PE 1: mode 2 

PEO: mode I 

(c) 

Figure 4.18: (a) Systolic array produced by [1,0,0] projection vector, (b) PEs, 
(c) guide to PE functions. 

PEI: mods 3 
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of d[n] gets stored in register rd. Elements I[j, k] are subsequently calculated by a 
division operation as opposed to multiplication by the reciprocal when these PEs 

are switched to mode 1. Therefore rather than having a divider and a multiplier 
in each of the type PEO processors only a single divider is required. 

(Bj 1] Vector Projection 

Application of the [1,1,11 projection vector to the modified LDL T DDG of figure 

4.17 results in the systolic array detailed in figure 4.19(a) whose PE functions are 

shown in part (b). As with the [1,1,11 projections on the other DDGs considered 

each type of PE operates in a single mode. This design can be directly compared 

with Brent and Luk's [80] (figure 4.16). Overall the communication burden is 

greater in the modified design but it does however have fewer diagonal buses. 

The advantage of the modification can be seen when the type PE2 processors 

are compared as the modified version uses approximately half the hardware. 

4- 0 0 0 ql, l) 
5- 0 0 IZI) 0 
6- 0 q3,11 0 0 
7- q4, I) 0 0 42,21 
a- 0 0 13,21 0 
9- 0 14,21 0 0 

1 0 0 0 q3,31 
1 

1 

0 0 q4,31 0 

12 0 0 0 0 
13 0 0 0 q4,4) 

0- 0 0 0 Clill) 
1- 0 0 0 0 
2- 0 0 c12,11 0 
3- 0 0 0 c[2,21 
4- 0 c(3,1 0 0 

t 5- 0 0 0[3,2] 0 

6 c(4,11 0 0 c(3,3) 
7 0 c(4,21 0 0 
a 

j 

0 0 c(4,31 0 

9) 0 0 0 c(4,4) 
1 0 0 0 0 

(a) 

PEO: mode 0 

PE2: mode 2 

(b) 

PEI: mode 1 

PE3: mode 3 

Figure 4.19: (a) Systolic array produced by [1,1,1] projection vector, (b) PEs. 
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4.5.11 Comparison of LU & LDL T Decomposition Arrays 

The advantages and disadvantages of the five arrays for LU and LDL T decom- 

position non-square root methods are compared in the following sections. 

4.5.12 Cost Estimation 

(A) Hardware Cost Estimation 

w bit module number of modules used in the arrays 
LU 1 LDL" modified LDLT 

[17 07 0] 1 [11111] [11111] 
1 
[17 03,011 [17 11 1] , addition 0 0 3 0 0 

subtraction 6 9 6 6 6 
multiplication 6 9 12 6 9 
division 4 3 1 4 1 
register 26 37 28 32 28 
multiplex 0 0 0 10 0 

Table 4.5: Hardware usage for LU and LDL' systolic arrays in terms of modules. 

Table 4.5 details the cost of the non-square-root decomposition systolic arrays in 

terms of arithmetic, control and register modules. This information, in conjunc- 

tion with that forwarded in tables 3.1,3.2 and 4.1, is used to estimate the total 

NAND gate usage for the non-square-root decomposition arrays and the results 

are presented in figure 4.20 for both word-parallel and bit-serial approaches. 

Brent & Luk's LDL T [1,1,1] array [801 displays highest hardware cost for both 

word-parallel and bit-serial approaches. The two new arrays for LDL T decompo- 

sition, derived from [1,1,1] and [1,0,0] projections of a modified DDG (a DDG 

in which data communication flows are represented in a different way to avoid 

repeated calculations) both show significant hardware cost reductions over Brent 

& Luk's design. In the bit-serial approach the cost savings of the modified LDL 

arrays are as much as 17% of Brent & Luk's array, and in the word-parallel ap- 
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(a) 
Figure 4.20: Cost for (a) word parallel and (b) bit-serial approaches. 

proach the [1,1,1] modified LDL T array presents the lowest cost of all 5 of the 

arrays. 

In contrast to the results seen for the Cholesky decomposition array the [1,1,1] 

LU decomposition array presents a much higher cost than the LU array produced 

by [1,0,0] projection. This is due to the involvement of the full matrix in the LU 

decomposition calculation, (rather than the symmetrical matrix in the [1,0,0] 

array) which causes array sizes, in terms of number of PEs, to be large when n 

features as a component of the projection vector. 

The bit-serial approach is Judged to provide sufficient throughput for decomposi- 

tion in the model order p=4 Modified Covariance method (section 4.2). There- 

fore the results shown in figure 4.20(b) are applicable when choosing the array 

with the lowest hardware cost leading to selection of the LU [1,0,0] mapping. 

/DI 

(. L), j Data Communicahon Cost 

Table 4.6, which summarises the communication costs incurred in each of the non- 

square-root decomposition arrays, shows that the LU [1,0,0] mapping requires 

minimum PE interconnection whilst the LU [1,17 1] array needs the maximum. 

The disadvantage of the [1,1,1] modified LDL' array over Brent & Luk's version 
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can be seen in that it requires a slightly greater PE interconnection resource and 
it presents over twice the interconnection burden of the [1,1,1] LU array. The 

modified LDL T [1,0,0] array performs better than the modified LDL T [171 
) 1] 

in this respect but still presents higher PE interconnection cost than the LU 
[1,0,0] array. Both of the [1,0,0] LU and LDL' arrays however require the 
localised feedback costs but as discussed in section 4.4.8(F) these are likely to 

present less of a burden relative to PE interconnection. An advantage of the 
LDL T 

arrays is that they have a lower input/output burden compared to the 
LU arrays. However, even though the LDL T arrays only require 4 output buses 

as opposed to 7 in the LU decomposition, there is still need for connection to 
both forward elimination and back substitution systolic arrays, so that the input 

burden to the next two stages of the estimator is equal for LU and LDL T. 

communication type number of data buses 
LU LDL T 

modified LDL T 

[1107 0] 1 (11111] [11111] [17 010] 1 [11 171] 

PE interconnection 12 21+9V2- 12+9ý, F2 18 18+6,, /2 
localised feedback 10 0 0 10 0 
array input 4 7 4 4 4 
array output 7 7 4 4 4 

Table 4-6: Data communication cost. 

Control Signal Cost 

Both the LU and LDL T [1,0,0] mappings require extra control signals for PE 

mode switching. These signals are in the form of clock enables in the LU case 

and as well as these enables the LDL' array needs multiplexor control. These 

control signals can of course though be pipelined using a similar methodology to 

that shown for Cholesky decomposition [1,0,0] array figure 4.4. 
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4.5-13 Efficiency 

The processor a and block, 3 pipelining periods shown in table 4.7 reflect applica- 
tion of the interleaving method discussed in section 4.4.9 for the [1,1,1] mappings. 
In terms of a and 0 all arrays share the same efficiency, however the block latency 

for both [1,0,0] arrays is slightly less as no array initialisation is required. 

timing number of clock cycles 
factor LU 

- - 
LDLý' I modified LDL' 

[11OF7 Off F[17171] [17171] 1 [1), 0)0] 1 [1 
10 
I 
4 

13 
I 
4 

13 
1 
4 

10 
1 
4 

13 
1 
4 

Table 4.7: Processor/block pipelining periods and block latency. 

4.5.14 Selection of the Optimal LU/LDL' Decomposition Array 

The choice of the optimal systolic array from the two LU mappings and the 

three arrays for the LDL' decomposition is not quite as clear cut as that for the 

Cholesky decomposition, but basically falls between the [1,0,0] LU array and the 

[1,1,1] modified LDL T array. The latter displays slightly lower overall hardware 

cost in the word-parallel approach but in the bit-serial approach which is more 

relevant to the p=4 Modified Covariance spectral estimation problem the [1,0,0] 

LU array displays the lowest cost. The [1,0,0] LU array also requires less than 

50% of the processor interconnection links needed in the [1,1,1] modified LDL'. 

Both arrays can be set up to produce equivalent processor/block pipelining but 

interleaving of covariance matrix data from consecutive windows is necessary in 

the LDL T array which also presents a lag of 3 extra clock pulses. The LU ar- 

ray does require control signals to provide internal register clock enabling and 

this is not necessary for the other array. The LDL T array is mapped onto a 

hexagonal type array which can be compared to the orthogonal LU architecture. 

Despite its higher control burden the LU decomposition array is chosen in pref- 

erence to the LDL T array due to its lower cost, simpler orthogonal architecture, 
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which has a greatly reduced PE interconnection burden, and also because of the 
uncomplicated nature of its internal PE circuitry. 

4.6 Concluding Remarks 

This chapter has dealt with hardware implementation for real-time calculation 

of filter parameters by solution of a system of linear equations in the Modified 
Covariance spectral estimator with fixed model order p=4. Decomposition 

techniques were considered in order to transform the covariance equations into 

triangular form enabling efficient solution by forward elimination and back sub- 

stitution. The DDGs for Cholesky, LU and LDL T decomposition were presented, 

and clearly showed the relationships with the initial algorithms. 

Different projections of the Cholesky decomposition DDG resulted in five systolic 

array designs. Projection by the [1,1,1] vector resulted in an array that was 

hexagonally connected and topologically equivalent to an array described in a 

prior article by Brent & Luk [80] and the other projections considered produced 

a set of newly proposed orthogonally connected systolic arrays. In a comparison 

of the arrays the hexagonal array was selected as optimal due to its efficient use of 

hardware despite its disadvantage in PE interconnection and computational time 

lag. It was also shown how the maximum systolic clock frequency of Brent & 

Luk's [1,1,1] array could be improved by a factor of two by some simple changes 

to the assignments of certain nodes. 

Arrays for LU and LDL T decomposition were considered as an alternative to the 

Cholesky method, as these designs eliminate the square-root operation with its 

associated control and irregularity problems. Analysis of Kung's [1,0,0] LU array 

[23] showed that data was left stored in PEs at the end of calculation. A new array, 

which allowed on-the-fly retrieval of these matrix elements without increasing the 

block pipeline period, was formed by [1,0,0] projection of a modified DDG in 
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which the data flow of these words was re-represented. Inefficiencies of Brent and 
Luk's LDL T array [80] led to re- represent at on of the data flow in the DDG for 

this method and two new arrays which showed significant hardware reduction were 

produced by projecting the modified graph in the [1,0,0] and [1,1,1] directions. 

The [1,0,0] LU array was however the preferred choice due its lower bit-serial 

implementation cost, the much reduced interconnection burden of its orthogonal 

architecture and the simplicity of its internal PE construction. 

This chapter has presented a method for selection of optimal square-root and 

non-square-root decomposition arrays, on a basis of hardware cost, communica- 

tion burden, control complexity and efficiency. One question which however has 

not been addressed is which design is most suitable for connection to the systolic 

arrays in the other parts of the estimator, that is the PMA matrix element cal- 

culation array and the triangular system solvers. Chapter 5 compares the cost 

of integrating both of the selected decomposition array designs into the system, 

incorporating this cost into a function which also takes into account the relative 

effects of communication. The next chapter also presents an error analysis which 

is required in order to select a suitable word-length. Too short a word length can 

lead to lack of precision and subsequently large error in the output data. Too 

long a word-length, while giving good result accuracy can lead to unnecessarily 

high hardware cost. Rounding error in the input data and during the compu- 

tations within the Cholesky [1,1,1] and LU [1,0,0] arrays therefore needs to be 

carefully studied as to its effect on the accuracy of estimated parameters. The 

performances of the [1,1,1] Cholesky and [1,0,0] LU decomposition arrays can 

then be compared using a cost/benefit analysis [30]. Over a range of word-length 

the new cost function is weighted against benefit which is treated as the inverse 

of estimation error. This then enables selection of an optimal decomposition sys- 

tolic array and word-length, in turn determining the word-length requirements of 

the other systolic arrays used in the estimator. 



Chapter 5 

Cost/Benefit 

5.1 Introduction 

Analysis 

The two previous chapters presented systolic array solutions for the first two sec- 
tions of the Modified Covariance spectral estimator. Chapter 3 considers designs 

for the computation of the matrix elements resulting in selection of a systolic array 
formed by mapping accumulation and multiplication DDGs separately. Chapter 

4 examines the next section of the estimator in which two systolic arrays, one for 

Cholesky and one for LU decomposition which avoids square root calculation at 

the cost of higher computational burden, are selected. This chapter considers the 

combination of these systolic arrays to form an optimal system. 

A cost/benefit criterion is developed to aid in the selection of the best decompo- 

sition method with its most appropriate precision. The cost estimates developed 

in the previous chapter are weighted against each other and the cost of integrat- 

ing the decomposition array into the estimator for use in the analysis. For the 

benefit calculation the errors which occur due to rounding in finite word-length 

arithmetic are estimated using hardware description language simulations. The 

results of the cost/benefit can then be used to select the most appropriate word- 

length for quantised Doppler signal input to the PMA array which is used to 

calculate the covariance matrix elements to the required accuracy. 
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5.2 Simulation 

The systolic arrays presented in the previous chapters can be modelled using 
Hardware Description Language (HDL). The modelling serves to check the oper- 

ation of the arrays, making sure that the designs are functionally correct. The 

models are also used to analyse the errors which occur due to finite word-length 

rounding in the arithmetic. 

Verilog HDL [125] models containing both behavioural and structural constructs 

can be used to check the PE operation, architectural communication and timing 

of data flow in the systolic arrays. A structural HDL description of the processor 
interconnections in the systolic array can be written by defining module port 
inputs and outputs on instances of the processors. Since the circuitry behind the 

registers, arithmetic units and multiplexors is not of interest at this point these 

units can be looked upon as the lowest level modules of the hierarchy and should 
be described using behavioural constructs. Describing processor operation using 

these behavioural modules makes simulation much simpler because the arithmetic 

operations can be implemented using +, -, / and * rather than considering 

detailed structural descriptions of full adder based arithmetic arrays. 

When verifying the systolic array operation it is desirable to work with real num- 

bers since when using finite word-length arithmetic rounding errors in the result 

can make it difficult to determine whether or not it is exactly correct. There are 

two function calls in the Verilog software, called $realtobits and $bitstoreal, which 

allow real data to be passed across ports by conversion into 64 bit net format. 

Usage of these functions to communicate between processor modules implies that 

a word-parallel approach is most appropriate for verification purposes so that all 

of the PEs are interconnected by 64 bit nets. The processors are also defined 

by structural 64 bit net interconnection of their behavioural base modules. The 

large bus widths are tolerated for the purpose of initial array verification as these 
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widths can be reduced at a later stage of the simulation when the numerical 
format for data representation, structures of the arithmetic units and required 

precision are considered. 

A bottom-up approach is proposed which builds up the hierarchical design start- 

ing with behaviourally based components. Referring to the [1,1,11 mapping of 

the Cholesky decomposition array (figure 4.8), the base level components of the 

processors, that is the register, multiplication, division, subtraction and square 

root units are described as behavioural modules. The Mtstoreal and $realtoblts 

functions are used at this level to exploit the behavioural operator set. However 

a function based on a recursive approximation [126] has to be written for square 

root as this is not included in the basic set of operators. The four PEs of the array 

axe then described structurally by connecting together instances of the base level 

modules. The systolic array can then be given a structural definition as shown 

in figure 5.1. 

cnOO 

PEO 
""' 

pell 
R 

cnIO 421 cnll 

PEI NO PE2 
pe2l pe22 

2l l 32 n22 m2D lj3l cn j c 
J 

PEI l k32 P lk33 PE2 ý 
pe3l 

7 
pe32 pe33 

cn3O Q41 cn3l 1$2 cn32 lj43 cn33 

PE I lk42 PE3 lk43 PE3 lk44 P E2 r 

'q pe4l p942 p943 po44 

cn4l cn42 cn43 cn44 

(a) 

//module definftion of Cholesky decomposftion array 
module CHOLESKY-SA (cn3O, cn2O, cn1O, cnGO, cn4l, cn42, cn43, cn44, clk , rst); 

ffinput ports 
input cn4l, cn42, cn43, cn44, clk , rst; 

floutput ports 
output cn30, cn2O, cnlO, cnOO, 

//dedaration of bus widths 
wiref'bw: ll cnOO, cnlO, cn2o, cn3O, cnll, cn2l, cn3l. cn4l, cn22, 

cn32, cn42, cn33, cn43, cn44, lj2l lj4l lj32 qQ 
lj43 

, 
lk22 

, 
lk32 

, 
lk33 

, 
lk42 

. 
lk43 

. 
IM4 ; 

/Zinstances of processors used in the Cholesky decomposition array 
CHOLESKY-PEO pel I( Q21 , cnOO, cn 11, clk , rst ); 

CHOLESKY-PE1 pe2l (lj3l lk22 , cnlO, lj2l cn2l, clk , rst), 
pe3l lj4l lk32 , cn2O, lj3l cn3l, clk , rst), 
pe4l , lk42 , cn3O, lj4l , cn4l, clk , rst); 

CHOLESKY-PE2 pe22 ( lj32 , cnl 1,110-2 , cn22, clk , rst 
pe33 ( lj43 , cn22, lk33 , cn33, clk , rst 
pe44 ( cn33, lk44 , cn44, clk , rst 

CHOLESKY-PE3 pe32 ( lj42 lk33 , cn2l, lj32 , lk32 , cn32, dk , rst), 
pe42 ( lk43 , cn3l, lj42 lk42 , cn42, dk , rst), 
pe43 ( lk44 , cn32, li43 lk43 , cn43, dk , rst); 

endmodule 

(b) 

Figure 5-1: (a) Systolic array with PE and bus labelling, (b) Verilog description 

of the Cholesky decomposition [1,1,1] mapping. 
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module TEST; 

Lm [modulel_____ 

under _______ 
output 

and 

_____ 
t9St_j control j 

________ ________ 

Figure 5.2: Simulation environment for general a test module. 

Testing is emphasised at at each level of the hierarchy. There are three main 

sections to a general test module as shown in figure 5.2. Stimulus and control 

provides the data input and control waveforms which can be behaviourally mod- 

elled in Verilog. The control waveforms include clock, reset and multiplexor select 

signals. The stimulus and control waveforms are applied to an instance of the 

module under test whose response is viewed from the last block which monitors 

the output data in a convenient real format. 

Individual test environments can be set up for each of the behavioural arithmetic 

modules and for the four different types of PE used in the Cholesky decompo- 

sition array. A program written in Matlab [1271, which generates a set of data 

typical to that output from a pulsed Doppler ultrasound transducer when mea- 

suring blood flow, is used to provide test data. Another Matlab program, which 

performs the Modified Covariance method, produces real covariance matrices for 

presentation to the Verilog stimulus module before conversion into 64 bit net for- 

mat for input into an instance of the systolic array. The Matlab software has built 

in decomposition functions for cross checking with the results from the Verilog 

simulation. 

The tri-linear (figure 3.11) and bi-linear (figure 3.13) matrix element calcula- 

tion, [1,1,1] mapping of the Cholesky decomposition array (figure 4.8), [1,01 0] 

mapping of the LU decomposition (figure 4.13), [1,1,1] mapping of the modified 

LDLTdecomposition (figure 4.19), forward elimination (figure 4.2(a)) and back 

substitution (figure 4.2(b)) systolic arrays can similarly be simulated using HDL. 
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5.2.1 Bit Level Simulation 

134 

Once the systolic array architectures are proven to be functionally correct, the 

simulation can be taken a stage further where the format of the data in the real 

system is considered. As stated in chapter 3a fixed point scheme is to be pursued 

rather than floating point due to the cost saving when a large number of PEs are 

considered. The problem with using a fixed point scheme for simulation is that 

the dynamic range is a severe limitation when considering applications such as 
decomposition. For example a 10 bit, two's complement, fixed point scheme 

allows a range from -512 to 511. If this data format is used to represent the 

full range of the input covariance matrix elements in the Cholesky decomposition 

example then when element 1[1,1) is calculated its maximum value is -V/511 -ol-o 23. 

This result could be represented in the same two's complement format by just 6 

bits. All the other values of I[j, k] output on the same bus of the systolic array 

can only have smaller magnitude than 1[1,11 and therefore 4 bits of this data 

bus are redundant. Resolution could be improved considerably if these 4 bits are 

utilised. For this reason scale factors are introduced to the systolic array so that 

for the example given, 1[1,1] would be represented by 10 bits in the range from 

-32 to 31-9375 which is obtained by scaling the 10 bits by a factor of 2-. 

(A) Calculation Of Scale Factors for Decomposition Arrays 

To aid in calculation of the scale factors an ensemble of the simulated stationary 

pulsed Doppler signals can be generated using the Matlab programs. Previous 

analysis [45] of Gaussian spectral profiles which are derived from the signal sim- 

ulation sets postulates that accurate statistical conclusions can only be drawn 

from estimated spectra constituted from a sufficient number of frequency bins. 

Eleven cases are chosen from spectra containing a minimum of 9 bins. The char- 

acteristics of these signal simulation sets are shown in table 5.1, the table gives 
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the mean frequency f, RMS bandwidth fb and sampling frequency f, of the 

chosen simulations. 

f.. (kHz) fb (kHz) fS - 
1.0 100 6.4 

200 
100 

2.0 200 12.8 
400 
200 

4.0 400 25.6 
800 
400 

8.0 800 51.2 
1600 

Table 5.1: Characteristics of the pulsed Doppler ultrasound signals. 

Each of the sets consist of 51200 data samples, normalised to give peak values 

of ±511mV, 4 times the RMS signal level and equivalent to a 10 bit range when 

quantised in 1mV intervals. This data is segmented into long windows which 

contain 512 samples as this allows better estimates to be made when dealing 

with stationary signals. This is then used as input data to the Matlab Modi- 

fied Covariance estimator which in turn produces a set of covariance matrices for 

input to the Verilog HDL b ehavioural/ structural descriptions of the decomposi- 

tion methods. Monitoring and storage of the values transmitted along each of 

the data buses allows the distributions data words produced within the arrays to 

be studied with the high accuracy of the floating point arithmetic used by the 

behavioural operator set. The scale factors can then be deduced to cover with 

the ranges of values appearing on the buses. An individual scale factor could be 

associated with each bus in the array but here the approach followed assigns the 

same scale factor to buses carrying similar values (e. g. all the covariance matrix 

input buses). This may lead to some bits being redundant but design is made 

simpler if there are fewer scale factors. 
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Figure 5.3: Combining the distributions of values on data bus cn2l of the 
Cholesky decomposition systolic array shown in figure 5.1. 

For example when the calculation of the filter parameters using the Cholesky 

decomposition, forward elimination and back substitution processes is considered, 
four different scale factors can be applied to various data nets in the arrays. These 

are associated with the iterations of the input covariance matrices C, the output 
lower triangular matrix L, the vector output of the forward elimination Y and 

the filter parameters A. 

Figure 5.3 shows histograms of the c[2,1], c(l)[3,2] and C(2) [4,31 data words for 

all the 1100 covariance matrix inputs. These data words all appear on the cn2l 

data bus which is indicated in figure 5.1 and the figure also shows how the three 

histograms are combined to produce a histogram for the distribution of values on 

the cn2l data bus. 
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Figure 5.4: Histograms showing the distributions of (a) covariance matrix and 
its iterations - C, (b) lower triangular matrix - L, (c) forward elimination output 
vector -Y and (d) the filter parameter values -A of the Cholesky decomposition 
systolic array shown in figure 5.1. 

Combining the distributions for all of the cn data buses, excluding those which 

carry the output data, produces the histogram shown in figure 5.4(a). The dis- 

tributions for the Cholesky decomposition array output L, forward elimination 

output Y and back substitution output A are also shown in parts (b), (c) and 

(d) respectively of the figure. The histograms shown take into account all one 

hundred data window inputs to the estimator. No appreciable decrease to the 

width of these distributions is observed when only fifty samples from each set are 

used and therefore it is assumed that the sample set taken adequately describes 

the general ranges. So there is a high probability for any new random input 

generated to produce values within the ranges indicated in figure 5.4. 
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type of matrix 
C L y A 

maicimurn 2.9776e+04 172.3544 142.6815 3.2646 
minimum -2.8787e+04 -167.3384 -96-4427 -2-2620 

scale factor 2 16-w 29-' 29-w 2 3-w 

Table 5.2: Data ranges and scale factors for the Cholesky decomposition array. 

Scale factors are deduced such that the observed data range can be optimally 

encompassed by a word-length w. The maximum and minimum ranges of C, 

L7 Y and A produced by the simulations are noted in table 5.2. The input 

covariance matrix elements range in value from approximately ±30000 whilst the 

output L matrix elements range only from ±170. Usage of 2's complement 10 bit 

words with a scale factor of 26 gives the range (-512--+511)2 6 or -32768--+32704, 

adequate for the representation of C. If standard fixed point is used then this 

scaling factor would be used throughout the rest of the process. 26= 64 is however 

comparable in magnitude to the elements L and would cause large relative error 

if used in its representation. Therefore it is far better to introduce a new scale 
factor for L of 2-' which gives a range of -256-->255.5. The maximum absolute 

error in L is reduced to 0.5 as opposed to 64 for the standard fixed point case and 

the full ranges are still accommodated. The same method may also be applied 

to the systolic array produced by the [1,0,0) projection of the LU decomposition 

problem resulting in the scale factors shown in table 5.3. Note that the scale 

factors for L and Y differ to those for the Cholesky decomposition. 

type of matrix 
C L IUI Y A 

maximum 2.9776e+04 1.7052 2.9706e+04 2.0432e+04 3.2646 

minimum -2.8787e+04 -0.9840 -2.8787e+04 -1.6622e+04 -2.2620 
scale factor 2 16-w 21-' 2 16-w 2 16-w 2 3-w 

Table 5.3: Data ranges and scale factors for the LU decomposition array. 
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/D I 
(Bj Affect of Scale Factors on Arithmetic operations 

The scale factors directly affect the choice of bits from double precision products. 

The analysis here assumes that single precision products are used throughout 

the arrays otherwise word-lengths could grow quite large. The type PE2 and 

PE3 processors of the Cholesky decomposition array are both required to form 

the product of two elements of matrix L to form a covariance matrix element 

iterative update c(n) U, k]. Using the word-length of 10 bits for the purpose of 

illustration then with reference to table 5.2 and the scale factor used for L is 2'. 

The scale factor associated with the double precision product is calculated by the 

product of the scale factors on the multiplier and multiplicand and is therefore 

2 -2 . The least significant bit (LSB) p,, of this double precision product therefore 

has weight 2-'. In order to keep ten bit buses through the array the appropriate 

10 bits must be selected from the 20 bit product. When the single precision word 

is selected from these 20 bits its LSB must have the weight of 2', which is the 

scale factor associated with the covariance matrix C (table 5.2). Therefore bits 

P17--4P8 should be selected since p8 has a weight of 2'. 2 -2 = 2'. Figure 5.5 reviews 

the bit selection from a double precision product. 

single precision multiplier single precision multiplicand 

282726252423222120 2-1 282726252423222120 2-1 
19 18 17 16 15 14 13 12 11 101.2- 19 18 17 16 15 14 13 12 11 10). 2- 

double precision product 
ý7ý6ý5ý4ý3ý2ý Y29 e272625 24232 
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Figure 5.5: Bit selection from the double precision product in a type PE2 

Cholesky decomposition [1,1,1] array PE (figure 4.8) using a word-length w= 10 

bits. 
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The type PEO element in the Cholesky decomposition array requires a square 

root to be calculated. The output of the square root unit is an element of L and 

is therefore scaled by 2-1 when w -- 10. To produce a 10 bit output from the 

square root unit the converse situation to the product formation calculation is 

encountered and the LSB input to the square root unit should have a weight of 
2 -2 . 

Since the input to word to this PE is weighted by 2' then 8 least significant 
bit inputs to the square root unit should be zero. A similar situation to the square 

root is encountered in the division process of the type PE1 processors. The 

dividend is scaled by 2', the divider by 2-1 and the quotient produced is scaled 
by 2-1. So the LSB dividend input to the multiplier should have weight 2-' in 

order to scale the output by 2-' which again means padding out by multiplying 

the numerator input by 2'. 

For addition and subtraction both the inputs must be scaled the same as the 

output. The above analysis can also be applied to the LU decomposition example. 

M "" Time Dependent Scale Factors 

An alternative way to design the array is to have scale factors which change 

with time. This can be used to reduce the overall error associated with the 

decomposition by improving the precision of certain data words. By way of 

example consider the data bus cn11 in the Cholesky decomposition array (figure 

5-1). The data words c(')[1,1], c(l)[2,21, c(l)[3,31 and c(l)[4,4] are all transmitted 

along this data bus and figure 5.6 shows the maximum and minimum values of 

these data words for the full signal simulation set mentioned earlier. There is a 

noticeable decrease in the range of the data words on the bus with time. The scale 

factors on the words with smaller ranges can be decreased thereby increasing the 

precision with which these words are represented. This increases the precision of 

the C(3) [3,3] and C(4) [4,4] words by 3 and 4 bits (table 5.4) which could increase 

result accuracy significantly when dealing with the smaller word-lengths. 
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type of matrix 
C(1) C(2) [2,2] C(3) [3,3] C(4) [4,4] 

maximum 2.9706e+04 2.0506e+04 0.2165e+04 0.1635e+04 
minimum 0.7402e+04 0.5105e+04 0.0046e+04 0.0031e+04 

scale factor 2 16--tu 2 16-, 2 13-w 2 12-w 

Table 5.4: Scale factors for bus cn1I of the Cholesky decomposition array. 

This scheme has certain implications when its hardware implementation is con- 

sidered. For a word-parallel approach changing the scale factor on bus cnll with 

time means that a multiplexer is required to route different bits from the double 

precision product to the output bus. The scale of the words on this bus also 

, affects the operation of the square root module in pell as a different number of 

zeroes would be required in the least significant positions. Also the scale factors 

on the cn22 and lk22 input buses to pe22 may change for different data words as 

time passes and so careful design is needed to make sure that the correct bits are 

chosen. In the bit-serial approach bit-selection is slightly simpler as clock enable 

signals are all that is required to pick out the correctly scaled data word from the 

bit-stream data word. Using a strategy such as this therefore requires a complex 

control scheme and detailed analysis of probable data distribution before design 

can commence. In fact with the extra cost of having so many different scale 
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Figure 5.6: Maximum and minimum values of data words communicated along 

bus cn11 of the Cholesky decomposition systolic array shown in figure 5.1. 
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factors may not be justified when comparing to the more versatile floating point 
format. For this reason the earlier scheme which proposes associating the same 

scaling to groups of buses with the carrying the same type of data is preferred. 

(D) Behavioural/Structural Simulation 

Two's complement finite word-length data Verilog simulations of the Cholesky 

[1,1,1] and LU [1,01 0] arrays can be developed utilising the scaling schemes 

suggested in tables 5.2 and 5.3. Behavioural models for the arithmetic units are 

introduced as resorting to full adder based descriptions of these modules would 

result in long simulation times and possibly system memory problems. When 

selecting bits from the double precision products a truncation scheme is followed 

this allows the required bits to be simply picked off. If rounding is considered extra 

adders would be needed on each multiplier output to add the double precision 

product bit whose weight is half that of the scale factor, to the w selected bits 

but the upper bound of the rounding error is half that of truncation. Even bus 

widths from 8 to 20 bits are simulated. 

5.3 Filter Parameter Computation Cost/Benefit Analysis 

A cost/benefit analysis is used to compare the performance of the estimator using 

the Cholesky [1,1,1] and LU [1,0,0] decomposition methods and a range of word- 

lengths. The cost function is concerned with the amount of hardware usage, data 

communication requirement, complexity of the control circuitry and the cost of 

interfacing the decomposition arrays to the other systolic arrays in the estimator. 

This is weighed against a benefit which is calculated from the accuracy of each 

method. The analysis is carried out on a range of word-lengths in order to find 

an optimal combination of decomposition method and precision. 
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A simple method of selection could be based upon the number of PEs in the array, 
however this would be of little use since both types of decomposition use the same 

number of PEs to calculate A and this does not account for all the different PE 

sizes. It would be far better to base the results on the actual number of logic 

gates that would be required for each array and so the results of the hardware cost 

comparisons in chapter 4 can be used here. The cost of the forward elimination 

and back substitution arrays should also be in included since these are slightly 
different due to the omission of the divider in the LU decomposition forward 

elimination array as indicated in section 4.5.1. 

The cost analysis in chapter 4 looked at comparison of different decomposition 

arrays and resulted in selection of two quite different designs each with their 

own input/output data specification. The cost function described in this chapter 

also uses the costs explored in chapter 4 but also takes into account the cost of 

integrating each design into the Modified Covariance spectral estimator. That is 

the cost of connecting the decomposition arrays to the PMA matrix element array 

chosen in chapter 3 (figure 3.18) and the triangular system solvers (figure 4.2). 

There are several ways in which systolic array connectivity can be implemented. 

The first is to have a centralised memory bank from which all data inputs and 

outputs are fetched and stored depending on the state of the program counter. 

Such a method would however be likely to cause problems since several different 

words may be needed to be fetched from or stored in memory on the same clock 

cycle. An alternative is local memory storage where multiplexing can be used to 

reorder the data and the cost of this approach is considered here. 
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The first cost which needs to be considered is the cost of connectivity from the 

PMA matrix element array to the [1,1,1] Cholesky decomposition array. Study 

of figures 3.18 and 4.8 shows that the data output on a certain bus of the PMA 

array needs to be routed to a certain input of the Cholesky array. The PMA array 

outputs need to be captured as they are produced and then a multiplexor can be 

used to do the any necessary reordering. This can be done with the use of some 

registers and multiplexors as shown in figure 5.7. As the matrix elements become 

available from the PMA array they are piped into a SIPO register. The matrix 

elements may then be selected as required by control of the multiplexors for input 

to the Cholesky array. The reordering elements shown in figure 5.7 each have the 

capacity to store 3 words. This means there are redundant registers but since 

each element has the same design then the reordering can easily be incorporated 

into the design of the PMA array PE. 

Similar PEs can be used for storage and reordering of data between the Cholesky 

decomposition array and the triangular system solvers. This time however an 

extra multiplexor and register would be required in the PE since the maximum 

number of elements that need to be stored goes up to 4. Another such PE is also 

required to reverse the order of the Y elements from the output of the forward 

elimination array before input to the back substitution array. 
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The RHS matrix (2.24), consisting of elements c[l, 01, c[2,0], c[3,0] and c[4,0], is 

needed for input to pe[O] of the forward elimination array (figure 4.2(a)). These 

elements and also c[O, 0] are required in the white noise variance calculation (2.28). 

Grouping this data together presents a slightly more difficult problem since each 

of these elements appear on different outputs of the PMA array (figure 3.18). The 

reordering PEs on the outputs of the PMA array route elements C[4,1], c[4,2], 

c[4,3] and c[4,4], equal to c[3,0], c[2,0], c[l, 0] and c[O, 0], into the Cholesky de- 

composition array (figure 4.8) on input clock cycles t=6,7,8 and 9 respectively. 

To follow the pattern another reordering PE can be used to output c[4,0] at 

t=5. The grouping of this data can be represented using the data dependence 

graph in figure 5.8 where the horizontal inputs to row 3 are the outputs from the 

reorder PE associated with pe[j] of the PMA array. The mode 0 nodes (figure 

5.8(b)) represent the capture of the matrix elements sourced from the reordering 

PE outputs at time t. The mode 0 nodes output the matrix elements along a 

diagonal path through the mode 1 nodes to the edge of the graph, maintaining a 

localised communication. Projection along the t axis results in the linear systolic 

array shown in part (c) of the figure, whose simple pipelined multiplexing func- 

tion is shown in part (d). The output of pe[4] is then connected to another of the 

reordering type PEs, similar to those in figure 5.7 but with the capacity to store 

words. 
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array, (b) node functions, (c) systolic array from t projection and (d) PE function. 
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It is much more difficult to integrate the LU decomposition array into the sys- 
tem because of its input bus data flow requirements and the ordering of data 

produced on each output bus. The input data to a certain bus of the [1,0,0] 

LU decomposition array must now be pulled off 3 or 4, depending on the input 

bus, of the PMA matrix element array outputs. Figure 5.9(a) shows a network 

of elements for performing the required regrouping and reordering. Each column 

of regroup PEs performs a similar function to the linear regrouping systolic array 

shown in figure 5.8. The matrix elements which have been collected together in 

the regrouping array are then stored in the reorder PEs (figure 5.7), which have a 

capacity to store 5 matrix elements, before connection to the LU decomposition 

array. There are some redundant PEs in this interconnection network which are 

judged to be worth including in order to maintain regularity when considering 

VLSI/FPGA implementation. Regroup and reorder networks are also required 

between the LU decomposition array and the triangular system solvers and suit- 

able architectures to perform this are shown in figure 5.9(b) and (c). A reordering 

PE is also required between the forward elimination array output and the input 

to the back substitution array. 
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Figure 5.9: Interconnection networks for (a) PMA array to LU decomposl- 

tion/forward elimination arrays and from the LU decomposition array to (b) 

forward elimination array (c) back substitution array. 
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The regrouping networks have the disadvantage of considerably increasing control 
burden and computational delay. An alternative way to approach the problem is 

to redesign the forward elimination arrays to accept the data groupings which are 

output from the LU decomposition array so that the networks shown in figure 

5.9(b) and (c) can be replaced just by reorder PEs. The DDG for back substitu- 

tion is shown in figure 5.10(a) and the mode functions associated with the nodes 

are indicated in part (b) of the figure. Kung and Leiserson's [171 array shown in 

figure 4.2 is produced by the [0,1] vector projection in the k direction. Projection 

in the [1,1] direction however, such that node[j, k] is projected into pe[k - of 

the systolic array shown in figure 5.10(c), results is much more convenient data 

flow. The disadvantage with this mapping however is that now there is only one 

type of processor which is required to work in two different modes as detailed in 

part (d) of the figure and so the array contains 4 dividers as opposed to one for 

the other mapping. Note that dividers can be omitted from forward elimination 

version of this array. 
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The total hardware cost of the filter parameter calculation, that is the cost of the 

decomposition arrays, triangular system solvers and the connectivity between the 

modules is discussed in this section. 

It could be argued that the same hardware for the forward elimination array 

could be used for the back substitution array since the latter calculation cannot 

commence until y[4] is output on the former computation. The reason that this 

is not arranged is due to differences in scale factors needed in the two processes 

which leads to different bits being selected from the double precision products of 

the multipliers and varying scales applied to the numerator inputs of the dividers. 

If one array was to be used for both triangular solvers then this would therefore 

lead to time varying scale factors as described in section 5.2.1(C). 

The approximate total cost for the filter parameters computation when using 

the Cholesky decomposition [1,1,1] array shown in figure 4.8 is shown in table 

5.5 in terms of modules. These results are based upon the use of the forward 

elimination/back substitution arrays of figure 4.2 and the array interconnection 

costs discussed in section 5.3.1(A). 

w bit module number of modules used in the arrays 
Cholesky forward back array 

decomposition elimination substitution interconnection 

addition 0 3 3 0 

subtraction 6 1 1 0 

multiplication 6 3 3 0 

division 3 1 1 0 

square root 1 0 0 0 

register 18 11 11 47 

multiplex 0 0 0 32 

Table 5.5: Hardware usage for Cholesky systolic arrays in terms of module usage. 
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When considering the use of the LU [1,0,0] array in the filter parameter computa- 
tion, two different versions of triangular system solvers are considered. Table 5.6 

details the costs for when the original triangular system solvers of figure 4.2 are 

used with the interconnect networks of figure 5.9. These costs can be compared to 

the costs in table 5.7 which consider the use of the redesigned triangular system 

solvers of figure 5.10, eliminating the need for the interconnection networks in 

figure 5.9(b) and (c). 

w bit module number of modules used in the arrays 
LU forward back array 

decomposition elimination substitution interconnection 

addition 0 3 3 0 
subtraction 6 1 1 0 
multiplication 6 3 3 0 
division 4 0 1 0 
square root 0 0 0 0 
register 26 11 11 136 
multiplex 1 10 0 0 82 

Table 5-6: Hardware usage for LU systolic arrays in terms of module usage when 
using the triangular system solvers of figure 4.2. 

w bit module number of modules used in the arrays 
LU forward back array 

decomposition elimination substitution interconnection 

addition 0 4 4 0 

subtraction 6 4 4 0 
multiplication 6 4 4 0 
division 4 0 4 0 

square root 0 0 0 0 

register 26 16 16 100 

multiplex 0 0 0 63 

Table 5.7: Hardware usage for LU systolic arrays in terms of module usage when 
using the modified triangular system solvers of figure 5.10. 

The hardware cost, including the cost of system integration, for the filter parame- 

ter calculation in the Cholesky and two LU decomposition based systems plotted 

in figure 5.11 over word-length from 8 to 20 bits, is derived from the information 

forwarded in tables 3.1,3.2,4.1,5.5,5.6 and 5.7. The results show that the LU 
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decomposition methods are more expensive to implement in terms of the NAND 

gate cost for all the word-lengths considered. The LU method with the original 
triangular system solvers presents lower hardware cost than that displayed after 
the modification to the triangular system solvers when the word-parallel approach 
is considered. Conversely, in the bit-serial approach the modification to the trian- 

gular system solvers presents the lower cost of the two LU systems with the need 
for control signals to regroup the LU array outputs removed. Due to these two 

advantages and since the bit-serial approach is most appropriate to the Modified 

Covariance application then the LU system with the modified triangular system 

solvers is chosen out of the two LU methods. The LU method which uses the 

regroup networks to set up the L and U matrix data on the inputs to the original 

triangular system solvers is therefore not given any further consideration. 

Systolic array interconnection strategy has a large effect on the results as is evi- 

dent from comparison the bit-serial results from chapter 4 with those presented 

here. Figures 4.11(b) and 4.20 show the bit-serial costs of the Cholesky [1,1,1] 

and LU [1,0,0] arrays taken alone to be very similar. When these arrays are in- 

tegrated into the filter parameter calculation system however the cost of the LU 

based system rises to between 1.5 to 1.75 times higher than the Cholesky system. 

This demonstrates the distinct cost advantage of simple data flow between the 

PMA and Cholesky decomposition array. 
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The data communication cost in terms of number of buses is detailed for the two 
decomposition methods in table 5.8. The communication cost for the forward 

elimination and back substitution arrays is the same and so the cost for just one 
such array in each of the decomposition methods is presented in the table. The 

Cholesky decomposition shows a greater PE interconnection requirement burden, 

fewer input/output lines but does not have any localised feedback connections as 
in the LU decomposition. In the word-parallel approach the number of data lines 

can be expressed in terms of the word-length w as there are this many lines per 

bus and for the bit-serial approach it is assumed that the width of each data bus 

is one. Communication burden in the regrouping network is identified in the next 

section. 

type of Cholesky [1,1,1] LU [1,1,1] 
data bus decomposition forward/back decomposition forward/back I 

substitution substitution 
PE interconnection 12 + 6V2- 6 12 3 
localised feedback 0 0 10 4 

array input 4 6 4 9 

array output i t4 
1 7 4 

Table 5.8: Cholesky and LU decomposition data bus costs. 

5.3.4 Weighting Hardware and Communication Cost 

It is very difficult to weigh communication cost against hardware cost as this 

involves consideration of the floor planning and the technology on which the sys- 

tolic arrays are to be mounted, be it full/ semi- custom or field programmable gate 

arrays (FPGAs) for example. In order to see the overall effect of communication 

on the overall cost one of these methods of implementation must be considered. 

The cost analysis presented here is geared towards FPGA implementation, as 

these devices present a convenient platform for prototyping systolic arrays [128] 

and their logic cell array (LCA) specification presents a basis on which hardware 

and communication cost can be compared. 
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A Xilinx FPGA [129] contains an array of user configurable logic blocks (CLBs) 

surrounded by a number of pins. Each CLB contains a combinatorial function 
logic block, capable of being programmed to perform a single FA, GFA or CAS 

cell function equivalent to an average of r-, 14 NANDs, and two D-type flip/flops, 

adding on 12 more NAND gates. This leads to an average gate count of -'%a 26 
NANDs per CLB. The 1/0 blocks associated with each pin can be programmed 
to perform a D-type flip/flop operation giving a NAND gate count of 6. Using 

this information the the number of NAND gate equivalents for each device in the 

Xilinx XC3100 LCA family [129] is shown in table 5.9. 

Bus connections can be made via the pins of the FPGA or internally using the 

programmable interconnect points (PIPs) of the LCA architecture and so the 

number of NANDs that a bus link is worth can be determined by estimating 
the NAND gate equivalence for a pin or internal interconnect. The value of a 

pin resource in terms of NAND gates can be calculated by taking the ratio of 

the number of NAND gate equivalents for the whole FPGA to the number of 

pins for that device as shown in the final column of table 5.9. The cost of an 

internal interconnection resource can be estimated by considering the number of 

input/output lines that a CLB can support. Each CLB of the array is capable 

of supporting 5 logic inputs, a direct input and 2 outputs a total of 8 data lines 

of which 5 or 6 could typically be programmed in an efficient design. Therefore 

the 26 NANDs associated with each of the CLBs can be weighted against 5 or 6 

internal communication lines leading to a CLB input or output connection being 

equivalent to 5 NAND gates. 

Device 1 1 No. of CLBs I No. of F NDs I NANDs/pi 

XC3120 64 (8 x 8) 64 2000 31 
XC3130 100 (10 x 10) 80 3100 39 
XC3142 144 (12 x 12) 96 4300 45 
XC3164 224 (16 x 14) 120 6600 55 
XC3190 320 (16 x 20) 144 9200 64 
XC3195 484 (22 x 22) 176 13600 77 

Table 5.9: Pin to CLB utilisation in Xilinx XC3100 Series FPGAs. 
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The question which now arises is how many of these pins are utilised for bus 

connections compared to internal bus links. To answer this the number of PEs 

which can be implemented on a single FPGA must be studied. When considering 
implementation of the word-parallel approach the arithmetic units involved are 

not pipelined and therefore the D-type flip-flops contained within the CLBs are 

not used. The maximum utilisation is therefore not much greater than 60% of the 

total number of available gate equivalents when using the word parallel approach, 

assuming that some of the D-type flip-flops go towards providing the systolic 
delays. In figure 5.12 the Xilinx NAND gate equivalents for 60% utilisation 
(indicated by the dotted horizontal lines) are compared with the average cost of 

a systolic array arithmetic PE in the LU and Cholesky based systems. From 

these results it can be concluded that one word-parallel arithmetic PE can be 

successfully implemented on a single FPGA (e. g. the average size PE in the 14 

bit Cholesky based system can be mounted on the XC3164). On implementing 

a single PE per FPGA all PE interconnections must be made via the pins and 

so each interconnection bus link taking up 2 pins can be weighted by choosing 

the most appropriately sized FPGA and referring to table 5.9. Systolic array 

input/output bus links each just count for one pin while localised feedback can 

be implemented within the FPGA from the output of one CLB to the input of 

another, each feedback link therefore counting towards 10 NAND equivalents. 
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A much higher utilisation of up to 90% can be achieved for the bit-serial arith- 

metic modules [128] since the CLB flip-flops can be used to provide the pipeline 
delays required for implementation of the arithmetic modules. This high utilisa- 
tion and the use of fewer NAND gates in bit-serial implementation allows whole 

systolic arrays to be mounted on single FPGAs. Figure 5.13 shows the hardware 

cost of the bit-serial Cholesky and LU decomposition systolic arrays for various 

word-length which can be compared to the number of NAND gate equivalents 
for each of the Xilinx XC3100 series devices at 90% utilisation. The combined 

cost of the forward elimination and back substitution arrays for each of the two 

decomposition systems is also shown and it can be seen that both of these arrays 
in each case may be mounted on a single FPGA. Pins are therefore only required 
for input/output bus connections of the decomposition systolic arrays and just 

one of triangular system solvers. PE interconnection, localised feedback, the con- 

nections between the forward elimination and back substitution arrays can all be 

made within the FPGAs. 
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Figure 5.13: Costs of bit-serial Cholesky and LU decomposition systolic arrays 

and total costs of the forward elimination and back substitution arrays in each 

of the two systems. 

In order to efficiently implement the regrouping network on a FPGA a combined 

bit-serial/word-parallel implementation is suggested independent of whether the 

arithmetic in the other systolic arrays is bit-serial or word-parallel. The reasons 
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for this are that if a purely word-parallel approach is taken then there would be 

a very large input/output connectivity burden compared to a small processing 
task, leading to very inefficient use of the FPGA. The problem with a purely bit 

serial approach is that this would make regrouping relatively slow and this would 

also make quite inefficient use of the FPGA architecture as only one multiplexer 

would be required for every 2w D-type flip-flops. A serial/parallel approach draws 

a compromise allowing regrouping to be performed at an acceptable rate, with 
lower 1/0 burden than the strictly word-parallel approach and a more efficient 

usage of CLBs. A possible arrangement for the serial/parallel regrouping PE is 

shown in figure 5.14. The communication burden resulting from use of this PE 

arrangement in the Cholesky and LU systems is shown in table 5.10 where the PE 

interconnections are routed on the FPGA layout and the array 1/0 connections' 

are made via pins. The most suitable Xilinx device can be selected given that w 
CLBs per regroup PE are required. 

8 bit parallel output to other reoroup PEs or the reorder PEs 

serial input from 
the PMA array 

CLBs 
8 bit parallel input from other regroup PEs 

serial output to 
other regroup PEs 

Figure 5.14: Serial/parallel layout of aw8 bit regroup PE suitable for imple- 

mentation on w CLBs of a Xilinx FPGA Note that serial input registers need 
to be clocked a factor of w times higher than the parallel input registers. 

type of communication 1 1 Cholesky syst, systým] 
PE interconnection 4w 20w + 20 

array input 5 5 

array output w 5w 

Table 5.10: Communication burden in the regroup arrays. 

'For the case when connecting to a bit-serial system the output communication burden can 
be reduced by a factor of w by incorporating parallel to serial conversion within the Xilinx 

FPGA. 
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The methodology for expressing communication burden relative to hardware cost 

as described in the section 5.3.4 with regard to implementation on the Xilinx 

3100 series of FPGAs is used to obtain the overall hardware and communication 

results plotted in figure 5.15. By comparison with the results for the hardware 

cost only in figure 5.11 it can be seen that the effect of communication is much 

more pronounced in the word-parallel approach accounting for 45% and 49% of 

the overall cost in the LU and Cholesky systems respectively. Communication 

has a much smaller burden in the LU & Cholesky bit-serial approaches where it 

respectively estimated to contribute to an average of 13% and 9% of the overall 

cost, with the large PE interconnection burden of the LU regrouping array push- 

ing up the cost in the LU system. However the general trends when comparing 

the Cholesky and LU based systems are repeated since the Cholesky decomposi- 

tion array displays considerably lower cost throughout the range of word-length 

in both word-parallel and bit-serial situations.. These results further demonstrate 

the cost advantage of the bit-serial approach over word-parallel since in the case 

of the Cholesky based system, the overall bit-serial costs range from 25%, at 

w=8 bits, to 10% at w= 20 bits, of the overall word-parallel costs. 
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The control can be broken up into three broad sections, array level control, array 

connectivity control and arithmetic module control. Array level control covers 

signals such as the clock, reset and register clock enable signals which control the 

processor mode of operation. The array connectivity control determines when 

output data is to be stored and provides multiplexor selection signals to set up 
the input data streams to the systolic arrays. The arithmetic control signals are 
for the arithmetic modules and these need to be repeated within the systolic clock 

cycle at one in every a clock cycles, where a is the processor pipelining period. 

(A) Array Level Control 

As discussed in the previous chapter control of the Cholesky decomposition array 

at the array level is very simple due to the fact that in the [1,1,1] mapping only 

nodes operating in the same mode are projected into the PEs of the array. This 

is also true for the forward elimination and back substitution arrays which are 

used with the Cholesky decomposition array and hence there is no need for any 

array level control. 

The LU decomposition array requires a set of clock enable pulses to store the 

upper triangular matrix elements in the processor feedback registers. The flow of 

this clock enable signal can easily be pipelined throughout the array. For example 

the clock on the ru register of pe[l, 1] (figure 4.13) needs to be enabled on the 

t=0 clock edge. The neighbouring pe[2,1] needs u[1,2] to be stored at t=I 

and so a single bit register delay from the pe[l, 1] enable signal could be used 

to provide the enable for pe[2,1]. A localised control network can then be set 

up throughout the array. A similar enabling signal is necessary in the triangular 

system solvers used with the LU decomposition array but with a pipeline of 2 

delays between processors. 
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/DI 
(B) Array Connechvity Control 

Both decomposition methods need control signals to store the systolic array out- 
put data in the reorder PEs and to schedule this data for input to the neighbouring 
arrays. For each reorder cell these control signals are in the form of a register 
storage clock enable line and a multiplexor control bus, the width of which de- 

pends on the number of word registers in the reordering elements, so that the 
data stored can be selected by parallel access. Multiplexor control signals are 

also required in the regrouping networks to redirect the elements of the from the 

various PMA array outputs onto a number of buses. One multiplexor select sig- 

nal is required for each regroup PE and the array connectivity control burden is 

summarised in table 5.11. 

type of signal Cholesky system I LU: s: y=stem 
regroup - MUX control 25 
reorder - MUX control 21 29 
reorder - clock enable 10 12 

Table 5.11: Array connectivity control burden in terms of number of control lines. 

Arithmetic Module Control 

The advantage of using a word-parallel over a bit-serial approach becomes ap- 

parent when considering this type of control signal. The bit-serial modules need 

their own clocks operating within the systolic cycle, MSB indicator pulses, plus 

mode control pulses while the word-parallel equivalents require only data input 

on the systolic clock edge and results ripple through with little or no control 

signal requirement. The bit-serial Cholesky decomposition process has a bigger 

disadvantage here because the control of the square root unit demands 4 different 

modes of operation in each of its bit-level PEs. Both of the bit-serial decomposi- 

tion methods need addition, subtraction, multiplication and division unit control 

signals 
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Control Results Summary 
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Its very difficult to quantify the control burden and match it against that of the 
hardware and communication cost. The LU decomposition process is at disad- 

vantage due to its clock enabling requirements for storage of localised PE feedback 

words whilst in the Cholesky array mode changing of nodes is not required for 

any of its four PEs. When considering array interconnectivity, table 5.11 shows 
that the Cholesky decomposition array requires fewer control lines than in the 

LU system for both the reordering and regrouping of data. The only drawback 

with the Cholesky system is the control required for the bit-serial square-root 

computation but this disadvantage becomes insignificant in comparison with the 

control complexity in the required in the LU system. 

5.3.7 Efficiency Comparison 

Processor utilisation could also be used for comparison of the methods. Each PE 

in the Cholesky array is active on one in every three clock cycles whilst the PEs 

in the LU array are active on each consecutive clock cycle. The inefficiency of 

the Cholesky array may be looked upon as a disadvantage but since these arrays 

both require a similar number of clock cycles there is no real gain in using the LU 

method based on utilisation. Also, the data interleaving technique could be used 

to improve the processor/block pipelining periods of the Cholesky decomposition 

array to obtain a similar efficiency to that of the LU decomposition array. The 

latency of the individual PEs could be used as a factor in the comparison. The 

square-root PE in the Cholesky array causes a bottleneck since the iterative 

nature of these devices causes them to be substantially slower than multipliers. 

However, much the same problem is. encountered with the division process and 

so the Cholesky decomposition is not at a particular disadvantage in this respect 

and efficiency is not brought into the cost/benefit analysis. 
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5.3.8 Method of Error Calculation and Benefit Analysis 
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Benefit is considered here to be a measure of spectral estimation accuracy and 

specifically estimation of those spectral parameters of particular interest in this 

application - mean frequency (f? 
n) and RMS bandwidth (fb). 

The set of stationary signal cases listed in table 5.1 for scale factor calculation 

can be used again to perform the error analysis here. A cost/benefit selection 

process [11], which also uses data with these characteristics, leads to the choice 

of the modified covariance method over a range of other spectral estimators. The 

stationary signals had Gaussian spectral shapes with mean frequency f, RMS 

bandwidth fb. 

The 1100 covariance matrices generated (see section 5.2.1(A)) can be applied to 

the Verilog descriptions of the two's complement decomposition modules. All 

cases use a data window of a fixed number (N = 512) samples rather than a fixed 

time duration so that the cases with the same percentage bandwidth consist of 

similar numbers of frequency bins and the long window length ensures that good 

estimates of f, and fb can be made. The filter parameters are retrieved from the 

output of the Verilog simulations, which are run for 8 to 20 bit word-lengths, and 

Matlab is again used to calculate the PSD from which f,,, and fb are estimated. 

The different methods of decomposition may be compared on the basis of the RMS 

error in f, and fb caused by the limited precision and overflow error in the filter 

parameter outputs for different word-lengths. In addition a user defined Verilog 

behavioural function indicates overflow occurrence. Taking each decomposition 

process separately the f, and fbRMS percentage error versus word-length plots 

are similar for all signal cases with the same percentage bandwidth and so the 

average errors are taken over these cases. 



Chapter 5- CostlBenclit Analysis 161 

The benefit function is defined as inverse of the observed error: 

benefit =1 (5.1) (Wf,,. RMS(f, )) + (Wf,. RMS(fb)) 

where 

RMS(f, ) = RMS5%(f, ) + RMSo%(f, ) + RMS2o%(f,, ) (5.2) 

RMS(fb) = RMS5% (fb) + RMS, o%(fb)+RMS20% 
(fb) (5.3) 

and RMS5%(fb), for example, is the average RMS error in fb over the 5% band- 

width cases. Wf, and Wf, are weights which may be set to reflect the relative 
importance of mean frequency and bandwidth estimation accuracy. 

5.3.9 Results of Error Calculation and Benefit Analysis 

The results of the error analysis in figure 5.16 show percentage RMS error in both 

the estimated values of f,, and fb compared to the ideal values given in table 5.1 

versus word-length w for the three different percentage bandwidths. The dotted 

line is an asymptote representing the error produced by the actual estimation 

process and this result is calculated using the Matlab software at high precision. 

As expected the RMS error curves converge to this line as the word-length is 

increased. The Cholesky process is the most accurate of the two with RMS 

error becoming most significant at 8 bits. With decreasing word-length the error 

becomes apparent at an earlier stage in the 5% half bandwidth case compared 

with the 10% case and similarly the error becomes more noticeable in the 10% 

case before it does in the 20% case. This is because as the percentage bandwidth 

of the input signal is decreased then the covariance matrix to be solved is more 

likely to become ill conditioned [27]. The condition of the covariance matrix 

is a measure of the sensitivity of the system of linear simultaneous equations 

to relative error in the covariance and RHS matrix. Using Matlab to evaluate 

the condition numbers (K) for the covariance matrices, K was found to average 

around 5000 for the 5% cases 1000 for the 10% cases and 200 for the 20% cases. 
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According to matrix theory the relative error in the solution of the simultaneous 

equations could be up to K times that of the input matrices [27] and this change 
in condition number with percentage bandwidth is consistent with the change in 

estimation error. 
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Overflow errors [88] occur if the scale factor is not large enough when selecting 
the appropriate bits from a double precision product or when the two inputs to 

an adder are too large. They are in turn caused by rounding or truncation errors 

whose accumulation causes the multiplier and multiplicand or adder inputs to 

deviate from the values which would be calculated when using high precision 
floating point arithmetic. 

The Cholesky decomposition architecture was found to suffer from only a very 

small percentage of overflows at 8 bit word-length in the 5% bandwidth case 

and was robust for the rest of the range. However the LU array did not fare 

so well. Figure 5.17 shows the percentage of the 1100 cases of filter parameter 

results in error due to overflows. For each of the three percentage bandwidth 

cases the number of results suffering from overflow error as a percentage of the 

total number of simulations in that case is plotted for each of a[4] --+ a[l]. On 

the LU plots most of the overflows are already apparent in the system before 

the U. A =Y back substitution calculation. Investigation reveals that the main 

source of overflow is in the calculation of the 1[4,3] and u[3,4] matrix elements. 

With reducing word-length it can be seen that the points at which overflows start 

to enter the systems are at the same word-lengths at which the dramatic increase 

in RMS error is observed, that is for example at 14 bits for the LU 5% bandwidth 

case shown in figure 5.16. 

Another point of interest is that the number of overflows peaks at certain word- 

lengths rather than steadily increasing as the precision of the systolic array pro- 

cessors is decreased. This is attributed to the fact that as data word-lengths 

reduce, scaling factors increase, causing data to zero out. For example y[4] can 

typically be a factor of over 100 less than y[l]. The scale factor is chosen for the 

maximum range of Y and this may result in y[4] being evaluated as zero. If y[4] 

is zero then a[4] y[4]/u[4,4] will be zero. a[4] being zero makes the calculation 

of the rest of the A values dependent on just the first three columns of the upper 
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triangular matrix whose round off errors are likely to be less than that of the 4th 

column because they are calculated earlier in the process. Therefore the chance 

of an overflow error is decreased. 
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Using the results of the error analysis (figure 5.16) the benefit curves derived from 

(5.1) are shown in figure 5.18 for different weights applied to Wf,,, and Wf,. The 

LU curve shows a sharp transition to increased benefit at the word-length of 16 

bits at which overflow ceases. Parts (a) and (c) of the figures show very similar 

results demonstrating that the percentage error in fb has the main effect on the 

benefit curve in (a) which puts equal weight on the determination of f, and fb. 
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5.3.10 Cost/Benefit Results 

The cost/benefit criterion is simply defined as cost divided by benefit. Figure 

5.19 shows cost/benefit functions run for different weights on the calculation of 

mean frequency (Wf,,., ) and bandwidth (Wf, ). 
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The minimum values of the cost/benefit curves give optimal word-lengths. The 

Cholesky decomposition array is the best method since it shows the lowest mini- 

mum in each case. If f, and fb estimation accuracy are both considered equally 

important then the plots of figures 5.19(a) and (b) should be considered. The 

minimum of the Cholesky curve occurs at a word-length of 12 bits for both the 

word-parallel and bit-serial approaches. At greater word-lengths than this the 

computational complexity becomes so great that the cost of this outweighs the 

extra benefit in the increased accuracy of results. The opposite is true at word- 

lengths lower than 12 bits in that the reduced cost due to the decreased usage 

of silicon area is outweighed by the large errors apparent at these word-lengths. 

The LU decomposition curve follows the shape of the Cholesky curve from 16 

bits upwards but at slightly higher cost/benefit levels due to the greater cost of 

this method. The LU's minimum occurs at 16 bits, the effect of overflow at lower 

word-lengths leads to rapid increase. 

It may be desirable just to estimate f, by itself. The cost/benefit curves for 

these cases are shown in figures 5.19(c) and (d) for word-parallel and bit-serial 

approaches respectively. The Cholesky method is again the best choice when the 

interest is in f, only (Wf,,, = 1, Wf, = 0) but this time the minimum occurs at 10 

bits for both approaches so less computational complexity is needed for accurate 

estimation of f, alone. 

The last of the plots in figures 5.19(e) and (f) are for estimation of only bandwidth 

(Wf, =0 and Wf, = 1). Once again Cholesky is the method of choice. The curves 

have their minimum at 12 bits and are very similar in shape to the curves with 

the equal weighting in (a) and (b). Hence it can be deduced that the bandwidth 

calculation is the dominant factor there. 

Cholesky decomposition with 12 bit word-length is therefore determined as op- 

timal for most weight combinations with the bit- serial approach displaying the 

minimum cost/benefit results 
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5.4 Matrix Element Calculation Error Analysis 
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Chapter 3 concludes that the cost and performance of the PMA array, shown 

in figure 3.18, as optimal from the four designs proposed. Each of the matrix 

elements computed in a particular PE of the PMA array are sent to the same 

PE input port of the Cholesky decomposition array so any reordering required is 

a simple multiplexing task. By performing the multiply accumulate operations 

at double precision the accumulation error which arises from the truncation of 

individual products is kept as low as possible. For example a 10 bit quantised 

simulated Doppler signal would produce a 20 bit product. The cost/benefit anal- 

ysis of the decomposition stage shows that the Cholesky process requires its input 

to be 10 or 12 bits and so the least significant 10 or 8 bits of the c[j, k] values 

should be discarded. 

5.4.1 Method of Error Analysis 

Error analysis allows a suitable input word-length to be chosen for this estimator. 

The error analysis described in this section is carried out using Matlab. The input 

data used here is the same as that used for the decomposition error analysis. The 

distribution of the errors produced by 10 and 12 bit quantising of the simulated 

input Doppler signal in the elements of matrix C can be calculated by comparison 

with the high precision floating point case. 

5.4.2 Results of Error Analysis 

Histograms of the errors produced in the first five elements of C are shown in 

figure 5.20. The first 5 elements only are discussed because c[l, 1] and c[2,21 give 

similar distributions to c[O, 0] - 
This is also true for the pair of elements c[2,1], 

c[1,0] and also for c[3,1] and c[2,0]. It can be deduced from this that the error 
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distribution is dependent upon the auto- correlation function of the covariance 

matrix. The histograms resemble normal distributions with zero mean. The 

standard deviation of each of the 12 bit distributions is approximately one quarter 

that of the corresponding 10 bit distributions. This pattern is repeated for every 

2 bit increase in bus width. 

The error in the output of the matrix element generator is ideally less than that 

associated with the truncation in the input words of the Cholesky module. This 

truncation error is equal to the scale factor introduced in the matrix element input 

and is either 16 or 64 depending on whether f, or fb estimation is required. The 

errors introduced into the covariance matrix elements by quantising the input 

Doppler signal to 10 or more bits are sufficiently low to avoid introducing signif- 

icant extra error into the Cholesky decomposition stage, leading to the choice of 

10 bit quantisation. 
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5.5 Concluding Remarks 

The Cholesky [1,1,1] and LU [1,0,0] decomposition designs for the solution of 

the set of linear equations were compared. For simulation and eventual implemen- 

tation a pseudo floating point format scheme which introduced scale factors was 
developed for each of the systolic arrays. This was done to increase the dynamic 

range of the system over a standard fixed point scheme, without the extra cost 

involved in the normalisation circuitry of a floating point scheme. A cost/benefit 

analysis was developed to aid in the selection of the best process and its optimal 

word-length. 

Unlike the cost analysis of the previous chapter where the hardware usage of 

the individual decomposition systolic arrays were compared to each other, this 

chapter extended the cost function to consider the effect of integrating the optimal 

Cholesky and LU decomposition systolic arrays into the overall system. 

Data dependence graph methods were once again utilised to derive regrouping 

networks which were necessary to match the 1/0 data flows in the LU system to 

the output of the PMA array and input to the triangular solvers. The regrouping 

and reordering of data substantially increased the LU system cost above that of 

the integrated Cholesky system where only reordering was required. The trian- 

gular system solver arrays were redesigned to eliminate the regrouping required 

on the LU array output but the subsequent increase in the number of dividers in 

the modified back substitution array cancelled out this advantage. 

Communication was also brought weighted into the cost function by considering 

implementation on FPGAs, but, despite the Cholesky array having a greater PE 

interconnection burden, the overall system cost in the LU system was still the 

highest in both bit-serial and word-parallel approaches. 
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Verilog HDL simulation was used to perform an error analysis which showed the 

occurrence of overflow errors in the LU architecture with bus widths up to 14 bits 

to have a very detrimental effect on its accuracy. The Cholesky decomposition 

process showed good numerical stability for all the signal cases with finite-word 

length rounding errors becoming significant when reducing the word-length to 8 

bits. 

Using the cost and error results a cost/benefit analysis was developed. Different 

weighting was applied to the cost/benefit criterion according to the application 

of the spectral estimator. For estimation of mean frequency alone a 10 bit bus 

width was found to be sufficient when using Cholesky decomposition. Increased 

precision was required for the bandwidth calculation, the optimal word-length for 

this calculation was determined to be 12 bits. 

With regard to computation of the covariance matrix elements an error anal- 

ysis based on double precision inner product accumulation was performed on 

the PMA array. The results of this determined that 10 bit quantisation of the 

sampled input Doppler signal was sufficient to supply a 10 or 12 bit word-length 

Cholesky systolic array without significantly affecting the previous decomposition 

cost/benefit analysis. 
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5.5.1 Overall Design of the p--4 Spectral Estimator 
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The systolic computation system for the fixed model order p-4 spectral esti- 

mator which results from the design and analysis presented in chapters 3,4 and 

5 of this thesis is shown in figure 5.21. The entire bit-serial systolic array system 

hardware cost, excluding cost of control circuitry and weighted communication, 

is approximately 24000 NAND gates. An example for mounting the system onto 

four various sized Xilinx 3100 series FPGAs, given the high utilisation which is 

achievable when implementing bit-serial modules onto these devices, is also shown 

in the figure. 
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Figure 5.21: Overall systolic computation system for the fixed model order p- 
4 Modified Covariance spectral estimator. An example for implementation on 
Xilinx FPGAs is given with modules lying on the same shaded backdrop to be 

mounted on a single device. 



Chapter 6 

Programmable Model Order 
Matrix Element Calculation 

6.1 Introduction 

The optimum order of an autoregressive spectral estimator depends on the input 

signal and the application for which it is used. It is sometimes desirable to use 

adaptive spectral estimation for analysis of different properties of the blood flow 

other than mean frequency and bandwidth on non-stationary input signals which 

necessitates the need for selectable model order [130]. Too low an order gives 

poor spectral resolution and too high an order leads to spurious spectral peaks. 

A Modified Covariance spectral estimator for use with a range of input signals 

and for analysis of different characteristics derived from spectral shape should 

have a selectable model order up to p= 30. 

The systolic arrays previously discussed are termed problem size dependent since 

the number of processors is dependent on the model order or dimension of the 

problem in hand, e. g. the PMA array of figure 3.18 requires p+1 PEs. Analysis, 

based on the input sampling frequency of the Doppler signal and typical PE 

bit-serial operational lags reveals that the model order PMA array, chosen as 

optimal for model order p -- 4 estimation, exploits the inherent parallelism and 

recursiveness of the matrix element calculation to such a high extent that data 
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can be processed at 10 times the required maximum frequency (section 3-5). 

Maximum use of processing potential is therefore not being made and extension 

of the PMA array to p+ I PEs for higher model order problems, not only increases 
hardware costs, but also linearly increases the amount of unused processor time 

since, for equal word length, each PE is only required to do the same amount of 

work as a PE of the p=4 array on each clock cycle. 

Hence, there is scope to reuse the spare processor time when computing more 

complex problems, such as those encountered in higher model order spectral esti- 

mation, so that the size of the array in terms of the number of PEs comes down 

to being determined by the classic time versus area trade off. Such a route to the 

design of systolic arrays is termed the problem size independent approach where 

problems of various dimension can be mapped onto fixed sized systolic arrays. 

Partitioning of the algorithms for computation on systolic arrays smaller than 

those produced by straightforward DDG projection is essential to keep hardware 

costs at acceptable levels and to maximise processor potential [28][98]. 

This chapter builds on the design concepts introduced in the chapter 3, devel- 

oping the DDGs using a partitioning technique to explore the design of feasible 

problem size independent systolic arrays for the matrix element calculation in a 

programmable model order Modified Covariance spectral estimator. This basis 

of the partitioning technique comes from the observation that data has to be in- 

terleaved with zeroes in arrays with bi-directional data flow, such as the tri-linear 

array (section 3.3.2). It is generally well known that this allows computations 

to be interleaved [82] and this concept is exploited here to effectively merge the 

operations of two or more PEs in a problem size dependent systolic array into a 

single PE. The problem size independent route taken in this chapter leads to the 

design of mor! -- efficient systolic arrays for the covariance matrix element calcula- 

tion in comparison with those of the tri-linear and bi-linear systolic arrays, which 

remove the zero interleaving by DDG splitting (section 3.3.3). 
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6.2 A Comparison of Problem Size Dependent Systolic 
Array Costs for High Model Order Problems 

In chapter 3 the PMA design was chosen as optimal for use in the matrix element 

calculation in the model order p=4 spectral estimator. However the costs of 

implementing this and the other arrays presented at higher model order were not 

discussed. 

The problem size dependent systolic array approach of chapter 3 can be extended 

to design fixed model order arrays for higher model order problems. This allows 

the costs of high model order problem size dependent systolic arrays to be com- 

pared and to reveal whether or not the PMA type array remains as optimal. 

The reason for making this comparison is that the DDG behind the most cost 

efficient high model order problem size dependent array is likely to yield the best 

problem size independent systolic array when further partitioning is discussed. 

The relative costs of the tri-linear, bi-linear and PMA type arrays derived in 

chapter 3 and used for the calculation of the matrix elements in high model or- 

der Modified Covariance estimation are therefore discussed in this section. The 

2-dimensional array is not given any further consideration due to its relatively 

poor initial performance in the model order p=4 problem. 

6.2.1 Multi-linear Array Method 

The ideas used in the design of the tri-linear systolic array can be extended to 

higher -model orders. For a model order of p an equivalent DDG design process 

would result in -P +1 linear systolic arrays ranging in length from p+1 PEs to 
2 

a single PE. High model order systolic arrays designed using this method are 

therefore referred to as multi-linear and in total, (E + 1)2 multiplier PEs would be 
2 

required. As the model order of such a system is increased the deficiencies associ- 

ated with this type of design become more pronounced. The main problem with 
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Figure 6.1: Problem size dependent systolic array for model order p=6 multi- 
linear array based on the design of the p=4 tri-linear array in section 3.3.2. 

this design is that of repeated multiplications. As the model order is increased 
by two an extra linear array containing p+1 PEs is added. The multiplications 

performed in this array are also computed in the shorter linear arrays and so ef- 
ficiency is further decreased. Figure 6.1 illustrates the multi-linear systolic array 
for the p=6 estimation problem. 7 extra PEs are required in comparison with 

the tri-linear array of figure 3.11, the overall design therefore requiring a total of 

16 PEs. Multiplications performed in the 1,3, and 5 element systolic arrays are 

all repeated in the 7 PE linear systolic array. 

6.2.2 Bi-linear Array Method 

Using the bi-linear design method for the general model order p still results in the 

formation of two linear systolic arrays. Their lengths are P- +I and P- PEs giving 22 

a total of p+I PEs so two extra PEs are required for ap=6 bi-linear design 

over the p=4 version (figure 3.13). However, in this approach the size of the 

sorting PE is proportional to the model order as a greater number of words need 

to be stored, requiring 2p +3 double precision registers in total. For example 

the model order p -- 4 sorter PE requires 11 registers (figure 3.14) compared to 

a total of 15 in the p-6 sorter PE (figure 6.2). Since these 2p +3 registers are 

included in each of the p+ I PEs of the systolic array then ap2 term is introduced 
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Figure 6.2: Sorting PE design for the p=6 bi-linear array, where a total of 
2p +3- 15 double precision word registers are required. 

into the cost function and dominates at higher model orders, again leading to a 
design which is expensive to implement. 

6.2.3 PMA Array Method 

Partitioning the high model order problem into separate multiplication and ac- 

cumulation DDGs also results in two linear systolic arrays of length F- +1 and 2 

P- PEs similar to the bi-linear design. The processor architecture differs however 2 

in that number of double precision registers in the accumulator feedback loop is 
P- +I and this also brings the p2 term into the cost function. The clock speed 2 

required in the accumulator feedback registers also is dependent on the model 

order and is increased to (E + 1). f, 2 

6.2.4 Cost Comparison 

The relative costs of the multi-linear, bi-linear and PMA systolic array designs can 

be compared for various models orders while keeping the word-length constant. 

Table 6.1 details the cost of these arrays as a function of the model order p. The 

information gathered from the table is used in conjunction with the data collected 

in tables 3.1 and 3.2 to produce the plots of cost versus model order for a fixed 

word length of w- 16 bits presented in figure 6.3. A longer word-length is used 

as high model order systems require greater accuracy and longer word-length due 

to ill- conditioning tendencies of the decomposition processes. 
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w bit module number of modules used in the systolic arrays 
multi-linýar linear PMA 

addition (d) (p/2 + 1)2 2(p + 1) (P + 1) 
subtraction (d) 0 (P + 1) 0 
multiplication (p/2 + 1)2 (P + 1) (P + 1) 

register 2(p/2 + 1)2 2(p + 1) 2(p + 1) 
register (d) (p/2 + 1)2 (2p + 4)(p + 1) (p/2 + 2)(p + 1) 
multiplex p/2 0 0 
multiplex (d) (p/2 + 1)2 P(P + 1) 2(p + 1) 

Table 6.1: Hardware usage for systolic arrays in terms of module usage. 

The high costs incurred by the problem size dependent arrays (figure 6-3) may be 

further increased due to the requirement of longer word-length, if the large order 

covariance linear system of equations becomes 111- conditioned. Partitioning onto 

problem size independent systolic arrays can be used to lower the costs below 

those of the problem size dependent systolic arrays and thus improve the overall 

efficiency of the array. In the word-parallel approach the bi-linear design displays 

lower cost than the multi-linear design while the opposite is true in the bit-serial 

implementation. The problem size dependent PMA arrays display substantially 

lower costs in both bit-serial and word-parallel approaches than either of the 

other two types of array throughout the range of model order. It therefore seems 

reasonable to assume that further partitioning of the PMA DDGs produces the 

most effective problem size independent systolic arrays and optimisation of this 

design is described in the remainder of this chapter. 
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Figure 6.3: Cost for (a) word parallel and (b) bit-serial approaches in terms of 

model order p for a fixed word-length of w - 16 bits. 
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6.3 High Model Order PMA Array Redesign 

The above discussion shows that it is not feasible to continue extending the size 
of the PMA type systolic array proposed for the matrix element calculation when 
considering the solution of high model order problems. A partitioning scheme is 

therefore necessary to maximise the potential of the array PEs. 

6.3.1 Partitioning the p=6 Multiplication DDG 

When using the PMA method the multiplication processes are initially parti- 

tioned from the accumulations. Further partitioning of the multiplication DDG 

is considered in this section by looking at the p=6 matrix element calculation. 

The DDG drawn in figure 6.4 performs the multiplications necessary for the 

matrix element calculation in the p=6 Modified Covariance spectral estimator. 

Input data x[n) and x[n - (3 - k)] are respectively globally transmitted along 

columns and diagonals of the graph. Each node forms and stores internally the 

product of these two x inputs. The graph could be partitioned using the split 

DDG initially introduced for the design of the bi-linear array in section 3.3-3. 

Projection in the n direction would then produce 2 linear systolic arrays of length 

3 and 4 PEs. A different approach to partitioning is considered here however. 

The approach taken here is to group together rows of the DDG and then consider 

the mapping of each group of rows into a single PE. The DDG shown in figure 6.4 

is partitioned into 4 groups, each containing 2 rows. The partitioning is indicated 

by the dashed horizontal lines across the graph and the size of the partition is 

referred to as s, i. e. s=2. An extra row of nodes with dotted circumference are 

added to the bottom of the DDG in the (i - k) =7 position to fill out the last 

partition. These are don't care operations and may be programmed as desired. 
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Figure 6.4: DDG for multiplications in the p=6 matrix element calculation. 

The timing function applied to the DDG must take into account that any node 

within a partition should be processed within its own exclusive clock cycle since all 

nodes within a specific partition are mapped into a single PE. The task scheduling, 

based on a systolic clock running at 2f, indicated by the internal node numbering 

is: 

t =p-(j - k)+s. n+s -rem 
P+ (6.1) (S 

where rem is the remainder function used in the calculation of the number of 

extra rows used to fill the last partition which in this case is 1. When considering 

the DDG projection into a systolic array the DDG of figure 6.4 can be separated 

into s separate graphs, the first made up from rows (J - k) = 0, s, 2s, .... the 

second from rows (J - k) = 1,1 + s, 1+ 2s,... and so on. The s=2 partition 

therefore produces two graphs the first made from -the even rows and the other 

graph the odd rows as illustrated in figure 6.5. 
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(A) Systolic Array Formed by Projection of the Partitioned Multiplication DDG 

Projection of the separated DDGs in figure 6.5 results in linear systolic arrays 

of length 4 PEs. Due to the timing function two systolic delays are required on 

each PE interconnection bus. Since there are already unit systolic word delays 

internally on the PE inputs (figure 3.17 shows the PE layout) then one extra 

register is needed on each interconnection bus. The construction of each of the 

two arrays is exactly the same, the only difference is in the timing of the input 

data. The external inputs x[n] to pe[O] and pe[3] are scheduled at t= 2n +7 and 

t -- 2n +1 respectively for the array in part (a) of the figure. For the systolic 

array in figure 6.5(b) x[n] is input to pe[O] at t= 2n +8 and to pe[3] at t= 2n. 

Each array processes data on alterate clock cycles to the other and therefore they 

can be merged into a single array whose input scheduling is derived by combining 

the input timings of the constituent arrays. The clock frequency of the array is 

sj, = 2f., since the data input changes once in every two clock cycles, e. g. x[O] 

is clocked into Pe[3] at t=0, t=I and x[I] is input on the next two cycles. 

Combining the Partitioned Multiplication and Accumulation Systolic Arrays 

A total of p+I=7 accumulation DDGs can be derived for the p=6 matrix 

element using a similar procedure as in the formation of the DDGs for the p=4 

problem in figure 3.15. The DDG for the calculation of c[O, 0], c[l, 1], c[2,2] and 

c[3,3] is formed from 4 rows and therefore the multi-projection of this graph re- 

sults in a systolic PE which has 4 word delays in the feedback loop. Now since 

each multiplication PE alternately outputs products relating to two of the ac- 

cumulation DDGs then the number of word delays in the accumulator feedback 

loop can be extended to 8. The clock frequency of these feedback registers is 

(2 + 8f, The merged PMA array for the p=6 matrix element calcu- 
2 

lation partitioned using s=2 is shown in figure 6.6. 
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Figure 6-6: (a) PMA systolic array for computation of covariance matrix ele- 
ments in the p=6 estimator using partitions of size s=2 (feedback registers 
clocked at 8f, inter- connection and internal PE registers clocked at 2f, ). For PE 
configuration see figure 3.18(b). 

6.3.2 Partitioning the p=6 Multiplication DDG using s=3 

Bigger partitions can be applied to the multiplication DDG to increase the level 

of pipelining in the systolic array while reducing the degree of parallelism. Par- 

titioning the DDG into groups of s=3 rows is shown in figure 6.7. The timing 

function derived from (6.1) allows each node within a particular partition to op- 

erate on an exclusive clock cycle. The DDG can be split into 3 separate graphs 

to indicate three phases of operation. The first graph contains rows with k) 

coordinates 0,31 6, the second has rows k) =1,4,7 and the last graph is 

constructed from rows (3 - k) = 2,5 and 8. Each can be projected into a systolic 

array with pipeline word delays of 3 in the inter-PE connections. The three ar- 

rays can be merged into one array whose overall input scheduling may be derived 

from the information given in the three separate DDGs. The clock frequency of 

this array is 3f, The total number of systolic word registers in the accumulation 

feedback loop is increased to 12 and these registers must be clocked at 12f, The 

systolic array produced by the s=3 partitioning of the p=6 matrix element 

calculation is shown in figure 6.8. The input stream to the right hand side can 

be derived from the x[n] data travelling from left to right using a multiplexor to 

select between different register outputs of this bus. 
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ments in the p =: 6 estimator using partitions of size s=3 (feedback registers 

clocked at 12f, inter- connection and internal PE registers clocked at 3f, ). For 

PE configuration see figure 3.18(b). 
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6.4 Selection of the Optimal Partition 

6.4.1 Hardware Cost Analysis 

The PMA array partitioning techniques demonstrated in the previous section 

can be applied to a range of different model order problems. The cost function in 

table 6.2 details the cost of the average PE in a model order p PMA type array 

with partition size s. 

w bit module 1 number of modules used 1 

accumulation PE multiplication PRT Merged PE 
addition (d) 1 0 
multiplication 0 1 
register 0 2s 2s 
register (d) s. p12 +s+1 0 s. p12 +s+ 
multiplex (d) 2 0 2 

Table 6.2: Hardware usage for PMA array PE in terms of module usage. 

The total cost of the array in terms of modules is calculated from the product of 

the merged PE cost with the number of PEs in the array which is given by: 

NPE = CCZ*l (6.2) 

where the ceil function is used to round to the nearest integer towards infinity. 

The NAND gate usage is obtained in conjunction with the information used to 

derive the cost functions in chapter 3. 

The results of the cost analysis versus partition size s are shown in figure 6.9 

for model orders p from 4 to 30 in steps of 2 and for both word-parallel and 

bit-serial approaches. The results are based on a longer word-length of 16 bits 

which allows greater accuracy for the determination of the more ill-conditioned 

matrices likely to occur at high model order. At the small partition sizes the cost 

of the multiplication dominates in the word-parallel approach more so than in 

the bit-serial approach. This is due to the large number of PEs required from 
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mapping using small sized partitions. For example when s=Ia total of 31 PEs 

are needed for ap= 30 problem. As the size of the partition increases then 

the number of PEs decreases and the dominant cost is that of the systolic word 

registers. Since the overall number of these registers is the same for both types 

of approach then the curves for word-parallel and bit-serial approaches converge 

to each other as the partition size is increased. 

On each of the plots in figure 6.9 a number of localised maxima and minima occur. 
For example on both of the p= 30 plots minima occur at s =8,11,16 and 31 

and maxima occur at s =10,15,30. Within the intervals from s =8 to 10,11 to 

15 and 16 to 30 the PMA array produced by the partitions consists of 4,3 and 2 

PEs respectively. The reason for increase in cost with s in these localised regions 

is due to processor redundancy. The DDGs in figures 6.4 and 6.7 show the use of 

extra rows of don't care nodes to fill out the partitions. To maximise efficiency 

when mapping into a certain number of PEs the number of extra rows of don't 

care nodes should be kept to minimum as in the case of the s =8,11,16 and 31 

partitions of the p= 30 curves. To demonstrate this when mapping into 4 PEs, 

partitions of size s =8,9 and 10 produce DDGs with 1,5 and 9 rows of the don't 

care nodes, leading to selection of the s =8 partition. The larger partitions at 

5 x 10 

U) 

0) 
C 

z 
z 
U) 
0 
0 

0 
-D 
0 
3 

2x 
10 

1.8- 

1.6 - 

a) 1.4- 
0 
z 

z 

p-30 00 

P=20 4) 0. 

P-10 
1 0. 

p-4 0 

P-30 

p=20 

P=10 

p-4 

Figure 6-9: Cost for (a) word parallel and (b) bit-serial approaches versus parti- 
tion size s for various model order p (lower curve corresponds to p=4 and for 

each consecutive curve moving up the graphs p is increased by 2 until the top 

curve where p= 30) for a fixed word-length of w= 16 bits. 

13579 11 13 15 17 19 21 23 25 V Z9 31 
size of partition s 

(b) 
13579 11 13 15 17 19 21 23 25 27 Z9 31 

size of parlition s 

(a) 



Chapter 6- Programmable Model Order - Matrix Element Calculation 187 

s =9 and 10, which display greater cost due to the number of PEs remaining the 

same and the fact that the number of systolic word registers is proportional to 

partition size as detailed in table 6.2, should therefore be avoided. The partition 

sizes from s -- 12 to 15,17 to 30 should likewise be disregarded. In the bit-serial 

approach when using as= 30 partition in the p= 30 problem the total cost 
turns out to be much higher than the array cost without partitioning, i. e. when 

s=1, and so there would be no point in perusing such a scheme. Note the 

sharp decreases in cost when moving from maximum to minimum points which 

are caused by reduction in the number of systolic arrays PEs. 

The graphs of figure 6.9 with the inefficient partitions removed are shown in figure 

6.10 to show Just the optimal partition sizes when mapping into a number of PEs. 

1n general the cost tends to decrease with bigger partition sizes, but there are 

some exceptions to this for a few of the model orders. For example, in the p= 30 

implementations the number of systolic registers in the s -- 5 partitioned array 

which contains 7 PEs is greater than for the 8 PE array produced by the s=4 

partition because there are 4 rows of don't care nodes in the DDG of the former 

as opposed to I row in that of the latter. The don't care nodes lead to the end 

PE of the array carrying redundant registers resulting in poorer cost efficiency. 
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tion size s for various model order p with conditions the same as in figure 6.9. Plot 

lines are used to connect between the optimal partition size points of problems 

with equal model order and do not refer to costs of the inefficient partitions. 
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A different way of viewing the cost is in terms of the number of PEs as shown 

in figure 6.11. The general trend of the curves shows a decrease in cost for 

the smaller arrays. The steeper gradients of the word-parallel curves show that 

partitioning is more beneficial in this approach than in the bit-serial equivalents 

where the effect is very subtle. The points on each of the curves indicate where 

efficient mapping into a certain number of PEs is possible. So for example, all 

of the model orders can be efficiently mapped into 1 or 2 PEs whereas an array 

containing 5 PEs can only efficiently process model orders p=4,8,12,14,16, 

18) 207 22) 24,26,28 and 30 problems. However note that problems of model 

order p-6 and 10 may still be performed on a PMA array of 5 PEs but with 

less cost effectiveness. 
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Figure 6.11: Cost for (a) word parallel and (b) bit-serial approaches versus num- 
ber of PEs for various even model order p from 4 to 30. Only the optimal partition 

sizes, indicated by the points, are included as in figure 6.10 

6.4.2 Timing Considerations 

One of the effects of partitioning the PMA design is to increase the number of 

clock cycles required for complete solutlon. The total number of clock cycles 

for the multiplication operations can be derived with the use of (6.1) given that 

whatever the model order or size of partition the last multiplication takes place 

in the node with coordinates (j - k) - 0, n=N-1 as can be seen in figure 6.4. 
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This leads to the timing function: 

ttotal= p+s. N - rem 
P+l) (6.3) 

(s 

As with the hardware cost functions the execution time can be examined as a 
function of partition size as in figure 6.12. The input data window length used is 
N= 256 and all even model orders from p=4 to 30 in steps of 2 are included. 
The product s. N dominates the shape of the plots and overlap makes it difficult 

to distinguish one model order curve from another. Hence there is a close to linear 

relationship between the increase in the total number number of clock cycles and 
the size of partition when the product s. N >p as is the case here. 

U, 
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Figure 6.12: Total execution time for optimal PMA array mappings of even model 
orders from p=4 to 30 versus partition size s. 

As with the cost analysis, the results can also be viewed in terms of the number of 

PEs as illustrated by figure 6.13. The plot clearly demonstrates the disadvantage 

of mapping into small systolic arrays as massive increases in the number of clock 

cycles required are observed when reducing the size of the array to a few PEs. 

If the time length of the data window and model order p remain fixed when 

considering mapping into PMA arrays of various length the allowable PE latency 

becomes less for smaller arrays. Therefore smaller systolic arrays require highly 

specified PE arithmetic modules. 
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Figure 6.13: Total execution time for optimal PMA array mappings of model 
orders p=4,10,20 and 30 versus number of PEs. 

The performance requirement of a processor can be determined by considering 

the number of operations required within the sampling period of the input data 

T, for a given sized partition. The DDGs in figures 6.4 and 6.7 show that 

the number of multiplications required within T, is equal to the partition size s 

when the sampled input data considered is the input x[n] to the lower row of the 

graph. Hence if register propagation time is assumed negligible, multiplication 

operation within the PEs of the PMA array is limited to: 

TMUZ < 
TS (6.4) 
S 

or 

T"U1 < (6.5) 
S. fS 

The accumulation operations are pipelined with the multiplication operation and 

need to be clocked at a higher rate than the multiplication array systolic fre- 

quency. Addition takes less time than multiplication but nevertheless the accu- 

mulation lag becomes the important factor when high model orders are considered 

due to a dependency upon p: 

Tadd <2 (6-6) 
(p + 2). s. f, 

-13579 11 13 15 17 19 21 23 25 27 29 31 
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6.4.3 Design of a Programmable Array 

The previous sections show that the design of a programmable model order PMA 
type array is affected by the following inter-related factors: 

" programmable range of model orders 

" partition size 

" number of available PEs 

maximum sampling frequency of the input data 

type of approach - word-parallel or bit-serial 

performance of underlying hardware 

Many options are therefore available to the designer. Ultimately the size of the 

array is determined by highest model order problem which needs to be processed 

since this presents the largest cost. It is therefore important to concentrate ini- 

tially on a cost efficient solution to this problem and then go on to consider the 

modifications which need to be performed in order to solve problems with lower 

model orders. 

Say, for example, that model order p -- 30 is the highest that needs to be pro- 

cessed. The size of partition s should then be chosen so that the p- 30 DDG 

can be efficiently mapped into a number of PEs. Efficient partitions are shown 

on the plots in figures 6.10 and 6.11. The partition size must be such that (6.5) 

and (6.6), which determine the maximum allowable processing delays of the PE 

arithmetic modules when input data is sampled at its maximum frequency, are 

both satisfied. These timing constraints are in turn dependent upon the type of 

approach followed, the design of the arithmetic modules and the technology used 

for hardware implementation. 
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Bit-serial arithmetic modules are likely to be slower than their word-parallel 

equivalents when implemented with the same technology, e. g. full custom CMOS 

or FPGA's. With the increased ill- conditioning of a model order p- 30 problem 

it may be necessary to perform the matrix element calculation at long word- 
lengths in order to keep the error in the output of the decomposition stage at an 

acceptable level. An error analysis such as that discussed in chapter 5 could be 

used to determine the necessary word-length. 

The previous analysis shows that cost is reduced when the size of the partition 
is increased. The aim is therefore to map the p- 30 problem using the largest 

possible partition and thus the minimum number of PEs while bearing in mind 

the timing constraints (6.5) and (6.6). The large model order may lead to the 

partition size being constrained by accumulation (6.6) rather than multiplication 

(6.5). If the partition sizes resulting from the timing analysis are deemed to be 

inefficient, that is a point not lying on the p= 30 curve of figure 6.10, then the 

next lowest efficient partition lying on the curve should be chosen. Maximum 

partition sizes in the bit-serial approach are more limited than those of the word- 

parallel approach due to the longer latency of bit-serial arithmetic modules. This 

leads to a choice between a word-parallel array which may contain just a small 

number of PEs and a bit-serial arrays of perhaps more than double this size. 

(A) Word-Parallel Xilinx Implementation Example 

The implementation of the problem size independent systolic array is best demon- 

strated with an example. Continuing with the theme of chapter 5 which consid- 

ered the costs of Xilinx FPGA implementation, the FPGA route is considered 

again here in order to obtain some typical performance timing characteristics of 

multiplication and addition modules. Figure 6.14 shows a possible Xilinx XC3164- 

5 layout for the word-parallel version of the 3 by 3 bit multiplier from figure 3.19 

(note that in order to minimise the diagonal sum path delays the Xilinx layout 
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Figure 6.14: (a) Xilinx layout of the 3 bit two's complement word-parallel mul- 
tiplier of figure 3.19 (b) mode 0 configuration of CLBs BB, BC, CB, CD, CE, 
DB, DD, DE, (c) mode I configuration of CLBs BD, BE, CC and DC. 

is laterally inverted compared to the DDG representation so that FPGA CLBs 

BE, CE and DE correspond to node[O, 2], node[O, 1] and node[O, 0]) which was 

directly configured using the XACT Design Editor (XDE) [131]. 

Use of the Xilinx XDelay timing analysis program shows that there the worst 

case ripple through path delay of the multiplier is from the inputs of CLB DE 

to the output p. 5 of CLB BB and is equal to 38. Ons. The path can be broken up 

over 8 block levels as shown in table 6.3. The direct CLB interconnections, which 

produce 0.5ns delay, are utilised for the carry nets so that, given a CLB delay 

of 4. Ins, the CLB/carry net delays (e. g. from DD. C --4 DD. X --+ DC. C) total 

4.6ns. Other indirect routeing resources must be utilised for the diagonal sum 

nets and these paths carry a longer 1.1ns delay so that the combined CLB/sum 

net delay (e. g. is DB. C -+ DB. Y --ý CC. D) is 5.2ns. These results can be used 

From DE. C I DD. C I DC. C I b-B-. C-T-CC. D CB. C I BC. D I BB. C 

Tri 
11 

DD. 0 DC. C DB. C CC. D I CB. C 
I 

BC. D BB. C BB. Y 

Local Delay (ns) 4.6 4.6 4.6 5.2 4.6 5.2 4.6 4.6 

Cumulative Delay (ns) 4.6 9.2 13.8 19.0 23.6 28.8 33.4 38.0 

Table 6-3: Xilinx word-parallel 3 bit multiplier maximum delays. 
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to calculate the lag of a general input word-length multiplier since for the w=3 
bit version there are 2w -6 CLB/carry net delays and w-I -- 2 CLB/surn net 
delays leading to a lag in ns of: 

T,,, l = 4.6(2w) + 5.2(w - 1) + 20 = 14.4w + 14.8 (6.7) 

for aw by w bit multiplier, where the extra 20ns allows for the setup time of 

the input data from the systolic registers and the time to store the product. 

Therefore when considering w= 16 bits as used for the results in figure 6.10 the 

multiplication time is estimated to be -, 250ns. 

A similar approach can be used to calculate the total delay of the Xilinx ripple 

through adder circuit shown in figure 6.15. The total worst case delay in the 

adder is from the inputs of CLB BG to the output port BB. X totals 27.6ns, that 

is 6 CLB/carry net (direct interconnect) delays of 4.6ns. Therefore the lag in ns 

of a double precision addition is: 

Tacc= 4.6(2w) + 20 = 9.2w + 20 (6.8) 

where the extra 20 ns accounts for the setup delay and storage in the accumulation 

feedback registers directly connected to the output. Aw= 16 bit double precision 

addition therefore takes - 170ns. 
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Figure 6.15: (a) Xilinx layout of a double precision 2w bit word-parallel adder 

(b) CLB full-adder arrangement. 
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Now given that the highest sampling frequency of the Doppler signal is f,, --51.2kHz 
then from (6.5) the constraint on the partition size imposed by the multiplication 
lag T,, l = 250ns is s< 78.1. Hence when considering ap -- 30 estimation the 

maximum efficient partition size s= 31 O-e. a single PE array) would be most 

efficient as can be seen by considering figure 6.10(a). However, at the high model 

order of p= 30, the accumulation sets a tighter constraint than multiplication 

as from (6.6) and figure 6.10(a) the maximum partition size is s -- 7 given that 

a double precision addition takes 170ns. From figures 6.10(a) 6.11(a) the s=7 

partition gives a total array cost of -, 140000 NAND gates and requires 5 PEs. 

/D ) 
(Bj Bit-Serial Xilinx Implementation Example 

The Xilinx LCA configuration for the bit-serial 3 bit multiplier of figure 3.19(c), 

where each PE is configured into two CLBs, is shown in figure 6.16. The top 

row of CLBs control the mode of the operation (i. e. invert the bit-product when 

changing to mode 1 operation) and produce the bit-product. The lower row CLBs 

perform the full adder operations and the result product bits are piped out from 

CLB BB with the final bit p5 becoming available from this PE 4w -I= 11 clock 

pulses after the start of operation. 
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Figure 6.16: (a) Xilinx layout of the 3 bit two's complement bit-serIal multiplier 

(figure 3.19(c)), (b) configuration of CLBs AB, AC, AD, AE for bit-product 

computation and mode control (c) configuration of CLBs BB, BC, BD, BE 

which perform the full adder operations. 
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Using the XACT system timing analysis tool the lag associated with the maxi- 

mum path delay in the Xilinx implementation of the bit-serial PE is 14.6ns which 

allows a maximum clock speed of 68.4MHz. The design can easily be extended 

for longer word-lengths w which should also run at around 68.4MHz since the PE 

pipeline delay remains the same. Aw bit multiplication on the Xilinx bit-serial 

multiplier would therefore require a total operation time in ns of: 

T,,,, = 14.6(4w - 1) -- 58.4w - 14.6 (6.9) 

and for w= 16 bits the operation time --ý 920ns. 

The bit-serial addition module for a general word-length w consists of a single 

full adder type PE with carry feedback, which can be viewed as a projection of 

the word-parallel adder (figure 6.15) along its carry propagation direction. This 

is easily implemented in Xilinx using a single CLB configured as shown in figure 

6.17. The timing analysis tool reveals that the bit-serial adder has a lag of 12. Ins 

when locally connected within the FPGA and so can be clocked at frequencies up 

to 82.4MHz. The minimum time in ns of a double precision addition is therefore: 

Tadd 
=12.1(2w) = 24.2w (6.10) 

and a 16 bit double precision bit-serial addition therefore takes 390ns. The 

bounds set by (6.5) and (6.6) for the model order p= 30 problem with f' = 

51.2MHz determine that the maximum partition size of s=3, leading to an 11 

PE array, is once again constrained by accumulation. 
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Figure 6.17: Xilinx layout of a bit-serial adder. 
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Comparison of Xilinx Implementation Approaches 

Figure 6.18 plots the partition size bounds on s set by (6-5), (6.6) and the prop- 

agation. delays of the Xilinx word-parallel and bit-serial arithmetic modules for 

different estimators where p represents the maximum model order which needs to 

be computed. From these plots it is apparent that the limits set by accumulation 
determine the maximum possible partition size s as those set by multiplication 

which remain constant over the range of p are more lenient. This suggests a 

mismatch of resources in the arrays, resulting from the multiplication units not 

working as efficiently as they possibly could. Ideally the multiplication bound 

and addition bound would be equal, and this could be achieved by decreasing 

the speed of the multiplier or increasing the speed of the adder in each approach. 

A combined bit-serial/word-parallel approach could be taken where the bit-serial 

multiplier and word-parallel adder are used in the same system. Alternatively 

in the word-parallel implementation speed of word-parallel addition could be im- 

proved by using carry-lookahead logic (88] or with pipelining. 

The optimal partition sizes for the Xilinx word-parallel and bit-serial implemen- 

tations shown in figure 6.18 are determined by choosing the lowest cost optimal 
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Figure 6.18: Maximum partition bounds set by multiplication/ addition and 
the optimal partition size which should be used when considering a number of 
different problems, where p represents the maximum model order of each problem, 

in (a) word-parallel and (b) bit-serial approaches. 
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partition sizes from in figure 6.10 which are below the bounds set by addition 
time. This gives the total costs of the word-parallel and bit-serial arrays for 

each model order shown in figure 6.19(a) and also the selection of s allows the 

number of PEs in each array (figure 6.19(b)) to be calculated using (6-2). The 

bit-serial approach, despite requiring greater numbers of PEs, presents slightly 
lower costs when compared with word-parallel. The bit-serial approach also has a 
lower communication cost and can utilise the resources of the FPGA more effec- 

tively (see section 5.3.4) when compared with the word-parallel approach whose 

only advantage lies in its simpler control circuitry. Once maximum model order p 

and optimal partition size s are known then the number of systolic registers and 

accumulation feedback registers can be calculated with reference to the general 

architecture in figure 6.20. Given the optimal array for the maximum model or- 

der, programmability to lower model orders is achieved by simply having a unique 

set of accumulation control lines for each of the different model order covariance 

matrices that need to be computed. 

The costs of the problem size dependent systolic arrays (figure 6.3) can be com- 

pared with those of the problem size independent systolic arrays to show the 

advantage of the further partitioning proposed in this chapter. Figure 6.21 shows 

the costs of the problem size independent arrays relative to the costs of the prob- 
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Figure 6.19: (a) Optimal hardware costs of the problem size independent systolic 

array designs for the covariance matrix elements for estimators with maximum 

model order p, (b) optimal number of PEs in each array. 
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Figure 6.20: Generallsed data architecture for the PMA array partitioned to 
size s for model order p. Black boxes indicate first-in first-out systolic register 
delays which are required to store the number of words indicated by the internal 
labelling. Note that the PE feedback registers need to store words at double 
precision and RAM could be used to replace the FIFO register for large partitions 
and high model order. The PE configuration is given in figure 3.18(b) and the 
number of PEs is required is determined by (6.2). 

lem size dependent PMA arrays. Týe partitioning can be seen to be beneficial for 

all model orders in both approaches since the cost of all of the problem size in- 

dependent arrays are lower than equivalent arrays in the problem size dependent 

approach. The word-Parallel approach benefits the most as the new arrays are 

30% to 60% respectively of the cost of the problem size dependent arrays from the 

lower to upper model orders comparing to 60% to 90% in the bit-serial approach. 

This is because the partitioning is used to reduce the number of arithmetic mod- 

ules, which account for a higher proportion of the hardware cost compared to 

registers in the word-parallel approach than in the bit-serial approach and also 

because the faster speed of word-parallel arithmetic meant that the efficiency of 

the original problem size dependent arrays could be improved more. 
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Figure 6.21: Relative costs of the problem size independent arrays compared to 

the problem size dependent arrays. 
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6.5 Concluding Remarks 

This chapter has addressed the problem of mapping high model order matrix 

element calculations onto systolic array processors. Partitioning techniques were 

applied to the higher model order PMA type DDG designed systolic arrays in- 

troduced in chapter 3 in order to make the most efficient use of the processing 

potential of the PEs. Consequentially the partitioning was found to reduce the 

number of PEs required in the systolic array and although the number of systolic 

inter-PE and PE feedback registers was increased the effect of partitioning was 

shown to reduce the overall cost of the array. 

It was shown how programmability could be achieved by first designing an efficient 

array for solution of the highest required model order problem. The computation 

of lower model order covariance matrices could then be implemented on the same 

systolic array by simply changing the accumulation control sequence. 

In an example, which considered Xilinx FPGA implementation times of word- 

parallel and bit-serial arithmetic modules, the problem size independent design 

approach used in this chapter resulted in bit-serial arrays with slightly lower cost 

than the word parallel arrays of the same model order. However the partitioning 

was seen to be most beneficial in the word-parallel approach when comparing 

with arrays designed using the problem size dependent design methodology used 

in chapter 3. Cost effectiveness was also shown for the lower model order bit- 

serial arrays, as for example the gate usage for the 16 bit problem size dependent 

array was reduced from ^-ý 7900 NANDs to e-, j 4700 NANDs in the problem size 

independent approach. In terms of implementation on Xilinx FPGAs this means 

that the XC3190 can be replaced with the smaller XC3164 (see figure 5.13). 



Chapter 7 

Programmable Model Order 
Matrix Decomposition 

7.1 Introduction 

This chapter continues with the theme of the programmable model order Modified 

Covariance spectral estimator and considers problem size independent decompo- 

sition systolic arrays for use in the filter parameter computation hardware. An 

investigation into further partitioning of the Cholesky decomposition systolic ar- 

ray, thoroughly proven in the cost/benefit analysis of Chapter 5 to offer high 

cost effectiveness and numerical stability against the effects of finite word-length 

rounding in the model order p -- 4 estimator, results in the proposal of a novel 

spiral systolic architecture for Cholesky decomposition. 

The basis for the work described in this chapter is a spiral systolic array solution 

for LU decomposition designed using dense to band matrix and triangular block 

partitioning techniques by Navarro et al. [28]. This spiral systolic array and the 

design methodology behind it are first reviewed. A critical assessment reveals 

problems of subproblem chaining, ' bi- directional data flows and overall task/data 

scheduling in the spiral systolic LU array. DDG partitioning and reindexing 

methods are used to reconsider the design of an LU spiral systolic array showing 
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how the problems associated with Navarro's design can be overcome. By utilising 

redundant processing slots for array initialisation it is shown how consecutive 

subproblems can be merged to obtain minimal execution periods. It also demon- 

strates how first in, first out data register links around the array can be used for 

storage and rescheduling of L and U matrix elements, eliminating bi-direction 

data flows and the need for memory addressing during the computation. 

A problem size independent Cholesky decomposition systolic array has not pre- 

viously been proposed and the design of such an array is considered for the first 

time in this thesis. On partitioning the Cholesky decomposition DDG, analysis 

of the data dependencies within the subproblem DDGs formed shows that the 

LU decomposition spiral reindexing cannot be used in this case. It follows from 

this that the standard spiral architecture, used for the LU decomposition, is not 

suitable for problem size independent Cholesky computation. A new reindexing 

scheme, which does respect the data dependencies involved in the subproblems is 

used to show how arbitrary dimension Cholesky decomposition problems can be 

mapped into a novel spiral systolic architecture. 

7.1.1 Problem Size Dependent Systolic Arrays for High Dimension 
Cholesky Decomposition 

Co st 

The Justification for the development of a problem size independent systolic archi- 

tecture for various dimension Cholesky decomposition can be seen by looking at 

the hardware cost of bit-serial and word-parallel implementations of the problem 

size dependent systolic arrays. The design of the Cholesky decomposition [1 
111 11 

array, shown in figure 4.8 for model order p=4, is scalable for higher dimension 

problems. Referring to the array and its PE functions in figure 4.8 then for a 

model order p array pe[l, 1] is always type PEO, pe[2,1] to pe[p, 1] along the left 

hand edge are all type PEI, pe[2,2] to pe[p, p] along the diagonal edge are type 
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_ýE 
type :b inum -: : er of PEs 

PEO 
PEI p-I 
PE2 p-I 
PE3 p2 /2 - 3p/2 +I 

Table 7.1: Number of PEs used in the model order p problem size dependent 
Cholesky [1,1,1] decomposition array (figure 4.8 for p= 4). 

w bit module no. of modules per PE 
PEO I PEI I PE2 I PE3 

subtraction 0 0 1 1 
multiplication 0 0 1 1 
division 0 1 0 0 
square root 1 0 0 0 
register 1 2 2 3 

Table 7.2: Hardware module usage for each of the PEs in the Cholesky systolic 
arrays in terms of module usage. 

PE2 and the remainder of the PEs filling the triangle between these two edges 

are type PE3. The PE type usage in the problem size dependent systolic array 

is surnmarised in table 7.1. Given the number of modules used in each of these 

PEs in table 7.2 with the information in tables 3.1,3.2 and 4.1 then the NAND 

gate usage for model order p Cholesky decomposition word-parallel and bit-serial 

problem size dependent arrays may be estimated. 

Figure 7.1 shows plots of the word-parallel and bit-serial Cholesky decomposition 

array costs in terms of the even model order p from 4 to 30. For example pur- 

poses the word-length used is w -- 16 bits for each model order, although this 

word-length may need extending when allowing for increased ill- conditioning at 

the higher model orders and the higher number of finite word-length rounding 

errors which affect the accuracy of the matrix elements in L. The costs in both 

approaches dramatically increase at higher model orders than p-4 due to the 

extension of the systolic array in 2 dimensions. 
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Figure 7.1: Cost for (a) word parallel and (b) bit-serial approaches in terms of 
model order p for a fixed word-length of w= 16 bits. 

While the whole of the model order p=4 bit-serial Cholesky decomposition could 
be easily be mounted on a single FPGA, the w= 16 bit p- 30 bit-serial array, 

at a cost of ý-_ 4.1x1O'5 NAND gates, would require at least 35 XC3195 FPGAs 

which are the largest in the Xilinx XC3100 series (see section 5.3.4 and figure 

5.13). Matters are even worse in the word-parallel array where the number of 

NANDs Is --a 1.9xlO'. A average sized w= 16 bit word-parallel PE of this array 

could be mounted on an XC3190 (see section 5.3.4 and figure 5.12) but a total of 
2 

P'+P 465 such PEs would be required. This is clearly not practical when the 2 

aim is to design a portable system and although much larger densities could be 

achieved in full custom implementation, the cost is unnecessarily high as can be 

seen by considering the latency of arithmetic modules within the PEs. 

/D) 

(13j Timing Considerations 

The majority of the PEs in the bit-serial and word-parallel arrays contain multiply 

accumulate devices. From the results of the Xilinx implementations discussed in 

chapter 6 sections 6.4.3(A) and (B) word-parallel w- 16 bit multiply accumulate 

takes in the order of r-la 335ns (single precision addition) compared to less than lys 

for bit-serial (assuming the bit-serial addition unit processes the output product 
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bits as they become available). Given that the block pipeline period of the array 
3p (section 4.4-9) and assuming that the time length of the input data 

window, a minimum of 2ms, is available for processing the p= 30 Cholesky 

problem then the maximum allowable lag of a PE operation in order to maintain 

real-time processing on consecutive data segments is T2. -3'o P: ý 22/-Is. The maximum 3x3O " 

clock frequency of the array is set by the division and square root bottleneck 

operations [80] and this limits the efficiency of the multipliers to a certain degree. 

Even so in the p= 30 problem size dependent array there is clearly a huge wastage 

of the processing potential throughout of the multiply accumulate devices in týe 

array, especially in the word-parallel version which firmly justifies investigation 

of problem size independent arrays for high dimension Cholesky decomposition. 

7.2 Review of Problem Size Independent Decomposition 
Arrays 

Partitioning of algorithms, so that large dimensioned problems can be mapped 

onto small systolic arrays, is necessary to reduce cost and to use the arithmetic 

units within the array PEs more efficiently. Of particular interest here is the work 

of Navarro, Llaberia and Valero [281 which maps the LU decomposition onto a 

spiral systolic array architecture using triangular block partitioning and dense to 

band matrix partitioning methods. Their systolic array is reviewed in this section 

to introduce the concept of spiral architectures. The next section reconsiders LU 

spiral systolic array design in terms of the DDG methods used throughout this 

thesis, resulting in the formation of an improved array, and providing a basis for 

the design of a novel Cholesky decomposition spiral systolic array. 

Navarro et al. consider the general problem of mapping the p by p dimension LU 

decomposition algorithm onto a two dimensional s by s systolic array [28] [99] [100]. 

To illustrate their scheme the problem of mapping the p=4 LU decomposition 

onto as=2 array is reviewed because this represents the simplest example of 
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spiral LU decomposition array design. It should be noted however that the s-2 

partition size is not necessarily optimal for the all the values of p from 4 to 30. 

Initially the input matrix C is divided into square blocks whose dimensions are s 
by s. 

c[l, 11 c[l, 2] c[l, 3] c[l, 4] 

c[2,1] c[2,2] c[2,3] c[2,4] 

c[3,1) c[3,2] c[3,3] c[3,4] 

_c[4,1] 
c[4,2] c[4,3] c[4,4]_ 

Each block is referenced as Cj, k, so that for f, ýxampleCl, 2 refers to upper right 

sub-matrix of C and the L and U matrices are similarly split into their respective 
blocks. Navarro, Llaberia and Valero propose an algorithm for calculation of the 

subproblems formed by the above matrix partitioning. Applying this algorithm 

to the s=2 example results in the following. Matrices L1,1 and U1,1 are initially 

computed from: 
cl'i 

= Ll,,. Ul, l (7.2) 

given that each of the elements on the leading diagonal of Lij are 1. This is a 

p=2 LU decomposition problem. MatrixU1,2 is then calculated from: 

C1,2 = Ll,,. U,, 2 
(7.3) 

which is followed by the calculation of 
L2,1 given that: 

C2,1 =L2,1 - 
ul, 

1 (7.4) 

Equations (7.3) and (7.4) are basically of the same type as each is the solution 

of a triangular system of equations. Matrix C2,2 is then updated according to: 

C2,2 
"ý-- 

C2,2 
-L2,1 - 

ul, 
2 (7.5) 

and the final step in the algorithm is to compute 
L2,2 andU2,2 

from: 

C2,2 = L2,2 .- U2,2 (7.6) 

which is a similar problem to that described by (7.2). 



Chapter 7- Programmable Model Order - Matrix Decomposition 207 

With the aid of triangular block partitioning (TBP) and dense to band trans- 

formation (DBT) of matrices, Navarro et al. rearrange the matrix problems in 

(7.2) to (7.5) to fit onto a square s by s systolic array. The operation of the 

array and the TBP and DBT techniques used are illustrated here with respect 

theC2,2matrix updating (7.5) which involves a matrix by matrix operation. The 

iteration (7.5) can be rewritten as: 

C2 
92 '<-- 

C2,2 
- 

P2,2 (7.7) 

where P2,2 in terms of the matrix elements is: 

[p[3,31 p[3,4 ] 
= 

[1[3,1] 1[3,2]] [u[1,3] u[1,4]] (7.8) 
p[4,31 p[4,4] 1[4,11 1[4,2] u [2,3] u [2,4] 

Using the TBP and DBT transformations the matrix product computation is 

re-represented as: 

p(') [3,31 p(') t3,4] 

p(')[4,3] p(')[4,4]+p (2 
0p (2) [3,41 

0 

[4,4] p 
(2) [4,3] 

p 
(2) [3,3] 

-1[3,1] 0 [u[l, 3] 
1[4,1] 1[4,2] 0 

0 1[3,2] 

utl, 4] 0 

u[2,4] u[2,311 

(7-9) 

where the product elements are then equal to: 

p[j, k] k] +p 
(2) [j, 

(7.10) 

(7-11) 

The purpose of performing this transformation is to express each of the matrices 

in (7.8) in band format such that the width of the bands correspond to the number 

of available input buses along an edge of the systolic array that the algorithm is 

to be performed on. The transformed L2,1 andU1,2matrices, each have bands of 

width 2, which encompass 2 diagonals of non-zero elements representing 2 input 

streams of data into the systolic array. The P2,2 matrix has a band of width 3 

and so represents 3 streams of data calculated within the array. 
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Figure 7.2: Systolic array for calculation of (a) (7.12), (b) (7.13) and (c) spiral 
systolic architecture for computation of both iterations. 

If inatrixC22 - 
C(l) 

updated to C(3) over two iterations then the first step: 
9 

2,2 2,2 

, C(2) [3,3] C(2) [3,4 ] [c(')[3,3] c(l)[3,4]1 
_ 

[p(l)[3,31 p(')[3,4]] (7-12) 
C(2) [4,3] C(2) [4,4] c(l) [4,3] c(l) [4,4] j p(l) [4,3] p(l) [4,4] 

can be computed on the s by s systolic array in figure 7.2(a) where each of the 

PEs are of inner product step type (note that zeroes must be interleaved into 

the data streams). However on the second step the elements in each matrix are 

diagonally interchanged in order to respect the ordering of the input data streams 

defined by the P2,2 band matrix: 

, C(3) [4,4] C(3) [4,3 C(2) [4,4] C(2) [4,3] p 
(2) [4,4] p 

(2) [4,3] [p 
(2) [3,41 p 

(2) [3,21 
(7.13) 

C(3) [3,4] C(3) [3,2] C(2) [3,41 C(2) [3,2]] 

This can also be performed on an s by s systolic array as shown in figure 7-2(b). 

In order to consecutively execute (7.12) and (7.13) on the same array then spiral 

links must be used with multiplexers to recirculate the results from the first 

iteration back into the array as shown in figure 7.2(c). Due to the use of the 

ic array. spiral or global links the array is termed a spiral systol* 

The application of the TBP and DBT techniques to all of the subproblems (7.2) 

to (7.6) results in the array configurations shown in figure 7.3. The systolic array 

shown in figure 7.3(a), used to compute the s by s LU decomposition subproblems 

(7.2) and (7.6), consists of four different types of PE whose functions are given in 

part (e) of the figure. The array outputs the matrices Lij and Ul, of subproblem 

(7.2) from the west and north border PEs. L2,2 andU2,2 calculated in subproblem 

u[1,3] U[1,4] 
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Figure 7.3: Navarro, Llaberia and Valero's systolic arrays for (a) LU decompo- 
sition (s - 2) - subproblems (7.2) (7.6), (b) solution of lower triangular ma- 
trix equations - subproblem (7.3), (c) solution of upper triangular matrix equa- 
tions - subproblem (7.4), (d) matrix by matrix multiplication and accumulation 
-subproblem (7.5) and (e) key to processor operations. 

(7.6) are similarly output. An architecture for solution of the subproblem (7.3) 

is given in figure 7.3(b). The array contains three types of PE, inputs L1,1 to the 

west side PEs and outputsUI, 2 from the PEs on the north border. Subproblem 

(7.4) is the transpose of (7.3) and can be solved on the array given in figure 

7.3(c). A systolic architecture for the last type of subproblem given by (7-5) 

already discussed is shown again in figure 7.3(d). This array requires two types 

of PE which perform inner product step functions. 

All of the subproblems can be chained together for sequential solution of the p=4 

LU decomposition on a single s=2 spiral systolic array. The systolic array can 

also be used to solve higher dimension problems such as p -- 6 by applying the 

TBP and DBT schemes to the larger matrices creating a longer chain of ordered 

subproblems. 

The following points arise in review of the LU spiral systolic array design by 

Navarro et al. [281: 

* The initial algorithm is partitioned into 4 different types of subproblem in 

a textual computational algorithm format. 
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The subproblems must then be represented in matrix format and the way 
in which each type of subproblem is transformed using the TBP and DBT 

schemes differs between subproblems. 

The transformed subproblems are made to fit onto a pre-determined systolic 

architecture with a range of available PE functions. 

Although the partitioned matrices show the data flows into each input of 
the systolic array they do not relate information as to the scheduling and 

allocation of tasks in the array. 

e There are a total number of seven different processor mode configurations. 

Bi-direction data ports are required for the input/output of L and U sub- 

matrices on the edge of the array. 

It is difficult to see how to chain subproblems, that is in determination of 

the time lag required between execution of two consecutive subproblems 

and the scheduling of input/output data flows. 

7.3 LU decomposition Spiral Systolic Array DDG Design 

This section reconsiders the design of the spiral systolic array in order to address 

the points made on the design of Navarro et al. [28], demonstrating, in terms of the 

DDG methodology, the whole of the LU spiral systolic array design process, from 

initial subproblem partitioning to the chaining of subproblems for implementation 

on a common architecture. It is shown how all subproblems can be reindexed 

using a common strategy as opposed to the various approaches of the TBP and 

DBT algorithms. This section also looks at the need for 7 different PE functions 

in Navarro's array, which strikes as being unnecessary since the original DDG 

representation before partitioning (figure 4.12) only requires 3 different modes of 

node operation. An unattractive feature of Navarro's array is that bi-directional 
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ports are needed on the north and west PEs of the array for the input/output 

of the L and U matrix elements respectively, the necessary buffering adding to 
PE complexity. Removal of this bidirectional data flow and the recirculation 

of data without resorting to storage and retrieval memory cycles are the prime 

objectives of the alternative DDG route described in this section. The timing 

and allocation of all tasks from each of the subproblem DDGs is described with 
the aim of minimising the time delay between successive subproblems. 

7.3.1 LU Decomposition DDG Partitioning 

The DDG partitioning of the p=4 LU decomposition algorithm onto as by s 
(s = 2) systolic array is considered to show direct comparisons with the method 

of Navarro et al. [28] and because this is the simplest example to present the 

methodology. It should be noted that the design methodology used can easily 

be extended to higher dimensioned problems or larger arrays and that the s=2 

partition is not necessarily the optimal size for the range of model orders consid- 

ered. The aim is to partition the LU DDG into a number of subproblem DDGs 

which can be chained together and mapped onto a common systolic architecture. 

The systolic array produced is smaller than that which would be formed by the 

projection of the original DDG and utilises programmable function PEs to cope 

with the different types of subproblem. 

Now consider partitioning the LU decomposition DDG shown in figure 4.12(a) 

into five cubed sections of side length s-2 each containing a maximum of eight 

nodes as illustrated in figure 7.4. Each of the subproblems formed by the DDG 

partitioning directly corresponds to the partitioning proposed by Navarro et al. 

in (7.2) to (7.6) as indicated in the caption of figure 7.4. The additional nodes 

with the dotted circumference are effectively null processes, included to show the 

vertices of the cubes. These nodes are don't care processes and their functions 

can be programmed as desired to help simplify the design. 
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To map subproblems into a common systolic architecture the individual DDGs 

formed by the partitioning need to be expressed in the form of a common DDG 

arrangement. The DDG in figure 7.4(d) contains all the dependence arcs neces- 

sary for all the subproblems to be represented and its communication strategy can 
therefore be treated as a basis for all of the subproblem DDGs. The don't care 

nodes lead to some redundancy in subproblems (a), (b), (c) and (e) but all these 

subproblems could be expressed in terms of the structure of (d) with appropriate 

node function changes. Further on in the text it is discussed how the unused arcs 

and the redundant operations, which are created by expressing subproblems (a), 

(b), (c) and (e) on the common DDG structure, can be utilised in the chaining 

of the subproblem DDGs to minimise execution time. The systolic architecture 

produced by the projection of the common DDG structure is therefore able to 

handle all the subproblems, providing that the PEs are programmable. 
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7.3.2 Mapping the LU Common Subproblem DDG into an Array 

Projection of the common DDG structure used for representation of all the sub- 

problems produces a systolic architecture whose PEs can be programmed to per- 
form the functions defined by any particular subproblem. The five subproblem 
DDGs can be chained together to form a long DDG from which, the overall timing 

and data dependencies between subproblems, can be derived. It is desirable to 

avoid projection in the exact direction of the arcs since this leads to internal pro- 

cessor storage, complicating control with clock enabling and data referencing. For 

the LU decomposition, subproblem DDG projection along the arc directions also 

results in systolic arrays whose PE functions are required to change within indi- 

vidual subproblem execution. The aim is therefore to have continuous data flows 

around the common architecture whose PE functions only need to change between 

different subproblems, ruling out the possibility of straightforward connection of 

the subproblem DDGs end on end with the projection direction orthogonal to 

the DDG interconnection planes. 

The problem size dependent systolic arrays derived in (17][80] (chapter 4 figures 

4.14 and 4.8 respectively) demonstrate continuous data flow since the [1,1,1] 

projection vector used to produce these arrays cuts all of the DDG communication 

arcs. Projection of the partitioned DDG base section in the same direction, as 

illustrated in figure 7.5, produces a systolic array with similar characteristics. The 

n 

k 

node[1,1,2] 

2 .... ... 37' 

node[1,2,21 

node[1,1,1] 

node[2,2,21 

node[2,1,1] 

node[2,2,1) 

n 

pe(1,21 

... peJ2,31 

3. - pe[3,31 

(a) (b) (c) 

Figure 7.5: (a) Common subproblem DDG, (b) its [1,1,1] projection into a hexag- 

onally connected systolic architecture and (c) a general PE. 
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allocation function used to produce the array in figure 7.5(b) is for node[J', k, n] 
to be mapped into pe[j* -n+2, k-n+ 2] and each node operation is processed 

at time t=J+k+n-2. The systolic array is however quite inefficient as 
whilst pe[2,2] is active in one in every three clock cycles performing the tasks 
defined by node[l, 1,1] and node[2,2,2], the other PEs only perform single node 

operations. This means that there is effectively almost one processor for each 

node of the graph. The inefficiency associated with the systolic array produced 
by the projection of the common DDG representation is ultimately reflected in 

the array used to solve the overall decomposition and so it worthwhile attempting 

to improve efficiency whilst maintaining the same projection vector. 

7.3.3 Reindexing of the LU Common Subproblem DDG 

(A) Node Reindexing for Projection into the s by s Array 

The efficiency of the systolic array of figure 7.5(b) can be improved upon by 

rearrangement of the common subproblem DDG nodes so that the array produced 

from projection of the rearranged DDG contains fewer PEs. Kung uses a DDG 

reindexing scheme in the formation of a systolic array for the Warshall-Floyd 

algorithm [22]. The node reindexing is as follows for a partition of size s: 

node [j, k, n] --- * node[(j* - n)moci ,+n, 
(k - n)mod s+n, n] (7-14) 

and can be applied to the common subproblem DDG. The DDG produced by 

reindexing the common subproblem DDG with (7.14) is shown in figure 7.6. 

Only nodes of the second plane are reindexed, with the operations labelled E, F 

and G of node [1,1,2], node [1,2,2] and node [2,1,2] respectively being moved to 

node[3,3,2], node[3,2,2] and node[2,3,2]. The node[2,2,2] however is not af- 

fected by the reindexing and remains fixed in its position. The systolic array 

produced by [1,1,1] vector projection (figure 7.6(c)) now contains four PEs, each 

performing two node operations for improved efficiency, compared to the seven 

PEs produced by the [1,1,1] projection before reindexing (figure 7.5(b)). 
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Figure 7.6: (a) The common subproblem DDG (s -- 2) with each node operation 
labelled A to H, (b) effect of reindexing the common subproblem DDG (S = 2) 
using (7.14) and (b) [1,1,1] projection of the reindexed nodes into a2 by 2 systolic 
architecture. 

The reason that this reindexing is permitted is that the order in which the nodes 

must execute is commutative in the J and k directions of the n =: 2 planes in 

each of the subproblem DDGs shown in figure 7.4. The J* and k direction arcs 

in the n=2 plane of the reindexed common subproblem DDG in figure 7.6(b) 

can therefore remain localised in the same direction as before reindexing, instead 

of being swapped as would be the case with non-commutative tasks. Since the 1 

and k arc directions are the same in the n -- I and n=2 planes of the reindexed 
DDG then they can therefore be mapped into single direction data buses in the 

systolic array, avoiding bi-directional flows. 

S tral Data Dependence Arcs and their Systolic Array Representation p, 

The data dependencies defined by the n direction arcs between the n and 

n=2 planes in the original DDG of figure 7.6(a) (i. e. A--+E, B--4F and C--+G) 

must also be represented in the reindexed graph (note re- representation not shown 

in figure 7.6(a)). This results in spiral or global dependence arcs from node[l, 1,11 
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to node[3,3,2], node[1,2, I] to node[3,2,21 and node[2,1,1] to node[2,3,2] as 
shown in figure 7.7(a). The spiral arc communications in the DDG are mapped 

into three spiral data buses which connect across the array shown in figure 7-7(b) 
(e. g. the arc from C to G gets mapped into the spiral bus from pe[2,1] to pe[l, 2] 

due to the respective allocation of these tasks to these two PEs). Three multi- 

plexors axe also required to switch between routeing external data Into the array 
(i. e. n direction inputs to the nI plane) and the spiral recirculation of data 

(i. e. n-direction inputs to the n2 plane). The spiral reindexing of the DDG is 
directly equivalent to the TBP and DBT methods (7.10) of Navarro et al. [28]. 

n 

k 

node(l 
(2.2,2 1H 

node(2 

node [2,2, 

'1'1' 

Jiiode[2,3,21 N 

3 2j 

(a) (b) 

Figure 7.7: (a) Inclusion of spiral interconnection arcs in the reindexed DDG and 
(b) [1,1,1] projection of the spiral reindexed DDG into as by s spiral systolic 
architecture. 

Timing Funchon 

A possible timing function which respects the data dependencies imposed and 

does not allow a PE to execute more than one node operation on a single clock 

cycle is indicated by the internal node numbering in the DDG of figure 7.8. 

The node added to the DDG in position [1,1,0] is for the loading of data onto 

the n Input of pe[l, 1] via pe[2,2]. The spiral buses carry extra systolic word 

registers to allow for the longer delay between the node processes connected by 

the spiral dependence arcs. For example pe[2,1], performing the operation defined 

by node[2,1,1] at t=2, outputs a result from its n output port which is routed 
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Figure 7.8: (a) Timing function for the reindexed common subproblem DDG and (b) extra systolic delay registers required on the spiral recirculation buses. 

across the array to the n input of pe, [I, 2] for the processing of the node[2,3,2] 

operation at t=5. This spiral bus therefore needs two extra systolic registers 

given that the third delay is provided by the register on the n input bus within 

pe[l, 2] (see figure 7.5(c) for a general PE configuration). Similarly, the spiral 
from pe[l, 2] to pe[2,1] carries two extra registers but that from pe[l, 11 to pe[2,2] 
has four extra registers. 

7.3.4 Chaining the Reindexed LU Subproblem DDGs 

The partitioned DDGs for the LU decomposition problem shown in figure 7.4 can 

be reindexed using (7.14) resulting in the DDGs of figure 7.9(a) to (e). In order 

to minimise mode switching, the null node processes indicated by the nodes with 

dotted circumference in figure 7.4, are set to the same mode as the corresponding 

n-I plane node in the line of projection of the reindexed DDGs. Therefore, 

when the graph is projected by the [1,1,1] vector, each PE of the resulting systolic 

array needs to work only in one mode during execution of a particular subproblem. 

All of these reindexed subproblem DDGs can be represented on the common rein- 

dexed DDG representation of figure 7.8(a) and therefore can all be mapped into 

the spiral systolic architecture. When considering the timing of the whole LU 

decomposition computation, the reindexed subproblem DDGs can be connected 
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Figure 7.9: (a) to (e) Reindexed LU decomposition partitioned DDGs and (f) to 
(j) systolic arrays resulting from their [1,1,1] projection. 
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together to form one long chained DDG. The [1,1,1] projection of this DDG 

still results in the same spiral architecture but must have programmable function 

processing elements to cope with the different node functions in each subprob- 
lem. The order in which the subproblems are chained together must respect the 
data dependencies defined by the original LU decomposition DDG of figure 4.12. 

Therefore the graph in part (a) of figure 7.9 is the first part of the chain. The 

second and third sections are the DDGs (b) and (c) in either order. Here DDG 

(b) is executed before (c). The fourth section in the chain is the DDG in part (d) 

of the figure and the final section is part (e). 

(A) Minimising Time Delay Between Successive Subproblems 

The former null processes can be used to facilitate the data loading operation of 

node[l, 1,0] in the common subproblem DDG (figure 7.8(a)) in order to reduce 

the time delay between the execution of successive subproblems. The node[3,3,2] 

in DDG (a) is one such null process which has been set to operate in mode 2. 

This node can coincide with the loading node of graph (b) because the zero J and 

k inputs to node[3,3,2] cause transference of the data along its n direction in- 

put/output path. Data word c[I, 3] can therefore be clocked through node [3,3,21 

at t=6. This procedure can be repeated all the way along the chain. Joining the 

graphs in such a manner causes the coordinates of nodes in consecutive sections 

to be offset by [2,2,21. However, the n direction connections between the DDGs 

(d) and (e) are made in the systolic array via the spirals. 

/D ) 

(B) Systolic Feedback of L and U Sub-matrices 

The null processes are als o used at the end of subproblems to transfer the cal- 

culated elements to output arcs of the DDG. For example, u[2,2] in subproblem 

(a) is piped through node[3,2,21. U and L sub-matrices can therefore be piped 
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out from the lower and right hand borders of the array respectively eliminating 
the need for the bi-directional data ports which in are necessary in the design by 

Navarro et al. [28] (figure 7.3). 

Data J, and k direction inputs to the edge of the array are easily derived by 

using delay feedback links around the array. The number of delays attached to 

these links is determined from consultation of the chained subproblem reindexed 
DDGs. In the DDG of figure 7.9(a) 1[2,1] gets output from node[2,2,1] or pe[2,2]'s 
k output at t=3 only to be input to node[4,3,3] of the DDG in figure 7.9(b) or 

pe[2,11's k input at t=8. Assuming that there are unit systolic delays on each 

of the PE inputs then this feedback link contains 4 extra systolic register word 

delays. Similarly 1[4,1] and 1[3,2] are recirculated around this feedback loop with 

the same delay of 5 clock pulses and another loop is required from pe[l, 2] to 

pe[l, 1]. The two feedback loops (figure 7.10(a)) can be merged (figure 7.10(b)) 

because pe[1,2] and pe[2,2] output data on successive clock cycles with each 

processor active once in every three cycles. Note that to avoid logic contention, a 

multiplexor is required to select either the output of pe [ 1,2] or that of pe [2,2] but 

the control for this is easily implemented with a modulo three counter. Due to the 

ordering of the sections in the chain, 10 extra delays are needed in the feedback 

from the pe[2,1] and pe[2,2] J direction outputs to the pe[l, 1] and pe[l, 2] jinput 

ports (figure 7.10(c)). 

ME== ME 

pe pe pe pe pe 
M 11M [1,2] [1,2] [1,2] 

IMMO - MAVW- 4 

pe Pe pe 
i 

LZA [2,11 211] 

(a) (b) (C) 

Figure 7.10: (a) Separate feedback loops for recirculation of L sub-matrices, (b) 

merged L sub-matrix feedback loop (c) merged U sub-matrix feedback loop. 
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7.3.5 The LU Decomposition Spiral Systolic Array 

The configurations of the array for the various subproblems are shown in figure 

7.9(f) to (j). There are 4 different types of subproblem as arrays (f) and (j) are 

effectively the same except that the input and output [J, k] coordinates of data 

in graph (e) are increased by [2,2]. From figures 7.9(f) to (j) it can deduced that 

pe[l, 11 operates in all three modes, pe[l, 2] in mode 0 and mode 2, pe[2,1] in 

mode I and mode 2 while pe[2,2] is just required to operate in mode 2. 

The complete data communication network for the LU decomposition spiral sys- 

tolic array is illustrated in figure 7.11. The input matrix C is input to the n 

direction ports of pe[l, 2], pe[2,2] and pe[2,1]. The lower triangular matrix L be- 

ing made available from the right hand edge of the array and the upper triangular 

matrix U from the lower edge. The timing of input data scheduling, output data 

availability and mode control changes are easily derived from the internal node 

numbering (figure 7.9(a) to (e)). Higher dimensioned LU decomposition prob- 

lems can be solved on this array by forming a longer chain of DDG subproblems 

and by switching longer delays into the L and U feedback links. 

Nor (a) 

pe[1,11 pe[1,2] 

4 
(b) 

Figure 7.11: (a) Data communication network for LU spiral systolic array, (b) 

PE arithmetic layout. 
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7.3.6 Extending the Spiral Systolic Array Dimension 

The partitioning of the LU DDG using s=2 results in a chain of pipelined sub- 
problems. When large model orders are considered, the number of subproblems, 

and thus the length of the chain, are increased. This in turn leads to long execu- 
tion time. Restrictions set by PE operating lag may dictate that more parallelism 

and less pipelining are required in order to achieve real-time processing capabil- 

ity. Higher degrees of parallelism are achieved by using bigger partitions such as 

s=3 for example. Figure 7.12(a) to (e) shows the subproblems of the p=6 
LU decomposition problem reindexed according to (7.14) with the use of s=3 

partition. The graph timing function allows for the loading of inputs through 

two previous n planes and therefore operation in DDG(a) starts in node[l, 1,1] 

at t=2. Figures 7.12(f) to (j) show the arrays produced by [1,1,1] projection 

of the subproblems in (a) to (e). Chaining of the subproblems results in a total 

execution time of 50 clock cycles. DDG communication requirements dictate that 

spirals carrying an extra three delays are required from pe[l, 2] to pe[3,1], pe[l, 3] 

to pe[3,2], pe[2,1] to pe[l, 3] and pe[3,11 to pe[2,3]. Another spiral connection 

from pe[l, 1] to pe[3,3] carries an extra six delays. 

7.3.7 Comparison of LU Decomposition Methods 

The design of the LU decomposition spiral systolic array has been approached 

using the DDG methodology in this section in order to address the points which 

were made after study of the LU spiral systolic array designed by Navarro et al. 

[28]. The result was a more coordinated design strategy made entirely on the 

basic DDG principles. 

The starting point for the DDG design was to simply partition the LU decompo- 

sition p-4 DDG into 5 subproblem DDGs (figure 7.4). This directly compared 

to the textual computation algorithms in Navarro's method (7.2) to (7-6). 
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A common subproblem DDG upon which all of the subproblem DDGs could 

represented with appropriate node function changes was identified (figure 7.5(a)) 

and spiral reindexing of this common subproblem DDG (figure 7.7(a)) was shown 
to improve the efficiency of the systolic array produced by [1,1,1] projection. The 

spiral reindexing of the common subproblem DDG was equivalent to the TBP 

and DBT partitioning methods (7-10) used in Navarro's approach [28]. This is 

where the advantage of the DDG approach first became apparent, as, since all 
DDG subproblems were able to be expressed on the same common subproblem 
DDG representation, then after reindexing, all subproblem DDGs were all able 

to be expressed on a common subproblem reindexed DDG. In comparison to this, 

the various TBP and DBT algorithms, were selected as appropriate to the type 

subproblem [28] and the design route did not therefore remain standard. The 

reindexed subproblem DDGs were then mapped into the same spiral architecture 

with programmable PE functions, using the established projection method. The 

TBP and DBT transformed matrices however only really provided information 

on the data flows into a pre-determined spiral architecture for which PE functions 

were selected from a standard set and it was not clear how to schedule data or 

indeed to which port data should be input. The end results were that the DDG 

method required only 3 different types of PE operation (7.9(f) to (3)) compared 

to 7 in Navarro's method (figure 7.3), and the need for bi-directional data ports 

was eliminated with use of the DDG method. 

Chaining of subproblem DDGs was then used to obtain information pertaining 

to the timing of data flows for all subproblems together. Don't care node states 

were utilised in order to minimise the time delay between the execution of con- 

secutive subproblems in the chain. Study of data output flows and input data 

scheduling between different subproblems revealed that it was possible to recir- 

culate the values of L and U sub-matrix elements back into array with the use 

of the two systolic feedback links (figure 7.10(c)). This removed any need for 

memory addressing during the computation, as all that is required was a simple 
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multiplexing function to route one of two outputs Into each feedback loop. 

Differences in the PE arithmetic functions for certain subproblem modes arise 
from the definition of the original DDG in figure 4.12. This DDG takes into 
account the fact that elements on the leading diagonal of the L matrix are ones 
removing a number of multiplications from the top rows of each n plane. However, 

when the PEs of the spiral array which are affected by this simplification are 

programmed in different modes it turns out that multiplication units are required 

anyway and so there is only a cost saving in power consumption (figure 7.11(b)). 

The DDG designed array has the disadvantage of requiring two division units, 

one in pe[2,1] the other in pe[l, 1] (figure 7.11(b)) compared to just one in pe[l, 1] 

in the referenced array (figure 7.3). This is easily remedied by changing the top 

left nodes of each n plane of the DDG in figure 4.12 to output the reciprocal of 
their input and by replacing the dividers in the mode I nodes with multipliers. 

This means that the reciprocal of the leading diagonal of U gets output from 

the spiral array but this actually is an advantage as it removes a divider from 

the back substitution systolic array to which these values are subsequently fed. 

The arithmetic unit PE cost from both of the methods therefore can be made 

approximately equal but control of the DDG designed array PEs is simpler due 

to the smaller number of PE mode configurations. 

In conclusion, the spiral array produced using the DDG approach displays several 

distinct advantages over that designed by Navarro et al. [28] as summarised above. 

Translation of the DBT and TBP methods proposed by Navarro et al. [28] into 

the DDG design methodology has enabled a more structured approach to the 

complete design of a problem size independent LU decomposition array. Having 

considered the DDG design of the LU decomposition, problem size independent, 

systolic array, a platform has been established to lay out the route to the design 

of a small, spiral, systolic architecture for Cholesky decomposition,. 
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7.4 Cholesky Decomposition Spiral Systolic Array Design 

Cholesky decomposition displays superior numerical stability over the LU de- 

composition when considering systolic array implementation as concluded in 

chapter 5 and this becomes an increasingly important advantage at higher model 

orders where the system of equations is likely to become more ill-conditioned 

[271. For problems with high dimension the number of computations for the LU 

decomposition is approximately double the number required for the Cholesky de- 

composition, a factor which is very significant since the number of computations, 
dependent upon p3 [27], is greatly increased over the lower model orders. Halving 

the number of computations effectively halves the number of subproblems formed 

by partitioning and consequently a problem size independent Cholesky decompo- 

sition could run in approximately half the time of the LU decomposition spiral 

array if the systolic clocking speeds for each are the same. 

It is therefore important to use a problem size independent systolic array for 

Cholesky decomposition rather than LU decomposition when considering filter 

parameter computations with model orders up to p= 30. The design of a problem 

size independent systolic array for Cholesky decomposition, which has not been 

previously considered using either TBP/DBT or graphical partitioning methods, 

is investigated in this thesis for the first time. The DDG based design principles, 

laid out in the previous section, which led to the LU decomposition spiral systolic 

array shown in figure 7.11 are applied to the Cholesky decomposition algorithm in 

this section. It is shown that the standard spiral systolic architecture previously 

used is not suitable for Cholesky decomposition. A modified reindexing scheme is 

therefore proposed and this results in a novel, problem size independent, Cholesky 

decomposition systolic array. 
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7.4.1 Cholesky Decomposition DDG Partitioning 

A similar DDG partitioning analysis to that used for the LU decomposition is 

applied to the p=6 Cholesky decomposition algorithm in this section. The 

aim of this section is to show how the large dimensioned Cholesky decomposition 

algorithm can be mapped onto a small sized spiral architecture which utilises 

programmable PE functions. 

The Cbolesky decomposition model order p-6 DDG may be simply derived 

from the p=4 DDG in figure 4.3(a) by simple extension of two more J planes as 

shown in figure 7.13, giving an indication of the increase in computational burden 

for an increase in model order of 2. A problem size dependent array which can 

be derived from the p -- 6 DDG by [1,1,1] projection contains 21 PEs. When 

partitioning the Cholesky decomposition algorithm onto a spiral systolic array, 

to reduce the number of PEs, the question arises as to what is the optimal size of 

the array to suit the application. This is ultimately decided by the allowed real- 

time operational period and the speed of underlying hardware in the processors to 

give the precision of data necessary for obtaining results at an adequate accuracy. 

node(6,6,61 

6.61 
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c(2, 
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Figure 7.13: The Cholesky decomposition DDG for use the model order p-6 

computation, for node functions refer to figure 4.3(b). 
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Partitioning using s=2 is described here once again as this is the easiest example 

to use. The methodology can easily be extended to bigger partitions for deriving 

larger systolic arrays which have higher throughput if so desired. 

Partitioning the p=6 DDG into cubes of side length s=2 results- in creation 

of 10 subproblems. The DDGs detailed in figure 7.14(a) to (f) represent all the 

nodes from the first two n planes of the original DDG (figure 7.13). The next 

three subproblems, (g) to (1) (not shown in the figure), which cover the third 

and fourth n planes are a repeat of subproblems (a) to (c) but with the indices 

of the I and u elements increased by [2,2] and the n direction input derived 

from the n direction outputs of subproblems (c), (e) and (f) respectively. The 

last subproblem, (J), computes the last two recursions and is the same type as 

subproblem (a) taking its input from the results produced in subproblem (1). In 

all there are four different types of subproblem included in this set. 
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7.4.2 Spiral Reinclexing of the Cholesky Common Subproblem DDG 

A different spiral reindexing scheme needs to be introduced for this algorithm 
due to the data dependencies between nodes in certain types of subproblem. The 

spiral reindexing scheme defined by (7.14) is valid for the LU decomposition 

subproblems since the operating order of nodes the n=2 plane of each of its 

subproblems is commutative in the j and k directions. However, for the Cholesky 

decomposition this does not hold for all of the subproblems as in subproblems of 

type (c) and (f) 
7 in figure 7.14 the node E labelled on the common subproblem 

DDG in figure 7-15(a) must operate before node G which also must operate 

before H. These types of operation are therefore not commutative in the and 

k directions and therefore an alternative reindexing scheme to that described by 

(7.14) must be used. It follows from this that the standard spiral architecture 

used by Navarro et al. is not suitable for Cholesky decomposition. 
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Figure 7.15: (a) Cholesky decomposition common subproblem DDG, (b) effect of 

reindexing the DDG using the scheme given in (7.15) and (c) systolic architecture 

produced by [1,1,1] projection of the DDG. 
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The reindexing scheme applied to the Cholesky decomposition must firstly respect 
the data dependencies of each of type of Cholesky subproblem shown in figure 

7.14 and must allow 2 nodes to be mapped into one of 4 PEs of the array formed 

by projection of the reindexed DDG in the [1,1,1] direction. Study shows that the 

operations of nodes in the planes orthogonal to the k direction are commutative in 
the J direction when k=2, whilst the ordering is commutative in the n direction 

when k=1. This is formally stated as 

node[3, k, nj --ý no(ie[(3' - 
k)mod + k, k, k- (k - n)mod sl 

and applying this to the Cholesky decomposition common subproblem DDG in 

figure 7.15(a) produces the reindexed DDG in part (b) of the figure where the 

operations B, E, F, G move from node coordinates [1,2,11, [1,1,21, [1,2,2], [2,1,2] 

to new locations [3,2,1], [1,1,0], [3,2,2], [2,1,0] respectively. The transformation 

inserts spiral communications into three of the four k direction inner DDG com- 

munication arcs which can be compared to spiralling of the n direction paths 

in the LU decomposition reindexing scheme. The new spiral systolic architec- 

ture produced by [1,1,1] projection, shown in figure 7.15(c), contains 4 PEs each 

performing 2 node operations and there are three spiral buses.. 

7.4.3 Chaining and Reinclexing of the Cholesky Subproblem DDGs 

The DDG reindexing defined by (7.15) can be applied to the subproblems formed 

by the partitioning of the Cholesky decomposition. The transformed DDGs for 

the first five subproblems from figure 7.14(a) to (e) are illustrated in figure 7.16(a) 

to (e). A chained DDG is formed by interconnecting the DDGs end on end so that 

operation E (figure 7.15(b)) in the second subproblem DDG becomes node[3,3,2] 

-of the combined graph and so on. The internal node numbering indicates a 

possible timing strategy for calculation of the subproblems in their alphabetical 

ordering from figure 7.14. 
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Figure 7.16: (a) to (e) Reindexing of DDG subproblems (a) to (e) respectively in 
figure 7.14 and (f) to (j) spiral systolic arrays formed by projection by the [1,1,11 

vector. 
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7.4.4 Projection of the Chained DDG into a Programmable Array 

Projection of the reindexed subproblem DDGs in figure 7.16(a) to (e) by the 
[1,1,1] vector results in the spiral systolic arrays shown in figure 7.16(f) to (i), 

and it can be seen that the arrays are no longer square shaped. A maximum of 
three spirals are introduced by the DDG reindexing and these are all present in the 

systolic array shown in part (J) of the figure and carry either 2 or 4 extra systolic 

registers as indicated. All the types of subproblem can therefore be calculated on 

such an architecture as that of part (J) providing that the PE functions are made 

programmable. 

(A) Systolic Feedback of L and C Sub-matrices 

Feedback links can be used in the j and n directions to reload data back into 

the array. Data is recirculated in the J* direction between DDGs (a) and (b) of 

figure 7.16 with a total delay of five units so four extra delay elements are needed 

in the feedback line from pe[2,1] to pe[l, 1] and from pe[3,2] to pe[2,2]. From 

subproblems (b) to (d) and from (c) to (e) this delay is increased to eleven clock 

cycles and so an extra six registers would need to be switched into the feedback 

loop during this period. When recirculating data from the n direction ports it 

would be wise to use clock enabling on the feedback loop registers from pe[j, 11 

to pe[2,2] and from pe[2,1] to pe[3,2]. This is because of the large delay of 23 

clock cycles between output Of C(3) [3,31, C(3) [4,31 and C(3) [4,4] in subproblem (c) 

to input of subproblem (g). Only ten data words need to be stored on this feed- 

back line during this period so using 22 extra registers would be quite wasteful. 

Once stored, data in these feedback registers is naturally ordered for input to 

subproblems (g) to (1) which have the same control requirements as subproblems 

(a) to (c). Direction n input data to subproblem (J), which is also the same type 

as (a), can be fed back from subproblem (1). 
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7.4.5 The Cholesky Decomposition Spiral Systolic Array 

The complete spiral array for model order p=6 Cholesky decomposition problem 

is presented in figure 7.17. Two control lines are required to switch between 

different processor configuration modes. An additional two more control lines are 

needed for the multiplexors on the n direction inputs and one is needed to control 

the J direction input multiplexors. Lower dimension problems can be efficiently 

solved on this array by simply adjusting the input and control signals. Given 

that there are a total of 10 subproblems each requiring 6 clock pulses then the 

total number of clock cycles for complete operation is 60. With the addition of 

extra delays in the feedback loops, problems with dimension higher than p=6 

can also be decomposed. 

The DDG design methods can also be used to design larger arrays for higher 

throughput. Figure 7.18 shows the DDG chain for as=3 partition array which 

reduces the execution time to 38 clock cycles for the p-6 problem. 

(a) 

pe[2,11 

(b) 

Figure 7.17: (a) Cholesky spiral systolic array, (b) PE arrangement. 
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7.5 Comparison of Programmable Systolic Arrays 

This section considers the cost performances of the Cholesky and LU spiral sys- 
tolic arrays for various model order problems p and partition sizes s. The cost of 
the LU array is detailed as this design may be used in other applications where the 

matrix to be decomposed is not symmetrical. A timing analysis also allows the 

high model order computation time advantage, resulting from the much reduced 

number of clock cycles, of the Cholesky decomposition method to be shown. 

7.5.1 Method of Cost Comparison 

PE Cost 

Tables 7.3 and 7.4 give the costs of the programmable LU and Cholesky decom- 

position array PEs, shown in figures 7.11(b) and 7.17(b) respectively, in terms of 

their module usage. 

w bit module type of PE (figure 7.11(b)) 

Pe[O' 01 pe[l, 2] pe[2,1] pe[2,2] 

subtraction 1 1 1 

multiplication 1 1 1 
division 1 0 0 

register 3 3 3 3 

multiplex 2 1 1 10 

Table 7.3: Hardware usage for LU array PEs in terms of module usage. 

w bit module type of PE (figure 7.17(b)) 

Pel pe[2,11 1 pe[2,2] pe-[3,21 

subtracýCi-on' 1 1 1 1 

multiplication I I I I 

division I 1 0 0 

square root 1 0 0 0 

register 3 3 3 3 

multiplex 3 1 1 0 

Table 7.4: Hardware usage for Cholesky array PEs in terms of module usage. 
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When deriving the PE cost in an arbitrary sized spiral systolic array partitioned 

by s the same PE configurations as those described in tables 7.3 and 7.4 can be 

used. In general the LU and Cholesky designed arrays both contain s' PEs. Also 

for the arrays of both decomposition methods, pe[l, 11 is the same type of PE as 

pe[l, 1] in the s=2 arrays and pe[j, 11 (2 < J* < s) are all of the type pe[2,1] 

for each respective method. In the LU arrays pe[l, k] (2 <k< s) need to be 

same as pe[1,2] in table 7.3 while in the Cholesky arrays pe[j', 3*1 (2 < 3' < s) 

perform the function of pe[2,2] in table 7.4. The (S _ 1)2 remaining PEs of both 

decomposition arrays perform the inner product step function of pe[2,2] in table 

7.3 and pe[3,21 in table 7.4. Note that for this type of partitioning method the 

number of PEs is independent of model order unlike the partitioned array for 

matrix element calculation described in the previous chapter (6.2). 

/DI 
(13) Spiral Bus Cost 

The number of spiral buses and the number of delays per spiral bus is dependent 

on the partition size s. In all, for both Cholesky and LU methods an array has 

2s -2 spiral buses each carrying s extra delays plus one more bus which requires 

2s systolic delays. This leads to a total of 2 S2 systolic registers on the spiral 

buses for each decomposition method. In the LU array 2s -I multiplexors are 

also included to switch between the spiral and input C matrix buses. 

(C) Feedback Bus Cost 

The cost of the feedback buses is dependent on the model order as well as the 

size of partition. Due to the PE pipelining period a=3 in the arrays for both 

decomposition methods one feedback bus can be used to route from 3 consecutive 

outputs along an array edge to the corresponding inputs along the opposite edge. 
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The number of feedback buses required around a decomposition array is: 

Nf b bus= 2. ceil (7.16) (3 

and feedback bus utilisation is maximised when three is an exact factor of the 

partition size partition size e. g s= 3) s=6. Also a number of multiplexors are 

required to route different outputs onto each bus. The total number of these for 

each array is: 
2s Nf b ? nux= 2. trunc 

(3 ) (7.17) 

where trunc rounds to the nearest integer towards zero. 

The number of registers and multiplexors on each type of bus is specific to the 

decomposition method, model order, partition size and the order in which its 

subproblems are executed. Firstly consider the LU decomposition. To avoid 

interleaving with blocks of zeroes, the subproblem ordering restriction is for sub- 

problems working on the same covariance matrix element updates to execute 

consecutively so that data is spirally recirculated in the n direction whenever 

possible. The ordering scheme employed here also gives precedence of subprob- 

lem execution in the k direction over the J direction. On each of the k direction 

feedback buses q-I different systolic delays need to be switched between, where 

q= cei'l 
(P) (7.18) 

S 

The lengths of each delay, that is the number of systolic word registers, range 

from 2s I increasing in blocks of 3s to 2s + 3s(q - 2). The switching may be 

implemented with (q - 2) multiplexors as shown in figure 7.4. 

q-2 multiplexors 

. .......... 

q-2 FIFO blocks (each contains a total of 3s systolic register s) 

Figure 7.19: k direction feedback bus for LU spiral arrays. 
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The same type of configuration can be used for the j direction LU feedback 

buses but the delays are increased. The total delays on these buses range from 

3s(q - 1) -s followed by a total of q2 /2 - q/2 -I FIFO blocks each of length 3s 

word registers and also q2 /2 - q/2 -1 multiplexors for switching delay time. 

In the Cholesky decomposition the consecutive ordering of the subproblems in 

the k direction arises from the k direction spirals and the subproblem execution 

in the j direction is given priority over the n direction. The general configuration 

of the j direction feedback bus is the same as for that of the k direction in the LU 

method but with different control timing on the multiplexors. The n direction 

feedback buses range from 2s registers, adding on q2 /2 + q/2 -3 length 3s FIFOs 

and q2 /2 - q/2 -1 multiplexers are needed to select various delay outputs. This 

bus requires the same amount of hardware as the 3 direction feedback bus in the 

LU design but the delays at different points on the feedback bus are taken. 

7.5.2 Results of Cost Analysis 

Figure 7.20 plots word-parallel and bit-serial costs of the complete LU and 

Cholesky decomposition spiral systolic arrays versus partition size s (s 2 gives 

the number of PEs) for a range of model orders. For each model order curve, the 

Cholesky arrays show slightly greater hardware costs over the LU arrays due to 

2 

c2 
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X 164 
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Figure 7.20: Cost for (a) word parallel, (b) bit-serial approaches versus partition 

size s for a word-length of w- 16 bits and model orders p=4,14,22, 30. 
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the inclusion of the extra square root unit in the Cholesky which is not needed 

in the LU. The results for the single PE s-I parti ition show lowest cost. In 

determining of the results for the single PE array it is assumed that the PE is 

active on consecutive clock cycles. This is possible as communication with other 
PEs, which sets the processor pipeline period a to 3 in the larger arrays, is not 

necessary. The effect of this continual operation on the hardware is to reduce the 

number of systolic registers in the feedback loop by a factor of three, eliminating 

much redundant storage which arises if the single processor array is clocked 1 in 

every 3 cycles. 

The PE cost difference between the word-parallel and bit-serial approaches re- 

duces as the partition size and thus the number of PEs is decreased. Therefore 

the plots for both approaches tend to converge with smaller partitions since the 

hardware cost of the spiral and feedback buses is independent of approach. In 

both approaches the s=3 partition, which combines efficient use of feedback in 

a reasonably sized array, displays low cost for the highest model order curves. 

For the lower model orders it becomes more cost efficient to use smaller arrays. 

Comparison of figure 7.21 with figure 7.1 shows the advantage of the spiral over 

problem size dependent systolic arrays with 90% word-parallel and 60% bit-serial 

cost reduction when partitioning high model order arrays with s =: 6. 
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Figure 7.21: Cost for (a) word parallel and (b) bit-serial approaches versus model 

order p for a fixed word-length of w _- 16 bits for partitions s =- 1,3,4,6. 
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7.5.3 Execution Time 

The reduced cost of the spiral systolic arrays over the problem size dependent 

arrays is not without its drawbacks as the execution time in terms of clock cycles 
increases dramatically as the partition size decreases. Study of the geometry of 
decomposition DDG for Cholesky decomposition (figure 4.3(a)) shows that the 

number of subproblems DDGs is: 

N, ub(Cholesky 
q+q+q 
623 

while partitioning the LU DDG (figure 4.12(a)) results in creation of: 
32q 

Nsub(LU) -++- (7.20) 
36 

subproblems where q is defined by (7.18). The time period between execution 

of two consecutive subproblems is the product of the PE pipeline period a=3 

and the partition size s enabling the total number of clock cycles for a specific 

array to be calculated. The timing results are shown in figure 7.22 as a function 

of the partition size. The Cholesky decomposition spiral array is superior to the 

LU array in that it requires approximately half the number of clock cycles when 

s and p are same in each case. Despite the continuous clocking of the single PE 

array the results show that s=I partition requires the greatest execution times. 
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Figure 7.22: Systolic clock cycle execution times of (a) Cholesky and (b) LU 

decomposition spiral versus partition size s. A range of even model order curves 

are shown with the lowest curves corresponding to p-4 and the uppermost 

representing p- 30. 
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7.5.4 Design of a Programmable Array 

Since the hardware cost difference between the LU and Cholesky spiral arrays 

is very small the Cholesky decomposition should be chosen due to the superior 

execution time where the required number of clock cycles is almost halved. The 

Cholesky scheme also offers improved numerical stability over LU decomposition 

(chapter 5) so that shorter word-length can be used when solving equivalent 

problems - representing a substantial cost saving for the larger spiral arrays. 

The selection of the partitioning size s and consequently the number of PEs s' 

in the Cholesky spiral systolic array should be based on the highest model order 

problem that needs to be calculated and the allowable execution time, given 

the performance of underlying arithmetic modules for the adopted approach. 

Programmability can then be achieved since lower model order problems can be 

treated as subproblems of the highest order solution. 

A decomposition calculation can be performed in parallel with the matrix element 

calculation for the next window of data and therefore the allowable execution time 

becomes dependent upon the data window length. The minimum window length 

T,,, (win) for the highest model order problem sets the performance requirement 

of PEs in a spiral array, and is determined by the product of the shortest sampling 

period of the input data with the lowest number of data samples N,,, within the 

window. In general arrays with fewer PEs present lower overall cost but have the 

disadvantage of requiring a greater number of clock cycles Nlk(spiral) thereby 

limiting the maximum speed of operation to a greater extent than in a larger 

array. The minimum clock cycle length T,., -, (spiral) of the spiral array is likely 

to dependent upon the lag associated with square-root and divide operations due 

to their iterative nature and therefore implementations of these devices need to 

be investigated before selecting partition size. 
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Formally array selection should be based upon selecting maximum Ndk(spiral) 

such that the inequality: 

T, i, (wtn) 
N, lk(sln'ral) 

Ti, (sptral) (7.21) 

is satisfied, unless a larger partition than that selected results in lower cost. 

(A) Xilinx FPGA Implementation Example 

FPGA implementation of arithmetic modules is used here to demonstrate the 

design constraints on problem size independent decomposition arrays to keep in 

line with the FPGA implementations used to consider the programmable matrix 

element computation in section 6.4.3. Figures 7.23 to 7.26 show possible word- 

parallel and bit-serial implementations of the square-root and division arithmetic 

units discussed in section 4.4.8 and shown in figures 4.9 and 4.10. 
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Figure 7.23: (a) Xilinx XC313OPC8475 layout of the 3-bit non-restoring bit-serial 

square root (figure 4.10(c)) and CLB configurations of (b) multiplexer section 
AB to AF, (c) BB, (d) BC to BE (no delay required in BE), (e) BF, (f) BG. 
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Figure 7.24: (a) Xilinx XC313OPC84-5 layout of the 3-bit non-restoring word- 
parallel square root (figure 4.10(a)), (b) basic CLB configuration and (c) key to 
CLB logic functions. 
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Figure 7.25: (a) Xilinx 319OPP175-5 layout of a 12-bit non-restoring bit-serial 

division unit (based on extending figure 4.9(c)) programmed using FRADL and 
CLB configurations of (b) AB to AM, (c) BB, (d) BC to BL (no delay required 

in BL), (e) BM, (f) BN. 
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The top row of CLBs in the bit-serial divider unit (figure 7.25) performs a serial to 

parallel conversion for the denominator input data. The w= 12 bit-serial (figure 

7.25) and w -- 10 word-parallel (figure 7.26) versions of the divider units were 

programmed using FPGA regular array description language (FRADL) [128][132]. 

FRADL allows rapid prototyping of regular architectures such as the divider units 
by expressing the designs in terms of high level structural concepts. Compilation 

of a FRADL description substantially reduces design time and is especially useful 
for large arrays such as those in figures 7.26 and 7.26. 

Using the XDE timing analysis [131] programs the propagation lags of the Xilinx 

square-root and divider implementations can be calculated for a word-length w 

as shown in table 7.5. Considering once again the 16 bit example then in the 

Cholesky decomposition case the square-root units have the longest lag in both 

word-parallel and bit-serial approaches when compared with propagation delays 

associated with division and multiplication units (section 6.4.3). Therefore the 

square root modules determine the maximum possible systolic clock frequency 

of the problem size independent Cholesky decomposition arrays. The LU array 

does not require square-root operation and its division units cause the maximum 

lag of any of its PEs to set the maximum clock speed. With use of maximum PE 

lags in each array the minimum partition size, that is the partition 
_size 

leading 

to the smallest array which can maintain real-time operation, can be calculated 

from (7.19) to (7-21). 

module g for specified word-length (ns) Pw 
bits 16 bits 

word-parallel square-root 4.6(w 2+W-i)+ 10(w) + 20 1427 

bit-serial square-root 2w(4.6(w + 3) + 10) 3117 

word-parallel division 4.6w 2+ 10w + 20 1358 

bit-serial division (2w - 1)(4.6w + 10) 2592 

Table 7.5: Propagation delays of square-root and division arithmetic units. 
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/D ) Comparison of Xilinx Problem Size Independent Decomposition Arrays 

246 

The results of the minimum partition sizes in figure 7.27, show the partition sizes 
of the Cholesky array to be either less than or equal to the those of the LU array. 
It can be concluded from this that the advantage of the lower number of clock 
cycles required in the Cholesky arrays is more significant than the disadvantage 

caused by the greater lag associated with the square-root PEs of this array. 
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Figure 7.27: Minimum partition sizes s for even model orders p in the (a) word- 
parallel and (b) bit-serial Xilinx implementations of the Cholesky and LU de- 

composition arrays. 

Study reveals that the minimum partition sizes also produce arrays with minimum 

cost. The optimal array costs associated with each model order problem are shown 

in figure 7.28. For the lowest model orders, where the partition sizes are equal 

(figure 7.27), the Cholesky array uses more equivalent NANDs than the LU due 

to the inclusion of the extra square-root unit. However, the Cholesky array does 

generally show significantly lower cost for the higher model order cases where 

the LU array requires a bigger partition size and thus more PEs. The bit-serial 

approach uses hardware resources more efficiently and can be implemented at 

a lower cost than word-parallel. To achieve better results in word-parallel effort 

should be concentrated on speeding up square-root and division, for example with 

the use of carry lookahead, to bring the speed of these modules more in line with 

that of the multipliers, thereby reducing partition size and the number of PEs. 
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Figure 7.28: Optimal problem size independent array costs for even model or- 
ders p in the (a) word-parallel and (b) bit-serial Xilinx Implementations of the 
Cholesky and LU decomposition arrays. 

Finally the advantage of moving toward the problem size independent imple- 

mentation from the problem size dependent approaches discussed in chapter 4 

is illustrated in figure 7.29 in which the relative costs of these two methods are 

compared. In the word-parallel approaches the costs are reduced by 85 to 90% 

for model orders from 8 to 30 while in the bit-serial approach the cost reduction 

is in the order of 60 to 80%. 
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Figure 7.29: Relative cost of optimal problem size independent Cholesky and 
LU arrays respectively against the Cholesky [1,1,1] (figure 4.8) and LU [1,0,0] 

(figure 4.13) problem size dependent arrays for even model orders p in the (a) 

word-parallel and (b) bit-serial Xilinx implementations. 
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7.6 Concluding Remarks 

The aim of this work was to design real-time DSP hardware to aid in calculation of 
filter parameters in the programmable model order Modified Covariance spectral 
estimator. 

To limit the size of the systolic arrays for high model order problems the mapping 

of the algorithms into small systolic arrays using DDG partitioning and reindexing 

schemes was investigated. The research produced a spiral systolic array for the 

LU decomposition which utilised feedback links to provide simple rescheduling 

of intermediate results. The array was shown to offer significant advantages 

in respect of data rescheduling, input/output connectivity and operation time 

over a previously proposed spiral solution which was designed using alternative 

methods. In respect of the Cholesky decomposition algorithm the standard type 

of spiral architecture which was used for the LU decomposition was deemed to 

be unsuitable. This led to proposal of a different reindexing scheme resulting in 

a novel spiral systolic architecture for the Cholesky decomposition computation. 

The two arrays presented have been shown to be easily adaptable for use with 

higher model orders with the use of extra delays in the feedback loops. The 

versatility of DDG reindexing methods has been shown in that they were able 

to be applied to different types of decomposition problem and showed a clearer, 

more easily understandable mapping from algorithm to systolic array than was 

the case for the DBT method. 

In a Xilinx FPGA implementation example the LU and Cholesky DDG designed 

spiral systolic arrays, both had similar control requirement, but the Cholesky 

method offered lower cost in general at higher model order. Bit-serial implemen- 

tation was found to be most cost efficient and the reduction in cost of 75% at 

p= 30 in the bit-serial problem size independent Cholesky array compared to 

the problem size dependent p= 30 Cholesky [1,1,1] array meant the number of 

Xilinx XC3195-5 FPGAs required could be reduced from 35 to 9. 
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Chapter 8 

Conclusion 

8.1 General Review 

This thesis details the design of hardware architectures for use in Modified Co- 

variance spectral estimation with pulsed ultrasonic Doppler instruments in blood 

flow measurements. The motivation behind the research was to design appli- 

cation specific hardware which offered increased sensitivity in the detection of 

arterial disease by enabling the real-time implementation of the Modified Covarl- 

ance method, which has superior performance to the conventional short term fast 

Fourier transform (STFFT). 

Previous research has determined that the power frequency spectrum of the 

Doppler time signal output from pulsed ultrasonic blood flow detectors gives 

a good representation of the velocity profile of the scanned blood cells [48][50]. 

It has been shown that arterial stenosis widens the velocity range and increases 

the mean flow velocity of blood cells in the region of the occlusion, enabling the 

severity of disease to be diagnosed from subsequent changes in the width and 

mean frequency of the Doppler power spectrum. In a comparison of Doppler 

power spectrum mean frequency and bandwidth estimation methods, the model 

order 4 Modified Covariance spectral estimator had been previously identified to 

give the best accuracy when weighted against computational burden [101. At- 
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tempts had been made to implement the Modified covariance spectral estimator 
on a transputer platform, but in certain cases it was found that such an approach 
could not provide the necessary throughput for real-time operation [14). 

This thesis readdressed the problem of real-time implementation of the Modified 

Covariance spectral estimator and considered the feasibility of using VLSI array 

processors. VLSI technology has allowed increasingly large numbers of gates to 

be mounted on small integrated circuits thus promoting the portability and the 

accessibility to special purpose systems. Systolic architectures have been shown 
to be very amenable to VLSI fabrication due to their localised communication 

network and regular arrays of relatively simple PEs. They have found applica- 

tion in many areas of real-time digital signal processing, their high throughput 

achieved through the use of massive levels of concurrent processing arising from 

the parallel and pipelined nature of the arrays. 

In the design of the ASIC device it was deemed necessary to have a coherent strat- 

egy for the derivation of systolic array architectures from the algorithms involved 

in the Modified Covariance method. This led to selection of the data dependence 

graph (DDG) design method [23] which was used throughout the thesis to provide 

clear representations of the single assignments and communication requirements 

in the algorithms performed in the Modified Covariance spectral estimator. By 

way of many examples the process of systolic array formation from DDG projec- 

tion has been demonstrated. For certain algorithms it was shown how a number of 

different DDGs could be derived, each leading to a unique systolic array solution. 

It was also shown how a variety of systolic arrays could be designed by projecting 

DDGs in various directions. The versatility of the systolic model of computation 

was demonstrated by applying the DDG methodology to the design of word-level 

systolic arrays for all the algorithms required in the Modified Covariance method, 

data reordering networks and bit-level pipelined arithmetic units for use in the 

PEs of the word-level systolic arrays. 
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The question which then arose was, that when presented with a range of systolic 

array designs, then what makes a design optimal? This was a difficult choice 
to make given the variety of systolic architectures which were designed, each 

with their own specific PE circuitry, communication architectures and control 

requirements. Many researchers would make simple comparisons based on the 

number of PEs but more detailed comparisons were made in this thesis, using 

such metrics as array gate level hardware, communication and control cost. Costs 

of integrating systolic arrays into the system were considered and a cost/benefit 

analysis which weighted hardware and communication against estimation error 

allowed optimal word-length arrays to be selected. The aspects of operation time, 

processor and array efficiency were also recognised as important features in the 

comparison of systolic array performance to help make the difficult choice. 

Two types of systolic array design were considered in the thesis. The first consid- 

ered mapping algorithms of a fixed model order spectral estimator onto problem 

size dependent arrays. The second approach was slightly more flexible in that al- 

gorithms were mapped onto problem size independent systolic arrays which could 

handle various sized problems without having to vary the number of PEs. 

8.1.1 The Problem Size Dependent Systolic Array Approach 

The mapping onto problem size dependent systolic arrays was initially considered 

for the model order p-4 Modified Covariance spectral estimator to derive simple 

architectures for estimation of Doppler mean frequency and bandwidth. The 

calculation of the covariance matrix elements and the filter parameters were of 

interest. The calculation of the p=4 covariance matrix elements, although 

being a relatively simple algorithm consisting of a number of multiply accumulate 

operations, was shown to present a fairly large real-time computational burden. 
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Two 3-dimensional DDGs were derived to compute all of the necessary single 
assignment operations and the mapping of these graphs onto a 2-dimensional 

systolic array was shown with symmetrical matrix properties used to reduce the 

number of PEs. The resulting array however was expensive to implement since 
there were two multiply accumulators within each PE, it displayed high commu- 

nication cost (requiring some global connections) and results were left within the 

PEs which made retrieval of data difficult and untidy. 

Prompted by these disadvantages attempts were made to redesign the DDGs. 

The computations were partitioned into a total of three 2-dimensional DDGs 

and these were projected into linear arrays of length 5 PEs, 3 PEs and I PE, 

each PE containing a single multiply accumulator unit, with a control option for 

doubling the product. Although this tri-linear array offered substantial reductions 

in hardware, communication, and input connectivity, limitations were recognised 

in that each PE could only be active 50% of the time and multiplications were 

repeated from one linear array to another, combining to give an array with poor 

efficiency. 

Further optimisation was proposed by deriving a DDG which computed all the 

necessary multiply accumulate operations just once and, by splitting the DDG the 

redundancy caused by bi-directional data flow was removed. Two 100% efficient 

linear arrays of length 2 and 3 PEs resulted from projection. However it was 

found that the sorting network required for the calculation of the covariance 

matrix elements from this bi-linear array's multiply accumulate outputs, added 

considerably to the register and control cost of the design, consequently having 

a detrimental effect on the advantage gained by the reduction of the number of 

PEs over the previous tri-linear systolic array. 

The final problem size dependent systolic array design was aimed at reaching a 

compromise between the si 11 inear array while attempting to mplicity of the tri-li 11 

meet the multiply accumulate efficiency of the bi-linear array. To do this the 
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bi-linear multiply accumulate DDG was treated as simply a DDG for the sole 
calculation of the products projected into 2 linear systolic arrays. Five separate 
DDGs for the accumulation were then designed to feed off the multiplication 

array outputs and multi-projection was used to map these accumulation DDGs 

into single PEs. In this partitioned multiply accumulate (PMA) design the two 

types of PE were later merged and it was found that hardware costs could be 

lowered considerably with a dual frequency systolic clocking strategy. Hardware 

cost, communication and control comparisons of all four matrix element systolic 

arrays led to selection of the PMA array and the bit-serial approach was deemed 

to provide sufficient throughput for real-time operation. 

For the solution of the system of linear equations decomposition techniques were 

identified as efficient algorithms to perform the computation of the filter param- 

eters. It has been shown how these algorithms may be used to decompose the 

equation into the format of triangular systems of equations which may then be 

easily solved using the forward elimination and back substitution algorithms [17]. 

Three different decomposition algorithms were considered, namely Cholesky, LU 

and LDL T. 

The Cholesky algorithm was investigated separately as it was noted that this al- 

gorithm required the square root operation which presents dIfficulty when imple- 

menting in VLSL The Cholesky decomposition 3-dimensional DDG was derived 

and the systolic arrays formed from projections in five different directions were 

considered. Each contained 10 PEs and displayed similar operation time. Of 

these five projections, the array resulting from the [1,1,1] mapping, equivalent to 

Brent and Luk's hexagonally connected array [80], displayed the lowest gate cost 

but a slightly higher communication cost. Unlike the the other arrays though, 

each of the PEs in the [1,1,1] array were only required to work in single modes, 

and this factor in conjunction with the low cost led to this array being selected. 



Chapter 8- Conclusion 254 

The LU and LDL T non-square root methods were then examined. The similar- 
ity of the recursive structure of the DDGs for these methods with that of the 
Cholesky was used to narrow projection the projection vectors considered down 
to the [1,0,0] and [1,1,1] vectors which had previously produced the two optimal 
Cholesky decomposition arrays. A new array for [1,0,0) LU decomposition was 
proposed which allowed on-the-fly retrieval of data without significantly increas- 
ing the PE complexity in the design proposed by Kung [54] in which this problem 
had not been discussed. Two more new arrays were produced from a DDG which 

re-represented the LDL T decomposition algorithm, to reduce the hardware cost 

of a design proposed by Brent & Luk [80], which utilised a different communi- 

cation strategy. In the non-square-root array comparison the simplicity and low 

cost of the LU [1,0,0] array in terms of the orthogonal communication structure 

and the internal PE layout led to its selection. 

An in-depth comparison of the selected Cholesky [1,1,1] and LU [1,0,0] systolic 

arrays was then made to consider the cost of system integration and the effect of 

finite word-length rounding on the estimated filter parameters. In a cost/benefit 

analysis the hardware and communication costs incurred were weighed against a 

benefit function, treated as the inverse of mean frequency and bandwidth estima- 

tion error, for a range of word-lengths. In the fixed point error analysis the LU 

array was shown to suffer from catastrophic overflow errors at lower word-length 

while for the Cholesky array errors only really became significant at the very low 

word-lengths. When these results were substituted in the cost/benefit analysis 

the Cholesky decomposition array at a 12 bit word-length was found to be optimal 

for estimation of both mean frequency and bandwidth. Further analysis revealed 

that, providing the products were accumulated at double precision in the matrix 

element calculation, a 10 bit word-length was sufficient for the quantisation of 

the Doppler signal. 
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8.1.2 The Problem Size Independent Systolic Array Approach 
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The advantage of the problem size dependent systolic array architectures was 
that they required simple control, communication and processor layout. Once 

the array was designed, PE arithmetic unit design could then be based upon 
the allowable lag for real-time operation to be achieved. It was found however, 

notably in the case of the filter parameter calculation, that the degree of concur- 

rency achieved allowed PEs to be designed to quite low specification, and use of 

word-parallel arithmetic clearly could not be justified. An alternative approach 
to systolic design which allowed the degree of partitioning to be based upon a 

given processor specification to utilise the arithmetic units maximum potential, 

was then discussed. This involved the design of problem size independent sys- 

tolic arrays which were shown to be more adaptable to a wider range of problems 

of varying model order. Another reason behind the adoption of problem size 

independent partitioning schemes was that when considering large model order 

problems, sometimes used for estimation of other spectral features, then problem 

size dependent arrays would become excessively large and not feasible to imple- 

ment. Nevertheless the knowledge gained in the development of problem size 

dependent systolic arrays proved to be extremely useful when considering the 

design of problem size independent systolic arrays. 

A partitioning technique was applied to the multiplication DDG for the PMA 

design in order to tackle the covariance matrix element calculation in the high 

model order Modified Covariance spectral estimator. The partitioning involved 

projecting a number of rows of the DDG into a single PE as opposed to one 

row per PE as previously considered. It was shown that there were optimal 

partition sizes when mapping a certain model order problem into a fixed number 

of PEs. W ith increasing optimal partition size the size of the partitioned systolic 

array for a given model order problem reduced, but at the same time the number 

of registers in the accumulation feedback increased. The general trend though 
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was toward lower cost and this was especially pronounced in the word-parallel 
approach. Mapping into small arrays however put more burden onto each PE as 
the total number of clock cycles for complete operation was expanded leading to 

a tradeoff between array size and operation time. 

With increased model order the processing burden in the filter parameter stage 
became much greater and the development of an efficient partitioning scheme was 

crucial. The design of a programmable model order systolic array for Cholesky 

decomposition stemmed from the research of Navarro et al. [28] into the deriva- 

tion of an LU decomposition spiral systolic array using TBP and DBT design 

methods. A LU spiral systolic array was designed using DDG partitioning and 

reindexing methods to address several shortcomings apparent in the design. The 

resulting array incorporated systolic delay feedback links to reschedule interme- 

diate results, removing the need for storage/fetch cycles from a memory source 

to improve system throughput and reduce operation time. Redundant processor 

states could be used in setting up data for subsequent subproblems and chaining 

gave an indication of data scheduling for the complete computation. 

A problem size independent systolic array for Cholesky decomposition had not 

previously been proposed and the design of such an array was considered for 

the first time in this thesis. The design methodology used, was b-ased upon 

the DDG partitioning and reindexing methods used in the LU design. It was 

discovered that the communication network of the standard spiral systolic array 

architecture used for the LU decomposition was unsuitable for performing the 

Cholesky decomposition. This led to proposal of a modified DDG subproblem 

reindexing approach which resulted in a novel spiral architecture. When the 

Cholesky and LU decomposition spiral systolic arrays with equal numbers of 

PEs were applied to the same model order problems, the Cholesky array cost was 

slightly higher but this extra cost was deemed worth incurring as the number of 

clock cycles was approximately halved in the Cholesky computation. 
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In conclusion, systolic arrays have been shown to offer a viable, cost-effective 
solution to the problem of implementing the Modified Covariance spectral esti- 
mator in real-time, and to improve accessibility to accurate blood flow diagnostic 

equipment. Two distinct classes of array, problem size dependent and problem 

size independent, have been designed and analysed. Problem size dependent sys- 
tolic arrays were suitable for the small model order algorithms of the Modified 

Covariance spectral estimator, displaying basic control requirement and fully lo- 

callsed communication. On the other hand, problem size independent systolic 

arrays required an involved control strategy, some global interconnections and 

more complex internal PE structures. But, they did however offer flexible, pro- 

grammable model order solutions, which were capable of computing high model 

order problems while making efficient use of arithmetic unit potential. 

Data dependence graph design methods have shown a great deal of versatility 

in the design of hardware for real-time spectral estimation. A design platform 

has been established on which the systolic array implementation of other more 

demanding spectral estimators such as ARMA methods could be based. 

8.2 Further Research Possibilities 

The next step in the design process is to test an implementation of the fixed 

model order p=4 Modified Covariance spectral estimator on hardware. Field 

programmable gate arrays (FPGAs), such as those produced by Xilinx [129], 

offer an ideal prototyping environment and use of their rep rogr amm ability can 

be made to easily facilitate design optimisation. Tools such as FRADL (FPGA 

Regular Array Description Language) [128][132] can be used to simplify word- 

parallel arithmetic unit construction on FPGAs by describing the regular layout 

within a few lines of simple high level language code. FRADL was used to produce 

the bit-serial and word-parallel divider arrays presented in chapter 7 (figures 7.25 

and 7.26) and could easily be extended to the other arithmetic units described. 
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Xilinx FPGAs have been shown to be suitable for the implementation of bit-serial 

on of the CLBs flip-flops 111 
devices by utilisati 1 for the required bit-level pipelining. 
The use of bit-serial arithmetic in systolic array processors presents a greater 
challenge to the designer than word-parallel as the timing of individual data in 
each word needs to be matched to the systolic clock rate. Extra control signals are 
required for indication of sign bits, bit-level clocking and arithmetic unit reset. 

The DDG methodology was also applied to the design of bit-serial pipelined arith- 

metic units. The bit-level DDG projection described by McCanny et al. for mul- 
tiplication [118] was extended to produce two's complement multipliers and the 

ideas were used in bit-serial divider and square root unit design. Problems were 
however encountered when the matching of data flows between systolic PEs in 

the Cholesky decomposition array was considered. In two's complement multipli- 

cation, addition and subtraction the least significant result bit is computed first, 

due to the direction of the carry dependence arcs in their DDGs. The input data 

is usually LSB first, but, depending on the projection vector the input operands 

can both be bit-serial or one of the inputs could be word-parallel. Conversely, 

division and square root restoring and nonrestoring algorithms [88] inherently 

output the MSB first, which causes a mismatch between the systolic PEs in the 

Cholesky decomposition array. Thus further study on bit-serial implementation 

is required. 

Another problem with division and square-root algorithms is that there is an in- 

trinsic dependence between iteration steps which causes their hardware units to 

be considerably slower than those for multiplication. The division and square-root 

PEs cause bottlenecks which determine the maximum clock frequency for the sys- 

tolic array. The design of high speed word-parallel and bit-serial division/ square- 

root hardware still remains a serious undertaking, and is, of great importance in 

the improvement of decomposition systolic array throughput. 
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Implementation of the fixed model order p=4 spectral estimator on problem 

size dependent systolic arrays using word-parallel is initially recommended as this 

requires the basic control scheme and allows easier testability [133]. Efficiency can 
then be improved by either going on to the bit-serial approach or by considering 
the problem size independent schemes. When considering the implementation of 
higher model systolic arrays the likelihood of the covariance system of equations 
becoming more ill-conditioned increases, decreasing the accuracy of the filter 

parameter results which are more susceptible to any error in the covariance matrix 

elements. Longer word-length is therefore necessary in order to maintain sufficient 

accuracy and use of a cost/benefit analysis similar to that described for the model 

order p -- 4 estimator should be investigated to obtain optimal word-length. 

When implementing the high model order decomposition arrays attention should 

be paid to the global communications which are expensive to implement in VLSL 

The spiral buses carry a certain number of systolic delay elements and with some 

further study they could possibly be replaced by a series of local communications. 

Another possible future study is the design of systolic arrays for the other types 

of spectral estimator as reviewed in chapter 2. Spectral estimation techniques 

are the subject of continuous research and thus there is need to produce hard- 

ware implementations as quickly as possible before these techniques are further 

developed. The DDG methods demonstrated in this thesis can be used to reduce 

design cycle periods and speed hardware implementation of new techniques. 
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